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E(dr(x. )] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
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Uh.. well Xa is distinct from Xy /4.
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Expected stretch is O(log n).
We gave an algorithm that produces a distribution of trees.
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Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
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If not...a bit more work...
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Find an labeling of vertices, ¢: V — X that minimizes

Yo (uv) €(€)d(I(u), I(v)) + L, c(v. (v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, “geometric”, constant factor.



Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes

Le=(uv c(e)d(l(u), /(v))+ Ly c(v,/(v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, “geometric”, constant factor.
— O(log n) approximation.



See you ...

Tuesday.



