Welcome back...

..to me.

Test out !!! Don't worry. Be happy.

Look at instructions. No collaboration. Private message on piazza. Note: Content can be declassified.

Turn in by Monday. Grade by Wednesday .. night ...late ..hopefully.

Try to get it in then or soon after!

Pareto to Zipf

Zipf: *i*th guy has $C_{i\beta}^{1}$ *N* people. How many people have value more than x_i ? On expection? $NDx^{-\alpha+1}$. *i*th guy has more than x_i $\equiv i$ guys have more than x_i $i \approx NDx_i^{-\alpha+1}$ $x_i = \frac{1}{i^{1/(1-\alpha)}}$ Relationship: $\beta = \frac{1}{1-\alpha}$

Pareto:

20% of pods have 80% of peas. 20% of peple have 80% of land.

City populations: *i*th largest city has population $\frac{p_1}{i}$.

logfreq

log i

Zipf's law. Zipf's graph. Not a distribution.

Self similarity.

Power laws. No matter where you are there you are...

 $x_{t+1} = x_t \times \gamma.$ Actually $\gamma_t \approx (1 + \beta/t).$ Roughly constant for interval of wdith β .

As a distribution.

Pareto. $Income_i \propto \frac{Income_1}{c}$ Bill Gates...then someone much less. Prelude: why? Rich get richer? Distribution: Pareto. $Pr[X \ge x] \propto x^{-\alpha+1}.$ Survival function. Note: "p.d.f." $Pr[X = x] \propto x^{-alpha}$. See Adamic for comment on estimating for real data. http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

MAKE SOME DRAWINGS.

Power law and philosophy.

Wow! Power laws. Cool.
Zipf: for frequency of words. For all languages!!!
Must have something to do with the brain!
Wentian Li.
Document: "A quick brown fox jumps over the"
Permute the letters at random..and get a power law!!!

Polya Urns

Choose bin uniformly at random. Load on red bin? Expectation? n/2Within $n/2 \pm \sqrt{n}$ with good probability. Approximately Gaussian with variance $\sqrt{n}/2$

Choose red bin with probability $\frac{r+1}{r+b+2}$ Expectation? n/2Distribution? Guesses? Uniform! !!!

Router Graph:
Average degree: 4
Max Degree? $Pr[degree \geq 20] \approx 10^{-4}$ Actual high degree nodes more common:

5% of nodes have degree greater than 20. Internet graph: Average degree: 12.

Degree \geq 100 with prob. \leq 10⁻⁶. Actual: 1% greater than 100. Some very large.

Processes?

Preferential Attachment. For routers? Connect at random. Not! For the internet graph? Degrees too large for even that.

Permutations

Choose bin with probability $\frac{r+1}{r+b+2}$. Claim: After *n* balls the $Pr[i \text{ red}] = \frac{1}{n+1}$.

Analyse?Another process. Start with two balls, insert *n* more.

4 **5** 2 1 **3** ×

Where is ball 1? Position 4. How many red balls? 3.

Insert *n* balls, where oh where is ball 1? Random permuation. Position $i \in [1, n+1]$ with prob. $\frac{1}{n+1}$ How many red balls? $j = i - 1 \in [0, n]$ with prob. $\frac{1}{n+1}$.

Balls in bins? Yes!		1
Allocation (r,b):	(5)	
choose one of $r + b$ balls or 2 bottoms.	(4)	
place in corresponding bin.	õ	3
$\Pr[\text{red}] = \frac{r+1}{r+b+2}$	2	9
B I I I I I I I I I I I I I I I I I I I		

Red balls have same distribution in two processes.

Internet: copy links.

Surf. Cool page. Link for mine. Model: Pick a random neighbor. Copy all links. Random Graph with average degree 4. Plus Copy process $\rightarrow \sqrt{n}$

More bins.

m bins. Uniformly at random. Max load: $\frac{n}{m} + \sqrt{\frac{n}{m} \log n}$ Min load: $\frac{n}{m} - \sqrt{\frac{n}{m} \log n}$

Preferential Selection: Max load: $\frac{n}{m} \log n$ Min load: n/m^2

Analysis: random permutation with *m* separators. Analyse min and max size of interval. Roughly: (1/m) probability of stopping at any point.

Routers.

Connection Game.

Process Distance: Arrive randomly at point on unit square. Connect to closest node.

Generate tree with average degree 1. Max degree? $O(\log n)$.

Process Hops: Arrive randomly at point on unit square. Connect to first node.

Max degree? n-1.

Process Distance/Hops: Arrive randomly at point on unit square. Connect to node with $\min_{j < i} \alpha d_{ij} + h_j$.

Power law if $c \le \alpha \le \sqrt{n}$, \rightarrow power law!

See you ...

Thursday.