Welcome back...

Probabilistic Tree embedding.

Probabilistic Tree embedding.

Map X into tree.

- (i) No distance shrinks (dominating).
- (ii) Every distance stretches $< \alpha$ in expecation.

Today: the tree will be Hierarchically well-separated (HST). Elements of *X* are leaves of tree.

On Tuesday: use spanning tree for graphical metrics.

The Idea:

 $HST \equiv recursive decomposition of metric space.$

Decompose space by diameter $\approx \Delta$ balls. Recurse on each ball for $\Delta/2$.

Use randomness in selection of ball centers. the \approx diameter of the balls.

Metric spaces.

A metric space X, d(i,j) where $d(i,j) \le d(i,k) + d(k,l)$ and d(i,j) = d(j,i)

Which are metric spaces?

- (A) X from \mathbb{R}^d and $d(\cdot,\cdot)$ is Euclidean distance.
- (B) X from R^d and $d(\cdot,\cdot)$ is squared Euclidean distance.
- (C) X- vertices in graph, d(i,j) is shortest path distances in graph.
- (D) X is a set of vectors and d(u, v) is $u \cdot v$.

Input to TSP, facility location, some layout problems, ..., metric labelling.

Hard problems. Easier to solve on trees. Dynamic programming on trees.

Approximate metric on trees?

Algorithm

```
Algorithm: (X, d), diam(X) < D, |X| = n, d(i, j) > 1
1. \pi – random permutation of X.
2. Choose \beta in \begin{bmatrix} 1\\4 \end{bmatrix}, \frac{1}{2}.
 def subtree(S,\Delta):
  T = []
  if \Delta < 1 return [S]
  foreach i in \pi:
   if i \in S
     B = \text{ball}(i, \beta \Delta); S = S/B
     T.append(B)
  return map (\lambda x: subtree(x,\Delta/2), T);
3. subtree(X, \Delta)
Tree has internal node for each level of call. Tree edges have weight
\Delta/2 to children.
Claim 1: d_T(x, y) > d(x, y).
d(x,y) are in different sets at level \Delta \leq d(x,y).
  \rightarrow d(x,y) \geq \Delta
```

Approximate metric using a tree.

Tree metric:

X is nodes of tree with edge weights $d_T(i,j)$ shortest path metric on tree.

Hierarchically well separated tree metric: Tree weights are geometrically decreasing.

Probabilistic Tree embedding.

Map X into tree.

- (i) No distance shrinks. (dominating)
- (ii) Every distance stretches $\leq \alpha$ in expectation.

Map metric onto tree?

Distance 1 goes to n-1!

Fix it up chappie!
For cycle, remove a random edge get a tree.

Stretch of edge: $\frac{n-1}{n} \times 1 + \frac{1}{n} \times (n-1) \approx 2$ General metrics?

Analysis: idea

Claim: $E[d_T(x,y)] = O(\log n)d(x,y)$.

Cut at level $\Delta \to d_T(x,y) \approx 2\Delta$. (Level of subtree call.)

 $Pr[\text{cut at level}\Delta]$?

Would like it to be $\frac{d(x,y)}{\Lambda}$.

ightarrow expected length is $\sum_{\Delta=D/2^i} (2\Delta) \frac{d(x,y)}{\Delta} = 2d(x,y)$.

Why should it be $\frac{d(x,y)}{\Delta}$?

smaller the edge the less likely to be on edge of ball.

larger the delta, more room inside ball. random diameter jiggles edge of ball.

 $ightarrow Pr[x,y ext{ cut by ball}|x ext{ in ball}] pprox rac{d(x,y)}{eta\Delta} \leq 4\Delta$

The problem?

Could be cut be many different balls.

For each probability is good, but could be hit by many. random permutation to deal with this

Analysis: (x, y)

Have $Pr[x, y \text{ cut by ball}|x \text{ in ball}] \approx \frac{d(x, y)}{B\Delta} \leq 4\Delta$ (Only consider cut by x, factor 2 loss.)

At level Δ

At some point x is in some Δ level ball. Renumber nodes in order of distance from x.

Can only in ball for j, where $d(j,x) \in [\Delta/4, \Delta/2]$, Call this set X_{\wedge} .

If
$$j \in X_{\Delta}$$
 cuts (x,y) if.. $d(j,x) \le \beta \Delta$ and $\beta \Delta \le d(j,y) \le d(j,x) + d(x,y) \to \beta \Delta \in [d[j,x],d(j,x)+d(x,y)].$ occurs with prob. $\frac{d(x,y)}{\Delta/4} = \frac{4d(x,y)}{\Delta}.$

And j must be before any i < j in $\pi \to \text{prob is } \frac{1}{i}$

$$\rightarrow Pr[j \text{ cuts } (x,y)] \leq \left(\frac{1}{j}\right) \frac{4d(x,y)}{\Delta}$$

 $d_T(x, y)$ if cut level Δ is 2Δ .

$$\rightarrow E[d_T(x,y)] = \sum_{\Delta = \frac{D}{2^j}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 8d(x,y)$$

Metric Labelling

Input: graph G = (V, E) with edge weights, $w(\cdot)$, metric labels (X, d), and costs for mapping vertices to labels $c: V \times X$.

Find an labeling of vertices, $\ell: V \to X$ that minimizes

$$\sum_{e=(u,v)} c(e)d(I(u),I(v)) + \sum_{v} c(v,I(v))$$

Idea: find HST for metric (X, d).

Solve the problem on a hierarchically well separated tree metric.

Kleinberg-Tardos: constant factor on uniform metric.

Hierarchically well separated tree, "geometric", constant factor.

 $\rightarrow O(\log n)$ approximation.

The pipes are distinct!

$$E(d_T(x,y)] = \sum_{\Delta=D/2^i} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 2d(x,y)$$

Recall X_{Δ} has nodes with $d(x,j) \in [\Delta/4, \Delta/2]$

"Listen Stash, the pipes are distinct!!"

Uh.. well X_{Δ} is distinct from $X_{\Delta/4}$.

$$\begin{split} E(d_T(x,y)] &= \sum_{\Delta = \frac{D}{4^l}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 8d(x,y) + \sum_{\Delta = \frac{D}{((2)4^l)}} \sum_{j \in X_{\Delta}} \left(\frac{1}{j}\right) 8d(x,y) \\ &\leq 2\sum_{j} \left(\frac{1}{j}\right) 4d(x,y) \\ &\leq (16\ln n) (d(x,y)). \end{split}$$

Claim: $E[d_T(x,y)] = O(logn)d(x,y)$

Expected stretch is $O(\log n)$.

We gave an algorithm that produces a distribution of trees.

The expected stretch of any pair is $O(\log n)$.

See you ...

Tuesday.

Alternative to Cheeger for expansion. Graph G, sparsity of cut $\frac{E(S,\overline{S})}{|S|\overline{S}}$,

Find smallest sparsity cut?

Cheeger: approximately find small expansion cut. (Quadratic approximation.)

Recall: Expansion estimates sparsity within factor of two.

Toll problem: assign tolls to max. average toll bet. all pairs of vertices.

Exam: Sparsity of graph is lower bounded by function of toll problem. (Disguised a bit.)

Lemma:
$$\mathscr{S} \geq \frac{1}{\sum_{i,j} d(i,j)}$$
.

Given solution to toll problem, find cut?

Top level cuts each edge with prob. $O(\log n)/D$, D is diameter. Dis at least average distance: $\sum_{i,j} d(i,j)/n^2$.

If cut is balanced
$$|S||\overline{S}|$$
 is $\Theta(n^2)$ and sparsity is $\frac{O(\log n)/D}{cn^2} = \frac{O(\log n)}{\sum_{i,j} O(i,j)}$.

 \rightarrow find $O(\log n)$ times optimal sparse cut.

If not...a bit more work...