Welcome back...

Welcome back...

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k)+ d(k,/) and
d(i,j) = d(.1)

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k)+ d(k,/) and

d(i.j) = d(j,i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k)+ d(k,/) and
d(i.j)=d(j,i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k) + d(k,l) and
d(i.j)=d(j,i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D)

D) X is a set of vectors and d(u,v)is u-v.

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k)+ d(k,/) and
d(i.j) = d(j.i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k) + d(k,l) and

d(i.j) = d(j,i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k) + d(k,l) and
d(i.j) = d(j.i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Metric spaces.

A metric space X, d(i,j) where d(i,j) < d(i,k)+ d(k,/) and
d(i.j)=d(j,i)

Which are metric spaces?

(A) X from RY and d(-,-) is Euclidean distance.

(B) X from RY and d(-,-) is squared Euclidean distance.

(C) X- vertices in graph, d(i,j) is shortest path distances in graph.
(D) X is a set of vectors and d(u,v) is u-v.

Input to TSP, facility location, some layout problems, ..., metric
labelling.

Hard problems. Easier to solve on trees. Dynamic programming on
trees.

Approximate metric on trees?

Approximate metric using a tree.

Tree metric:

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree.

Hierarchically well separated tree metric:

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree.

Hierarchically well separated tree metric:

Tree weights are geometrically decreasing.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree.

Hierarchically well separated tree metric:

Tree weights are geometrically decreasing.

Map X into tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches <

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches <

Map metric onto tree?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches <

Map metric onto tree?

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches <

Map metric onto tree? Distance 1 goesto n—1!

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches <

Distance 1 goesto n—1!

Map metric onto tree?
Bummer.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: =1 x1

n

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.
. n—1 1
Stretch of edge: "=+ x1 +4 x(n—1)

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.
. n—1 1 N
Stretch of edge: "=+ x1 +7 x(n—1) =

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goes to n—1|
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.
Stretch of edge: -1 x1 +1 x (n—1)~2

Approximate metric using a tree.

Tree metric:
X is nodes of tree with edge weights
dr(i,f) shortest path metric on tree. 8/\8 8/\s

Hierarchically well separated tree metric:
Tree weights are geometrically decreasing.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks. (dominating)
(i) Every distance stretches < a
in expectation.
Map metric onto tree? Distance 1 goesto n—1!
Bummer.

Fix it up chappie!
For cycle, remove a random edge get a tree.

Stretch of edge: -1 x1 +1 x (n—1)~2
General metrics?

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST = recursive decomposition of metric space.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:
HST = recursive decomposition of metric space.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The |dea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.
Recurse on each ball for A/2.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The |dea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.
Recurse on each ball for A/2.

Use randomness in

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The |dea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.
Recurse on each ball for A/2.

Use randomness in
selection of ball centers.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.
Recurse on each ball for A/2.

Use randomness in
selection of ball centers.
the ~ diameter of the balls.

Probabilistic Tree embedding.

Probabilistic Tree embedding.
Map X into tree.
(i) No distance shrinks (dominating).
(i) Every distance stretches < « in expecation.

Today: the tree will be Hierarchically well-separated (HST).
Elements of X are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.
The Idea:
HST = recursive decomposition of metric space.

Decompose space by diameter ~ A balls.
Recurse on each ball for A/2.

Use randomness in
selection of ball centers.
the ~ diameter of the balls.

Algorithm
Algorithm: (X, d), diam(X) < D, |X| = n, d(i,j) > 1

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. & — random permutation of X.

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.

2. Choose B in [1, 3.

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=1]

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=1]

if A <1 return [S]

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=1]

if A <1 return [S]

foreachiin m:

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=1]

if A <1 return [S]

foreachiin m:

ifieS

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=1]

if A <1 return [S]

foreachiin m:

ifieS
B = ball(i, BA)

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.

def subtree(S,A):

T=]]

if A <1 return [S]

foreachiin x:

ifieS
B=ball(i, BA) ; S=S/B

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B=ball(i, BA) ; S=S/B
T.append(B)

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Algorithm

Algorithm: (X, d), diam(X) <D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=1]
if A <1 return [S]
foreachiin m:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Tree has internal node for each level of call.

Algorithm

Algorithm: (X, d), diam(X) < D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Tree has internal node for each level of call. Tree edges have weight
A/2 to children.

Algorithm

Algorithm: (X, d), diam(X) < D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Tree has internal node for each level of call. Tree edges have weight
A/2 to children.

Claim 1: dr(x,y) > d(x,y).

Algorithm

Algorithm: (X, d), diam(X) < D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Tree has internal node for each level of call. Tree edges have weight
A/2 to children.

Claim 1: dr(x,y) > d(x,y).
d(x,y) are in different sets at level A < d(x,y).

Algorithm

Algorithm: (X, d), diam(X) < D, |X|=n, d(i,j) > 1
1. = — random permutation of X.
2. Choose B in [1, 3.
def subtree(S,A):
T=]]
if A <1 return [S]
foreachiin x:
ifieS
B =ball(i, BA); S=S/B
T.append(B)
return map (A x: subtree(x,A/2), T);
3. subtree(X, A)

Tree has internal node for each level of call. Tree edges have weight
A/2 to children.

Claim 1: dr(x,y) > d(x,y).
d(x,y) are in different sets at level A < d(x,y).
—d(x,y) = A

Analysis: idea

Claim: E[dr(x,y)] = O(logn)d(x,y).

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — dr(x,y) =~ 2A.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

— expected length is ¥, _p »i(24) %X = 2d(x, y).

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

— expected length is ¥, _p »i(24) %X = 2d(x, y).

. d(x,
Why should it be 25¥)2

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

— expected length is ¥, _p »i(24) %X = 2d(x, y).

Why should it be 46X)2
smaller the edge the less likely to be on edge of ball.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

— expected length is ¥, _p »i(24) %X = 2d(x, y).

Why should it be 46X)2
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be U,

— expected length is ¥, _p »i(24) %X = 2d(x, y).

Why should it be 46X)2
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be 2%:¥)
— expected length is ¥ _p »i(24) d(z,y) — 2d(x,).

Why should it be 4617
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

— Pr[x,y cut by ball|x in ball] ~ Xy <4A

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be 2%:¥)
— expected length is ¥ _p »i(24) d(z,y) — 2d(x,).

Why should it be 4617
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

— Pr[x,y cut by ball|x in ball] ~ Xy <4A

The problem?

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be 2%:¥)
— expected length is ¥ _p »i(24) d(z,y) — 2d(x,).

Why should it be 4617
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

— Pr[x,y cut by ball|x in ball] ~ Xy <4A

The problem?
Could be cut be many different balls.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be 2%:¥)
— expected length is ¥ _p »i(24) d(z,y) — 2d(x,).

Why should it be 4617
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

— Pr[x,y cut by ball|x in ball] ~ Xy <4A

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.

Analysis: idea

Claim: E[dr(x,y)] = O(lognm)d(x,y).
Cut at level A — d7(x,y) = 2A. (Level of subtree call.)
Prlcut at levelA]?

Would like it to be 2%:¥)
— expected length is ¥ _p »i(24) d(z,y) — 2d(x,).

Why should it be 4617
smaller the edge the less likely to be on edge of ball.
larger the delta, more room inside ball.
random diameter jiggles edge of ball.

— Pr[x,y cut by ball|x in ball] ~ Xy <4A

The problem?
Could be cut be many different balls.
For each probability is good, but could be hit by many.
random permutation to deal with this

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%’g’) <4A

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)

At level A

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.
Can only in ball for j, where d(j,x) € [A/4,A/2],

Call this set Xa.

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.
Can only in ball for j, where d(j,x) € [A/4,A/2],

Call this set Xa.

If j € Xa cuts (x,y) if..
d(j,x) <A

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.
Can only in ball for j, where d(j,x) € [A/4,A/2],

Call this set Xa.

If j € Xa cuts (x,y) if..
d(j,x) <pA and BA < d(j,y)

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.
Can only in ball for j, where d(j,x) € [A/4,A/2],

Call this set Xa.

If j € Xa cuts (x,y) if..
d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)

Analysis: (x,y)
Have Pr[x,y cut by ball|x in ball] ~ d%xg’) <4A
(Only consider cut by x, factor 2 loss.)

At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..
d(j,x) <BA and BA < d(j,y) < d(j,x) +d(x,y)
— BA € [d]j,x],d(j,x) +d(x,y)].

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].
A/4)_ d(

><

y)

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].
A/4)_ d(

><

y)

Analysis: (x,y)

Have Pr(x, y cut by ball|x in ball] ~ %63 < 4A
(Only consider cut by x, factor 2 loss.)

At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j.x) < BA and BA < d(j,y) < d(j,x) +d(x.y)
—>BAe[d[/ x],d(j,x)+d(x,y)].
A/4)_ d(

><

y)

And j must be before any i <jinx

Analysis: (x,y)

Have Pr(x, y cut by ball|x in ball] ~ %63 < 4A
(Only consider cut by x, factor 2 loss.)

At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].
A/4)_ d(

><

y)

And j must be before any i < jin © — prob is }

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..
d(j,x) <BA and BA < d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/x] d(/x)+d(Y1

y) _ d(
A/4 -

><

y)

And j must be before any i < jin = — prob is }

— Prlj cuts (x,y)] < (}) adley)

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].

A/4)_ d(

><

y)

And j must be before any i < jin © — prob is }

— Prljcuts (x,y)] < (}) 4d(xy)

dr(x,y) if cut level A is 2A.

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].
A/4)_ d(

><

y)

And j must be before any i < jin © — prob is }

— Prj cuts (x,y)] < (}) fdryd

dr(x,y) if cut level A is 2A.
— Eldr(x,y)] = ZAzg Yiex, G) 8d(x.y)

Analysis: (x,y)

Have Pr[x,y cut by ball|x in ball] ~ d%XAY) <4A

(Only consider cut by x, factor 2 loss.)
At level A

At some point x is in some A level ball.
Renumber nodes in order of distance from x.

Can only in ball for j, where d(j,x) € [A/4,A/2],
Call this set Xa.

If j € Xa cuts (x,y) if..

d(j,x) <BAand BA <d(j,y) < d(j,x)+d(x,y)
—>BAe[d[/ x],d(j,x)+d(x,y)].

A/4)_ d(

><

y)

And j must be before any i < jin © — prob is }

— Prljcuts (x,y)] < (}) 4d(xy)

dr(x,y) if cut level A is 2A.
— Eldr(x,y)] = La-oYjexs (}) 8d(x,y)

The pipes are distinct!

E(dr(x.Y)] = Za_o/2 Ziexa (1) 2d(x.)

The pipes are distinct!

E(dr(x.Y)] = Za_o/2 Ziexa (1) 2d(x.)
Recall Xa has nodes with d(x,j) € [A/4,A/2]

The pipes are distinct!

E(dr(x.Y)] = Za_o/2 Ziexa (1) 2d(x.)
Recall X5 has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, G) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, G) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)
<2y;(})4d(x.y)

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA,Q Yiexa (}) 8d(X,¥)+ XA D Yiexa (}) 8d(x,y)

T (@4)
<25, (1) 4
< (16Inn)(d(x y))

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, G) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)

<2y;(1)4d(x.y)
< (16Inn)(d(x,y)).
Claim: E[dr(x,y)] = O(logn)d(x,y)

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, G) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)

<2y;(1)4d(x.y)
< (16Inn)(d(x,y)).
Claim: E[dr(x,y)] = O(logn)d(x,y)
Expected stretch is O(log n).

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, (}) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)

<2y;(})4d(x.y)
< (16Inn)(d(x,y)).
Claim: E[dr(x,y)] = O(logn)d(x,y)
Expected stretch is O(log n).
We gave an algorithm that produces a distribution of trees.

The pipes are distinct!

E(dr(x.)] = a2 Ljexs (1) 20(x.9)
Recall Xa has nodes with d(x,j) € [A/4,A/2]
“Listen Stash, the pipes are distinct!!”

Uh.. well Xa is distinct from Xy /4.

E(dr(x,y)] = ZA:% Yiex, (}) 8d(x,y) +):A:ﬁ Yiex, (}) 8d(x,y)

<2y;(})4d(x.y)
< (16Inn)(d(x,y)).
Claim: E[dr(x,y)] = O(logn)d(x,y)
Expected stretch is O(log n).
We gave an algorithm that produces a distribution of trees.
The expected stretch of any pair is O(log n).

Alternative to Cheeger for expansion.

Graph G, sparsity of cut |(3\ SS),

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

|S\S ’
Find smallest sparsity cut?

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

|S\S ’

Find smallest sparsity cut?

Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

IS\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit.)

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (”)

Given solution to toll problem, find cut?

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?
Top level cuts each edge with prob. O(logn)/D, D is diameter.

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.

If cut is balanced

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.

If cut is balanced |S||S| is ©(n?)

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’

Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?

Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.

If cut is balanced |S|\§| is ©(n?)

Iog n)/D __ O(logn)
and sparsity is = 5, A0

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.
Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?
Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.
If cut is balanced |S|\§| is ©(n?)
Iogn /D _ O(logn)
and sparsity is = 5, A0
— find O(log n) times optimal sparse cut.

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?
Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.
If cut is balanced |S|\§| is ©(n?)
Iogn /D _ O(logn)
and sparsity is = 5, A0
— find O(log n) times optimal sparse cut.

If not...

Alternative to Cheeger for expansion.
Graph G, sparsity of cut £

\S\S ’
Find smallest sparsity cut?
Cheeger: approximately find small expansion cut. (Quadratic
approximation.)
Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem.
(Disguised a bit)

Lemma: .%¥ > g (//)

Given solution to toll problem, find cut?
Top level cuts each edge with prob. O(logn)/D, D is diameter. D
is at least average distance: }; ; d(i,j)/m.
If cut is balanced |S|\§| is ©(n?)
Iogn /D _ O(logn)
and sparsity is = 5, A0
— find O(log n) times optimal sparse cut.

If not...a bit more work...

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Ye—(uyv) c(e)d(l(u),I(v))+Xvec(v,I(v))

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Ye—(uyv) c(e)d(l(u),I(v))+Xvec(v,I(v))
Idea: find HST for metric (X, d).

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Ye—(uv)c(e)d(l(u),/(v))+ ¥, c(v,I(v))

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Le=(uv c(e)d(l(u), /(v))+ Ly c(v,/(v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Le=(uv c(e)d(l(u), /(v))+ Ly c(v,/(v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree,

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes
Le=(uv c(e)d(l(u), /(v))+ Ly c(v,/(v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, “geometric”,

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes

Yo (uv) €(€)d(I(u), I(v)) + L, c(v. (v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, “geometric”, constant factor.

Metric Labelling

Input: graph G = (V, E) with edge weights, w(-), metric labels (X, d),
and costs for mapping vertices to labels ¢: V x X.

Find an labeling of vertices, ¢: V — X that minimizes

Le=(uv c(e)d(l(u), /(v))+ Ly c(v,/(v))
Idea: find HST for metric (X, d).
Solve the problem on a hierarchically well separated tree metric.
Kleinberg-Tardos: constant factor on uniform metric.
Hierarchically well separated tree, “geometric”, constant factor.
— O(log n) approximation.

See you ...

Tuesday.

