Welcome back...

..to me.

Test out !!!
Don't worry. Be happy.
Look at instructions.
No collaboration.
Private message on piazza.
Note: Content can be declassified.
Turn in by Monday.
Grade by Wednesday .. night ...late ..hopefully.
Try to get it in then or soon after!

Pareto to Zipf

Zipf:
i th guy has $C \frac{1}{i \beta}$
N people.
How many people have value more than x_{i} ?
On expection? $N D x^{-\alpha+1}$
i th guy has more than x_{i}
$\equiv i$ guys have more than x_{i}
$i \approx N D x_{i}^{-\alpha+1}$
$x_{i}=\frac{1}{i 1 /(1-\alpha)}$
Relationship: $\beta=\frac{1}{1-\alpha}$

Pareto:

20% of pods have 80% of peas.
20% of peple have 80% of land.

City populations:

i th largest city has population $\frac{p_{1}}{i}$.

$\log i$
Zipf's law. Zipf's graph.
Not a distribution.

As a distribution.

Pareto.
Income ${ }_{i} \propto \frac{\text { income }_{i}}{i \beta}$.
Bill Gates...then someone much less. Prelude: why? Rich get richer? Distribution:
Pareto.
$\operatorname{Pr}[X \geq x] \propto X^{-\alpha+1}$
Survival function.
Note: "p.d.f." $\operatorname{Pr}[X=x] \propto x^{- \text {alpha }}$
See Adamic for comment on estimating for real data
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html MAKE SOME DRAWINGS.

Power laws.
No matter where you are there you are...
$x_{t+1}=x_{t} \times \gamma$.
Actually $\gamma_{t} \approx(1+\beta / t)$.
Roughly constant for interval of wdith β.

Wow! Power laws. Cool.
Zipf: for frequency of words. For all languages!!!
Must have something to do with the brain!
Wentian Li.
Document: "A quick brown fox jumps over the"
Permute the letters at random..and get a power law!!!

Polya Urns

Choose bin uniformly at random.

Load on red bin?
Expectation? $n / 2$
Within $n / 2 \pm \sqrt{n}$ with good probability.
Approximately Gaussian with variance $\sqrt{n} / 2$
Choose red bin with probability $\frac{r+1}{r+b+2}$
Expectation? n/2
Distribution?
Guesses?
Uniform! !!!

Router Graph:

Average degree: 4
Max Degree? Uniformly random $\Longrightarrow \operatorname{Pr}[$ degree $\geq 20] \approx 10^{-4}$.
Actual high degree nodes more common
5% of nodes have degree greater than 20
Internet graph:
Average degree: 12
Degree >100 with prob. $\leq 10^{-6}$.
Actual: 1% greater than 100
Some very large.

Processes?

Preferential Attachment
For routers?
Connect at random. Not!
For the internet graph?
Degrees too large for even that.

Permutations

Choose bin with probability $\frac{r+1}{r+b+2}$.
Claim: After n balls the $\operatorname{Pr}[i$ red $]=\frac{1}{n+1}$.
Analyse?Another process.
Start with two balls, insert n more.

Where is ball 1? Position 4.
How many red balls? 3 .
Insert n balls, where oh where is ball 1 ?
Random permuation. Position $i \in[1, n+1]$ with prob. $\frac{1}{n+1}$
How many red balls? $j=i-1 \in[0, n]$ with prob. $\frac{1}{n+1}$.
Balls in bins? Yes!
Allocation (r, b):
choose one of $r+b$ balls or 2 bottoms.
place in corresponding bin
$\operatorname{Pr}[$ red $]=\frac{r+1}{r+b+2}$
Red balls have same distribution in two processes.
Internet: copy links.

Surf. Cool page. Link for mine.

Model:
Pick a random neighbor.
Copy all links.
Random Graph with average degree 4.
Plus Copy process $\rightarrow \sqrt{n}$

More bins.
m bins.
Uniformly at random
Max load: $\frac{n}{m}+\sqrt{\frac{n}{m} \log n}$
Min load: $\frac{n}{m}-\sqrt{\frac{n}{m} \log n}$
Preferential Selection:
Max load: $\frac{n}{m} \log n$
Min load: n / m^{2}
Analysis: random permutation with m separators. Analyse min and max size of interval.
Roughly: ($1 / \mathrm{m}$) probability of stopping at any point

Routers.

Connection Game

Process Distance

Arrive randomly at point on unit square
Connect to closest node.
Generate tree with average degree 1.
Max degree? O($\log n$).
Process Hops:
Arrive randomly at point on unit square
Connect to first node.

Max degree? $n-1$.

Process Distance/Hops:
Arrive randomly at point on unit square.
Connect to node with $\min _{j<i} \alpha d_{i j}+h_{j}$.
Power law if $c \leq \alpha \leq \sqrt{n}, \rightarrow$ power law!

Thursday.

