Welcome back...

Welcome back...

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, I)$ and $d(i, j)=d(j, i)$

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, I)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, I)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, I)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, l)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, l)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.
Hard problems. Easier to solve on trees.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, l)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees. Dynamic programming on trees.

Metric spaces.

A metric space $X, d(i, j)$ where $d(i, j) \leq d(i, k)+d(k, l)$ and $d(i, j)=d(j, i)$

Which are metric spaces?
(A) X from R^{d} and $d(\cdot, \cdot)$ is Euclidean distance.
(B) X from R^{d} and $d(\cdot, \cdot)$ is squared Euclidean distance.
(C) X-vertices in graph, $d(i, j)$ is shortest path distances in graph.
(D) X is a set of vectors and $d(u, v)$ is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees. Dynamic programming on trees.

Approximate metric on trees?

Approximate metric using a tree.

Tree metric:

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
$d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$

Map metric onto tree?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$

Map metric onto tree?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$

Map metric onto tree?

Distance 1 goes to $n-1$!

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$

Map metric onto tree?

Distance 1 goes to $n-1$!
Bummer.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.
Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?

Distance 1 goes to $n-1$! Bummer.

Fix it up chappie!

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1$

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1+\frac{1}{n} \times(n-1)$

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1+\frac{1}{n} \times(n-1) \approx$

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1+\frac{1}{n} \times(n-1) \approx 2$

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights $d_{T}(i, j)$ shortest path metric on tree.
Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(ii) Every distance stretches $\leq \alpha$ in expectation.
Map metric onto tree?
Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: $\frac{n-1}{n} \times 1+\frac{1}{n} \times(n-1) \approx 2$
General metrics?

Probabilistic Tree embedding.

Probabilistic Tree embedding. Map X into tree.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).

Probabilistic Tree embedding.

Probabilistic Tree embedding.

Map X into tree.

(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of X are leaves of tree.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.
Use randomness in

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.
Use randomness in
selection of ball centers.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.
Use randomness in
selection of ball centers.
the \approx diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(ii) Every distance stretches $\leq \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.
On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST \equiv recursive decomposition of metric space.
Decompose space by diameter $\approx \Delta$ balls.
Recurse on each ball for $\Delta / 2$.
Use randomness in
selection of ball centers.
the \approx diameter of the balls.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
T = []
if $\Delta<1$ return [S]

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S] foreach i in π :

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S] foreach i in π :
if $i \in S$

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$

$$
B=\operatorname{ball}(\mathrm{i}, \beta \Delta)
$$

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append(B)

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree(S, Δ):
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append(B)
return map ($\lambda \mathrm{x}$: subtree $(\mathrm{x}, \Delta / 2), \mathrm{T}$);

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree(S, Δ):
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append(B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree(S, Δ):
$\mathrm{T}=[]$
if $\Delta<1$ return [S] foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Tree has internal node for each level of call.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree(S, Δ):
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Tree has internal node for each level of call. Tree edges have weight $\Delta / 2$ to children.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Tree has internal node for each level of call. Tree edges have weight $\Delta / 2$ to children.
Claim 1: $d_{T}(x, y) \geq d(x, y)$.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Tree has internal node for each level of call. Tree edges have weight $\Delta / 2$ to children.
Claim 1: $d_{T}(x, y) \geq d(x, y)$.
$d(x, y)$ are in different sets at level $\Delta \leq d(x, y)$.

Algorithm

Algorithm: $(X, d), \operatorname{diam}(X) \leq D,|X|=n, d(i, j) \geq 1$

1. π - random permutation of X.
2. Choose β in $\left[\frac{1}{4}, \frac{1}{2}\right]$. def subtree (S, Δ) :
$\mathrm{T}=[]$
if $\Delta<1$ return [S]
foreach i in π :
if $i \in S$
$B=\operatorname{ball}(\mathrm{i}, \beta \Delta) ; S=S / B$
T.append (B)
return map ($\lambda \mathrm{x}$: subtree ($\mathrm{x}, \Delta / 2$), T);
3. subtree (X, Δ)

Tree has internal node for each level of call. Tree edges have weight $\Delta / 2$ to children.
Claim 1: $d_{T}(x, y) \geq d(x, y)$.
$d(x, y)$ are in different sets at level $\Delta \leq d(x, y)$.
$\rightarrow d(x, y) \geq \Delta$

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$?

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$?
smaller the edge the less likely to be on edge of ball.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$?
smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$?
smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball.
random diameter jiggles edge of ball.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$?
smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball x in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
The problem?

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
The problem?
Could be cut be many different balls.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.

Analysis: idea

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$.
Cut at level $\Delta \rightarrow d_{T}(x, y) \approx 2 \Delta$. (Level of subtree call.)
$\operatorname{Pr}[$ cut at level $\Delta]$?
Would like it to be $\frac{d(x, y)}{\Delta}$.
\rightarrow expected length is $\sum_{\Delta=D / 2^{i}}(2 \Delta) \frac{d(x, y)}{\Delta}=2 d(x, y)$.
Why should it be $\frac{d(x, y)}{\Delta}$? smaller the edge the less likely to be on edge of ball. larger the delta, more room inside ball. random diameter jiggles edge of ball.
$\rightarrow \operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many. random permutation to deal with this

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$ (Only consider cut by x, factor 2 loss.)
At level Δ

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball.

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..
$d(j, x) \leq \beta \Delta$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y)
$$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y)
$$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] .
\end{aligned}
$$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,
Call this set X_{Δ}.
If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

And j must be before any $i<j$ in π

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,
Call this set X_{Δ}.
If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,
Call this set X_{Δ}.
If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$
$\rightarrow \operatorname{Pr}[j$ cuts $(x, y)] \leq\left(\frac{1}{j}\right) \frac{4 d(x, y)}{\Delta}$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$, Call this set X_{Δ}.

If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$
$\rightarrow \operatorname{Pr}[j$ cuts $(x, y)] \leq\left(\frac{1}{j}\right) \frac{4 d(x, y)}{\Delta}$
$d_{T}(x, y)$ if cut level Δ is 2Δ.

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,
Call this set X_{Δ}.
If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] .
\end{aligned}
$$

$$
\text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} \text {. }
$$

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$
$\rightarrow \operatorname{Pr}[j$ cuts $(x, y)] \leq\left(\frac{1}{j}\right) \frac{4 d(x, y)}{\Delta}$
$d_{T}(x, y)$ if cut level Δ is 2Δ.
$\rightarrow E\left[d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{2^{i}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)$

Analysis: (x, y)

Have $\operatorname{Pr}[x, y$ cut by ball $\mid x$ in ball $] \approx \frac{d(x, y)}{\beta \Delta} \leq 4 \Delta$
(Only consider cut by x, factor 2 loss.)
At level Δ
At some point x is in some Δ level ball. Renumber nodes in order of distance from x.
Can only in ball for j, where $d(j, x) \in[\Delta / 4, \Delta / 2]$,
Call this set X_{Δ}.
If $j \in X_{\Delta}$ cuts (x, y) if..

$$
\begin{aligned}
& d(j, x) \leq \beta \Delta \text { and } \beta \Delta \leq d(j, y) \leq d(j, x)+d(x, y) \\
& \rightarrow \beta \Delta \in[d[j, x], d(j, x)+d(x, y)] . \\
& \text { occurs with prob. } \frac{d(x, y)}{\Delta / 4}=\frac{4 d(x, y)}{\Delta} .
\end{aligned}
$$

And j must be before any $i<j$ in $\pi \rightarrow$ prob is $\frac{1}{j}$
$\rightarrow \operatorname{Pr}[j$ cuts $(x, y)] \leq\left(\frac{1}{j}\right) \frac{4 d(x, y)}{\Delta}$
$d_{T}(x, y)$ if cut level Δ is 2Δ.
$\rightarrow E\left[d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{2^{i}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{J}\right) 8 d(x, y)$

The pipes are distinct!

$$
E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)
$$

The pipes are distinct!

$$
E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)
$$

Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.
$E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)$

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{J}\right) 8 d(x, y) \\
& \quad \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y)
\end{aligned}
$$

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y) \\
& \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y) \\
& \leq(16 \ln n)(d(x, y)) .
\end{aligned}
$$

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y) \\
& \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y) \\
& \leq(16 \ln n)(d(x, y)) .
\end{aligned}
$$

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y) \\
& \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y) \\
& \leq(16 \ln n)(d(x, y)) .
\end{aligned}
$$

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$
Expected stretch is $O(\log n)$.

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y) \\
& \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y) \\
& \leq(16 \ln n)(d(x, y)) .
\end{aligned}
$$

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$
Expected stretch is $O(\log n)$.
We gave an algorithm that produces a distribution of trees.

The pipes are distinct!

$E\left(d_{T}(x, y)\right]=\sum_{\Delta=D / 2^{i}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 2 d(x, y)$
Recall X_{Δ} has nodes with $d(x, j) \in[\Delta / 4, \Delta / 2]$
"Listen Stash, the pipes are distinct!!"
Uh.. well X_{Δ} is distinct from $X_{\Delta / 4}$.

$$
\begin{aligned}
& E\left(d_{T}(x, y)\right]=\sum_{\Delta=\frac{D}{4^{\prime}}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y)+\sum_{\Delta=\frac{D}{\left((2) 4^{i}\right)}} \sum_{j \in X_{\Delta}}\left(\frac{1}{j}\right) 8 d(x, y) \\
& \leq 2 \sum_{j}\left(\frac{1}{j}\right) 4 d(x, y) \\
& \leq(16 \ln n)(d(x, y)) .
\end{aligned}
$$

Claim: $E\left[d_{T}(x, y)\right]=O(\log n) d(x, y)$
Expected stretch is $O(\log n)$.
We gave an algorithm that produces a distribution of trees.
The expected stretch of any pair is $O(\log n)$.

Alternative to Cheeger for expansion.

Graph G, sparsity of cut $\frac{E(S, \bar{S})}{|S| \bar{S}}$,

Alternative to Cheeger for expansion.

 Graph G, sparsity of cut $\frac{E(S, \bar{S})}{|S| \bar{S}}$,Find smallest sparsity cut?

Alternative to Cheeger for expansion.

Graph G, sparsity of cut $\frac{E(S, \bar{S})}{|S| \bar{S}}$,
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Alternative to Cheeger for expansion.

Graph G, sparsity of cut $\frac{E(S, \bar{S})}{|S| \bar{S}}$,
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.

Alternative to Cheeger for expansion.

Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)

Alternative to Cheeger for expansion.

Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.

If cut is balanced

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.
If cut is balanced $|S||\bar{S}|$ is $\Theta\left(n^{2}\right)$

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.

If cut is balanced $|S||\bar{S}|$ is $\Theta\left(n^{2}\right)$ and sparsity is $\frac{O(\log n) / D}{c n^{2}}=\frac{O(\log n)}{\sum_{i, j}(i, j)}$.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter.
is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.
If cut is balanced $|S||\bar{S}|$ is $\Theta\left(n^{2}\right)$ and sparsity is $\frac{O(\log n) / D}{c n^{2}}=\frac{O(\log n)}{\sum_{i, j} d(i, j)}$.
\rightarrow find $O(\log n)$ times optimal sparse cut.

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.
If cut is balanced $|S||\bar{S}|$ is $\Theta\left(n^{2}\right)$ and sparsity is $\frac{O(\log n) / D}{c n^{2}}=\frac{O(\log n)}{\sum_{i, j}(i, j)}$.
\rightarrow find $O(\log n)$ times optimal sparse cut.
If not...

Alternative to Cheeger for expansion.
 Graph G, sparsity of cut $\frac{E(S, S)}{|S| S}$,

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic approximation.)
Recall: Expansion estimates sparsity within factor of two.
Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)
Lemma: $\mathscr{S} \geq \frac{1}{\sum_{i, j} d(i, j)}$.
Given solution to toll problem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, D$ is diameter. is at least average distance: $\sum_{i, j} d(i, j) / n^{2}$.
If cut is balanced $|S||\bar{S}|$ is $\Theta\left(n^{2}\right)$ and sparsity is $\frac{O(\log n) / D}{c n^{2}}=\frac{O(\log n)}{\sum_{i, j}(i, j)}$.
\rightarrow find $O(\log n)$ times optimal sparse cut.
If not...a bit more work...

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree,

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, "geometric",

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, "geometric", constant factor.

Metric Labelling

Input: graph $G=(V, E)$ with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.
Find an labeling of vertices, $\ell: V \rightarrow X$ that minimizes

$$
\sum_{e=(u, v)} c(e) d(l(u), l(v))+\sum_{v} c(v, l(v))
$$

Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, "geometric", constant factor.
$\rightarrow O(\log n)$ approximation.

See you ...

Tuesday.

