
Welcome back...

Welcome back...

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems.

Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees.

Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Metric spaces.

A metric space X , d(i , j) where d(i , j)≤ d(i ,k) + d(k , l) and
d(i , j) = d(j , i)

Which are metric spaces?

(A) X from Rd and d(·, ·) is Euclidean distance.

(B) X from Rd and d(·, ·) is squared Euclidean distance.

(C) X - vertices in graph, d(i , j) is shortest path distances in graph.

(D) X is a set of vectors and d(u,v) is u ·v .

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Approximate metric using a tree.

Tree metric:

X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:

Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.

(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)

(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree?

Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree?

Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!

Bummer.
Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge

get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1

+ 1
n × (n−1) ≈ 2

General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1)

≈ 2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈

2
General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2

General metrics?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dT (i , j) shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

16 16

8 8 8 8

...
...

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches ≤ α

in expectation.

Map metric onto tree? Distance 1 goes to n−1!
Bummer.

Fix it up chappie!

For cycle, remove a random edge get a tree.

Stretch of edge: n−1
n ×1 + 1

n × (n−1) ≈ 2
General metrics?

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.

(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).

(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).

Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.

Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in

selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.

the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches ≤ α in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST ≡ recursive decomposition of metric space.

Decompose space by diameter ≈∆ balls.
Recurse on each ball for ∆/2.

Use randomness in
selection of ball centers.
the ≈ diameter of the balls.

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1

1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .

2. Choose β in [1
4 ,

1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):

T = []
if ∆ < 1 return [S]
foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []

if ∆ < 1 return [S]
foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]

foreach i in π:
if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S

B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆)

; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B

T.append(B)
return map (λ x: subtree(x,∆/2), T);

3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);

3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call.

Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Algorithm
Algorithm: (X ,d), diam(X)≤ D, |X |= n, d(i , j)≥ 1
1. π – random permutation of X .
2. Choose β in [1

4 ,
1
2].

def subtree(S,∆):
T = []
if ∆ < 1 return [S]
foreach i in π:

if i ∈ S
B = ball(i, β ∆) ; S = S/B
T.append(B)

return map (λ x: subtree(x,∆/2), T);
3. subtree(X ,∆)

Tree has internal node for each level of call. Tree edges have weight
∆/2 to children.

Claim 1: dT (x ,y)≥ d(x ,y).

d(x ,y) are in different sets at level ∆≤ d(x ,y).

→ d(x ,y)≥∆

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆.

(Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.

larger the delta, more room inside ball.
random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?

Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.

For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.

random permutation to deal with this

Analysis: idea

Claim: E [dT (x ,y)] = O(logn)d(x ,y).

Cut at level ∆→ dT (x ,y)≈ 2∆. (Level of subtree call.)

Pr [cut at level∆]?

Would like it to be d(x ,y)
∆ .

→ expected length is ∑∆=D/2i (2∆) d(x ,y)
∆ = 2d(x ,y).

Why should it be d(x ,y)
∆ ?

smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

random diameter jiggles edge of ball.

→ Pr [x ,y cut by ball|x in ball]≈ d(x ,y)
β ∆
≤ 4∆

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.

Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],

Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..

d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆

and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)

≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)

→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].
occurs with prob. d(x ,y)

∆/4 = 4d(x ,y)
∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π

→ prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.

→ E [dT (x ,y)] = ∑∆= D
2i

∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

Analysis: (x ,y)
Have Pr [x ,y cut by ball|x in ball]≈ d(x ,y)

β ∆
≤ 4∆

(Only consider cut by x , factor 2 loss.)

At level ∆

At some point x is in some ∆ level ball.
Renumber nodes in order of distance from x .

Can only in ball for j , where d(j ,x) ∈ [∆/4,∆/2],
Call this set X∆.

If j ∈ X∆ cuts (x ,y) if..
d(j ,x)≤ β ∆ and β ∆≤ d(j ,y)≤ d(j ,x) + d(x ,y)
→ β ∆ ∈ [d [j ,x],d(j ,x) + d(x ,y)].

occurs with prob. d(x ,y)
∆/4 = 4d(x ,y)

∆ .

And j must be before any i < j in π → prob is 1
j

→ Pr [j cuts (x ,y)]≤
(

1
j

)
4d(x ,y)

∆

dT (x ,y) if cut level ∆ is 2∆.
→ E [dT (x ,y)] = ∑∆= D

2i
∑j∈X∆

(
1
j

)
8d(x ,y)

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

The pipes are distinct!

E(dT (x ,y)] = ∑∆=D/2i ∑j∈X∆

(
1
j

)
2d(x ,y)

Recall X∆ has nodes with d(x , j) ∈ [∆/4,∆/2]

“Listen Stash, the pipes are distinct!!”

Uh.. well X∆ is distinct from X∆/4.

E(dT (x ,y)] = ∑∆= D
4i

∑j∈X∆

(
1
j

)
8d(x ,y) + ∑∆= D

((2)4i)

∑j∈X∆

(
1
j

)
8d(x ,y)

≤ 2∑j

(
1
j

)
4d(x ,y)

≤ (16lnn)(d(x ,y)).

Claim: E [dT (x ,y)] = O(logn)d(x ,y)

Expected stretch is O(logn).

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is O(logn).

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?

Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter.

D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced

|S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...

a bit more work...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut E(S,S)

|S|S ,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Lemma: S ≥ 1
∑i ,j d(i ,j) .

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: ∑i ,j d(i , j)/n2.

If cut is balanced |S||S| is Θ(n2)

and sparsity is O(logn)/D
cn2 = O(logn)

∑i ,j d(i ,j) .

→ find O(logn) times optimal sparse cut.

If not...a bit more work...

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree,

“geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”,

constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

Metric Labelling

Input: graph G = (V ,E) with edge weights, w(·), metric labels (X ,d),
and costs for mapping vertices to labels c : V ×X .

Find an labeling of vertices, ` : V → X that minimizes

∑e=(u,v) c(e)d(l(u), l(v)) + ∑v c(v , l(v))

Idea: find HST for metric (X ,d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”, constant factor.

→ O(logn) approximation.

See you ...

Tuesday.

