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Edge Expansion/Conductance.

Graph G = (V ,E),

Assume regular graph of degree d .

Edge Expansion.

h(S) = |E(S,V−S)|
d min(|S|,|V−S|) , h(G) = minS⊂V h(S)

Conductance (Sparsity).

φ(S) = n|E(S,V−S)|
d |S||V−S| , φ(G) = minS⊂V φ(S)

Note n ≥max(|S|, |V |− |S|)≥ n/2

→ h(G)≤ φ(G)≤ 2h(S)
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Spectra of the graph.

A: Adjacency Matrix Aij = 1⇔ (i , j) ∈ E

M = 1
d A, normalized adjacency matrix, M real, symmetric

orthonormal eigenvectors: v1, . . . ,vn with eigenvalues
λ1 ≥ λ2 ≥ . . .≥ λn

Claim: Any two eigenvectors with different eigenvalues are
orthogonal.

Proof: Eigenvectors: v ,v ′ with eigenvalues λ ,λ ′.
vT Mv ′ = vT (λ ′v ′) = λ ′vT v ′

vT Mv ′ = λvT v ′ = λvT v .
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Action of M.
v - assigns values to vertices.

(Mv)i = 1
d ∑j∼i vj .

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, |λi | ≤ 1 ∀i
v1 = 1. λ1 = 1.

Claim: For a connected graph λ2 < 1.

Proof: Second Eigenvector: v ⊥ 1. Max value x .
Connected→ path from x valued node to lower value.
→ ∃ e = (i , j), vi = x , xj < x .

i

x

...

j

≤ x

(Mv)i ≤ 1
d (x + x · · ·+ vj ) < x .

Therefore λ2 < 1.

Claim: Connected if λ2 < 1.
Proof: By contradiction. Assign +1 to vertices in one component, −δ

to rest.
xi = (Mxi ) =⇒ eigenvector with λ = 1.

Choose δ to make ∑i xi = 0, i.e., x ⊥ 1.
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Spectral Gap and the connectivity of graph.

Spectral gap: µ = λ1−λ2 = 1−λ2.

Recall: h(G) = minS,|S|≤|V |/2
|E(S,V−S)|

|S|

1−λ2 = 0⇔ λ2 = 1⇔G disconnected⇔ h(G) = 0

In general, small spectral gap 1−λ2 suggests ”poorly connected”
graph

Formally

Cheeger’s Inequality

1−λ2

2
≤ h(G)≤

√
2(1−λ2)
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Spectral Gap and Conductance.

We will show 1−λ2 as a continuous relaxation of φ(G).

φ(G) = minS∈V
n|E(S,V −S)|

d |S||V −S|

Let x be the characteritic vector of set S xi =

{
1 if i ∈ S
0 if i 6∈ S

|E(S,V −S)|= 1
2 ∑

i ,j
Aij |xi −xj |=

d
2 ∑

i ,j
Mij (xi −xj )

2

|S||V −S|= 1
2 ∑

i ,j
|xi −xj |=

1
2 ∑

i ,j
(xi −xj )

2

φ(G) = minx∈{0,1}V−{0,1}
n∑i ,j Mij (xi −xj )

2

∑i ,j (xi −xj )2
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Recall Rayleigh Quotient: λ2 = maxx∈RV−{0},x⊥1
xT Mx
xT x

1−λ2 = minx∈RV−{0},x⊥1
2(xT x−xT Mx)

2xT x

Claim: 2xT x = 1
n ∑i ,j (xi −xj )

2

Proof:

∑
i ,j

(xi −xj )
2 = ∑

i ,j
x2

i + x2
j −2xixj

= 2n∑
i

x2
i −2(∑

i
xi )

2 = 2n∑
i

x2
i = 2nxT x

We used x ⊥ 1⇒ ∑i xi = 0
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Combining the two claims, we get

1−λ2 = minx∈RV−{0},x⊥1
∑i ,j Mij (xi −xj )

2

1
n ∑i ,j (xi −xj )2

= minx∈RV−Span{1}
∑i ,j Mij (xi −xj )

2

1
n ∑i ,j (xi −xj )2

Recall

φ(G) = minx∈{0,1}V−{0,1}
n∑i ,j Mij (xi −xj )

2

∑i ,j (xi −xj )2

We have 1−λ2 as a continuous relaxation of φ(G), thus

1−λ2 ≤ φ(G)≤ 2h(G)

Hooray!! We get the easy part of Cheeger 1−λ2
2 ≤ h(G)
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Cheeger Hard Part.

Now let’s get to the hard part of Cheeger h(G)≤
√

2(1−λ2).

Idea: We have 1−λ2 as a continuous relaxation of φ(G)

Take the 2nd eigenvector x = argminx∈RV−Span{1}
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2

Consider x as an embedding of the vertices to the real line.

Round x to get a x ∈ {0,1}V

Rounding: Take a threshold t ,{
xi ≥ t → xi = 1
xi < t → xi = 0

What will be a good t?

We don’t know. Try all possible thresholds (n−1 possibilities), and
hope there is a t leading to a good cut!
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Sweeping Cut Algorithm

Input: G = (V ,E), x ∈ RV ,x ⊥ 1

Sort the vertices in non-decreasing order in terms of their values in x
WLOG V = {1, . . . ,n} x1 ≤ x2 ≤ . . .≤ xn

Let Si = {1, . . . , i} i = 1, . . . ,n−1

Return S = argminSi
h(Si )

Main Lemma: G = (V ,E), d-regular

x ∈ RV ,x ⊥ 1,δ =
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2

If S is the ouput of the sweeping cut algorithm, then h(S)≤
√

2δ

Note: Applying the Main Lemma with the 2nd eigenvector v2, we have
δ = 1−λ2, and h(G)≤ h(S)≤

√
2(1−λ2). Done!
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Proof of Main Lemma

WLOG V = {1, . . . ,n} x1 ≤ x2 ≤ . . .≤ xn

Want to show

∃i s.t. h(Si ) =
1
d |E(S,V −S)|

min(|S|, |V −S|)
≤
√

2δ

Probabilistic Argument: Construct a distribution D over {S1, . . . ,Sn−1}
such that

ES∼D[ 1
d |E(S,V −S)|]

ES∼D[min(|S|, |V −S|)]
≤
√

2δ

→ ES∼D[ 1
d |E(S,V −S)|−

√
2δmin(|S|, |V −S|)]≤ 0

∃S 1
d |E(S,V −S)|−

√
2δmin(|S|, |V −S|)≤ 0
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The distribution D

WLOG, shift and scale so that xb n
2 c

= 0, and x2
1 + x2

n = 1

Take t from the range [x1,xn] with density function f (t) = 2|t |.

Check:
∫ xn

x1
f (t)dt =

∫ 0
x1
−2tdt +

∫ xn
0 2tdt = x2

1 + x2
n = 1

S = {i : xi ≤ t}

Take D as the distribution over S1, . . . ,Sn−1 resulted from the above
procedure.
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Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Denominator:

Let Ti = i is in the smaller set of S,V −S

Can check
ES∼D[Ti ] = Pr [Ti ] = x2

i

ES∼D[min(|S|, |V −S|)] = ES∼D[∑
i

Ti ]

= ∑
i
ES∼D[Ti ]

= ∑
i

x2
i
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Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S)

{
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Goal: ES∼D [ 1
d |E(S,V−S)|]

ES∼D [min(|S|,|V−S|)] ≤
√

2δ

Numerator:

Let Ti ,j = i , j is cut by (S,V −S){
xi ,xj same sign: Pr [Ti ,j ] = |x2

i −x2
j |

xi ,xj different sign: Pr [Ti ,j ] = x2
i + x2

j

A common upper bound: E[Ti ,j ] = Pr [Ti ,j ]≤ |xi −xj |(|xi |+ |xj |)

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)



Cauchy-Schwarz Inequality

|a ·b| ≤ ‖a‖‖b‖, as a ·b = ‖a‖‖b‖cos(a,b)

Applying with a,b ∈ Rn2
with aij =

√
Mij |xi −xj |,bij =

√
Mij |xi |+ |xj |

Numerator:

ES∼D[
1
d
|E(S,V −S)|] =

1
2 ∑

i ,j
MijE[Ti ,j ]

≤ 1
2 ∑

i ,j
Mij |xi −xj |(|xi |+ |xj |)

=
1
2

a ·b

≤ 1
2
‖a‖‖b‖
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Recall δ =
∑i ,j Mij (xi−xj )

2

1
n ∑i ,j (xi−xj )

2 ,aij =
√

Mij |xi −xj |,bij =
√

Mij |xi |+ |xj |

‖a‖2 = ∑
i ,j

Mij (xi −xj )
2 =

δ

n ∑
i ,j

(xi −xj )
2

=
δ

n ∑
i ,j

(x2
i + x2

j )−∑
i ,j

2xixj

=
δ

n ∑
i ,j

(x2
i + x2

j )−2(∑
i

xi )
2

≤ δ

n ∑
i ,j

(x2
i + x2

j ) = 2δ ∑
i

x2
i

‖b‖2 = ∑
i ,j

Mij (|xi |+ |xj |)2

≤∑
i ,j

Mij (2x2
i + 2x2

j )

= 4∑
i

x2
i
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√
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Cycle

Tight example for hard part of Cheeger?

µ

2 = 1−λ2
2 ≤ h(G)≤

√
2(1−λ2) =

√
2µ

Will show other side of Cheeger is asymptotically tight.

Cycle on n nodes.

Edge expansion:Cut in half.
|S|= n

2 , |E(S,S)|= 2
→ h(G) = 4

n .

Show eigenvalue gap µ is O( 1
n2 ).

Find x ⊥ 1 with Rayleigh quotient, xT Mx
xT x close to 1.
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Find x ⊥ 1 with Rayleigh quotient, xT Mx
xT x close to 1.

xi =

{
i−n/4 if i ≤ n/2
3n/4− i if i > n/2

· · · · · ·

x1 ≈− n
4 xn ≈− n

4

xn/2 ≈ n
4

Hit with M.

(Mx)i =


−n/4 + 1/2 if i = 1,n
n/4−1 if i = n/2
xi otherwise

→ xT Mx = xT x(1−O( 1
n2 )) → λ2 ≥ 1−O( 1

n2 )

µ = λ1−λ2 = O( 1
n2 )

h(G) = 4
n = Θ(

√
2µ)

Asymptotically tight example for upper bound for Cheeger
h(G)≤

√
2(1−λ2) =

√
2µ.
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Sum up.

1−λ2 as a relaxation of φ(G).

Sweeping cut Algorithm
Probabilistic argument to show there exists a good threshold cut
Example: Cycle, Cheeger hard part is asymptotic tight .
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