## Welcome back.

Today.

## Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

## Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1-\lambda_{2}$ as a relaxation of $\phi(G)$, Cheeger easy part

## Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1-\lambda_{2}$ as a relaxation of $\phi(G)$, Cheeger easy part

Cheeger hard part: Sweeping cut Algorithm, Proof, Asymptotic tight example

## Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1-\lambda_{2}$ as a relaxation of $\phi(G)$, Cheeger easy part

Cheeger hard part: Sweeping cut Algorithm, Proof, Asymptotic tight example

## Edge Expansion/Conductance.

Graph $G=(V, E)$,

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min (|S,|V-S|)}, h(G)=\min _{S \subset V} h(S)
$$

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min (|S|,|V-S|)}, h(G)=\min _{S \subset V} h(S)
$$

Conductance (Sparsity).

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min (|S,|V-S|)}, h(G)=\min _{S \subset V} h(S)
$$

Conductance (Sparsity).

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S \subset V} \phi(S)
$$

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min (S S,|V-S|)}, h(G)=\min _{S \subset V} h(S)
$$

Conductance (Sparsity).

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S \subset V} \phi(S)
$$

Note $n \geq \max (|S|,|V|-|S|) \geq n / 2$

## Edge Expansion/Conductance.

Graph $G=(V, E)$,
Assume regular graph of degree $d$.
Edge Expansion.

$$
h(S)=\frac{|E(S, V-S)|}{d \min (|S,|V-S|)}, h(G)=\min _{S \subset V} h(S)
$$

Conductance (Sparsity).

$$
\phi(S)=\frac{n|E(S, V-S)|}{d|S| V-S \mid}, \phi(G)=\min _{S \subset V} \phi(S)
$$

Note $n \geq \max (|S|,|V|-|S|) \geq n / 2$

$$
\rightarrow h(G) \leq \phi(G) \leq 2 h(S)
$$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix,

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: $v, v^{\prime}$ with eigenvalues $\lambda, \lambda^{\prime}$.

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric
orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: $v, v^{\prime}$ with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric
orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: $v, v^{\prime}$ with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: $v, v^{\prime}$ with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}$

## Spectra of the graph.

A: Adjacency Matrix $A_{i j}=1 \Leftrightarrow(i, j) \in E$
$M=\frac{1}{d} A$, normalized adjacency matrix, $M$ real, symmetric orthonormal eigenvectors: $v_{1}, \ldots, v_{n}$ with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Proof: Eigenvectors: $v, v^{\prime}$ with eigenvalues $\lambda, \lambda^{\prime}$.
$v^{\top} M v^{\prime}=v^{\top}\left(\lambda^{\prime} v^{\prime}\right)=\lambda^{\prime} v^{\top} v^{\prime}$
$v^{\top} M v^{\prime}=\lambda v^{\top} v^{\prime}=\lambda v^{\top} v$.

## Action of $M$.

$v$ - assigns values to vertices.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M$,

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=\mathbf{1} .
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1 .
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1 .
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$. Connected $\rightarrow$ path from $x$ valued node to lower value. $\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1 .
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: By contradiction. Assign +1 to vertices in one component, $-\delta$ to rest.

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: By contradiction. Assign +1 to vertices in one component, $-\delta$ to rest.

$$
x_{i}=\left(M x_{i}\right)
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: By contradiction. Assign +1 to vertices in one component, $-\delta$ to rest.

$$
x_{i}=\left(M x_{i}\right) \Longrightarrow \text { eigenvector with } \lambda=1
$$

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=\mathbf{1} . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: By contradiction. Assign +1 to vertices in one component, $-\delta$ to rest.

$$
x_{i}=\left(M x_{i}\right) \Longrightarrow \text { eigenvector with } \lambda=1
$$

Choose $\delta$ to make $\sum_{i} x_{i}=0$,

## Action of $M$.

$v$ - assigns values to vertices.
$(M v)_{i}=\frac{1}{d} \sum_{j \sim i} v_{j}$.
Action of $M$ : taking the average of your neighbours.
(Direct) result from the action of $M,\left|\lambda_{i}\right| \leq 1 \quad \forall i$

$$
v_{1}=1 . \lambda_{1}=1
$$

Claim: For a connected graph $\lambda_{2}<1$.
Proof: Second Eigenvector: $v \perp 1$. Max value $x$.
Connected $\rightarrow$ path from $x$ valued node to lower value.
$\rightarrow \exists e=(i, j), v_{i}=x, x_{j}<x$.


$$
(M v)_{i} \leq \frac{1}{d}\left(x+x \cdots+v_{j}\right)<x
$$

Therefore $\lambda_{2}<1$.
Claim: Connected if $\lambda_{2}<1$.
Proof: By contradiction. Assign +1 to vertices in one component, $-\delta$ to rest.
$x_{i}=\left(M x_{i}\right) \Longrightarrow$ eigenvector with $\lambda=1$.
Choose $\delta$ to make $\sum_{i} x_{i}=0$, i.e., $x \perp \mathbf{1}$.

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph
Formally

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph
Formally
Cheeger's Inequality

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph
Formally
Cheeger's Inequality

$$
\frac{1-\lambda_{2}}{2}
$$

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph
Formally
Cheeger's Inequality

$$
\frac{1-\lambda_{2}}{2} \leq h(G)
$$

## Spectral Gap and the connectivity of graph.

Spectral gap: $\mu=\lambda_{1}-\lambda_{2}=1-\lambda_{2}$.
Recall: $h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}$
$1-\lambda_{2}=0 \Leftrightarrow \lambda_{2}=1 \Leftrightarrow G$ disconnected $\Leftrightarrow h(G)=0$
In general, small spectral gap $1-\lambda_{2}$ suggests "poorly connected" graph
Formally
Cheeger's Inequality

$$
\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

Let $x$ be the characteritic vector of set $S$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

Let $x$ be the characteritic vector of set $S \quad x_{i}= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

Let $x$ be the characteritic vector of set $S \quad x_{i}= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$

$$
|E(S, V-S)|=\frac{1}{2} \sum_{i, j} A_{i j}\left|x_{i}-x_{j}\right|=\frac{d}{2} \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

Let $x$ be the characteritic vector of set $S \quad x_{i}= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$

$$
\begin{gathered}
|E(S, V-S)|=\frac{1}{2} \sum_{i, j} A_{i j}\left|x_{i}-x_{j}\right|=\frac{d}{2} \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} \\
|S||V-S|=\frac{1}{2} \sum_{i, j}\left|x_{i}-x_{j}\right|=\frac{1}{2} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}
\end{gathered}
$$

## Spectral Gap and Conductance.

We will show $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$.

$$
\phi(G)=\min _{S \in V} \frac{n|E(S, V-S)|}{d|S||V-S|}
$$

Let $x$ be the characteritic vector of set $S \quad x_{i}= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$

$$
\begin{gathered}
|E(S, V-S)|=\frac{1}{2} \sum_{i, j} A_{i j}\left|x_{i}-x_{j}\right|=\frac{d}{2} \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} \\
|S||V-S|=\frac{1}{2} \sum_{i, j}\left|x_{i}-x_{j}\right|=\frac{1}{2} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} \\
\phi(G)=\min _{x \in\{0,1\}^{V}-\{0,1\}} \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{gathered}
$$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{x^{\top} M x}{x^{\top} x}$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{x^{\top} M x}{x^{T} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{V}-\{0\}, x \perp 1} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{V}-\{0\}, x \perp \mathbf{1}} \frac{x^{\top} M x}{x^{T} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{V}-\{0\}, x \perp 1} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Claim: $2 x^{T} x=\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{V}-\{0\}, x \perp 1} \frac{x^{\top} M x}{x^{T} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{v}-\{0\} ; x \perp 1} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Claim: $2 x^{T} x=\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}$
Proof:

$$
\begin{aligned}
\sum_{i, j}\left(x_{i}-x_{j}\right)^{2} & =\sum_{i, j} x_{i}^{2}+x_{j}^{2}-2 x_{i} x_{j} \\
& =2 n \sum_{i} x_{i}^{2}-2\left(\sum_{i} x_{i}\right)^{2}=2 n \sum_{i} x_{i}^{2}=2 n x^{T} x
\end{aligned}
$$

We used $x \perp \mathbf{1} \Rightarrow \sum_{i} x_{i}=0$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{v}-\{0\}, x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{V}-\{0\}, x \perp 1} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{v}-\{0\}, x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{v}-\{0\}, x \perp 1} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Claim: $2\left(x^{\top} x-x^{\top} M x\right)=\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}$

Recall Rayleigh Quotient: $\lambda_{2}=\max _{x \in \mathbb{R}^{V}-\{0\}, x \perp 1} \frac{x^{\top} M x}{x^{\top} x}$

$$
1-\lambda_{2}=\min _{x \in \mathbb{R}^{v}-\{0\}, x \perp \mathbf{1}} \frac{2\left(x^{\top} x-x^{\top} M x\right)}{2 x^{\top} x}
$$

Claim: $2\left(x^{\top} x-x^{\top} M x\right)=\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}$

## Proof:

$$
\begin{aligned}
\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} & =\sum_{i, j} M_{i j}\left(x_{i}^{2}+x_{j}^{2}\right)-2 \sum_{i, j} M_{i j} x_{i} x_{j} \\
& =\sum_{i} \sum_{j \sim i} \frac{1}{d}\left(x_{i}^{2}+x_{j}^{2}\right)-2 x^{\top} M x \\
& =2 \sum_{(i, j) \in E} \frac{1}{d}\left(x_{i}^{2}+x_{j}^{2}\right)-2 x^{\top} M x \\
& =2 \sum_{i} x_{i}^{2}-2 x^{\top} M x=2 x^{\top} x-2 x^{\top} M x
\end{aligned}
$$

Combining the two claims, we get

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{\vee}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{v}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{v}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Recall

$$
\phi(G)=\min _{x \in\{0,1\}^{v}-\{\mathbf{0}, \mathbf{1}\}} \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{V}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Recall

$$
\phi(G)=\min _{x \in\{0,1\}}{ }^{\vee}-\{\mathbf{0}, \mathbf{1}\}, \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$, thus

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{V}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Recall

$$
\phi(G)=\min _{x \in\{0,1\}^{v_{-\{0,1\}}}} \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$, thus

$$
1-\lambda_{2} \leq \phi(G)
$$

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{V}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Recall

$$
\phi(G)=\min _{x \in\{0,1\}^{v}-\{\mathbf{0}, \mathbf{1}\}} \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$, thus

$$
1-\lambda_{2} \leq \phi(G) \leq 2 h(G)
$$

Combining the two claims, we get

$$
\begin{aligned}
1-\lambda_{2} & =\min _{x \in \mathbb{R}^{V}-\{\mathbf{0}\}, x \perp \mathbf{1}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{v}-\operatorname{Span}\{\mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
\end{aligned}
$$

Recall

$$
\phi(G)=\min _{x \in\{0,1\}^{v_{-\{0,1\}}}} \frac{n \sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$, thus

$$
1-\lambda_{2} \leq \phi(G) \leq 2 h(G)
$$

Hooray!! We get the easy part of Cheeger $\frac{1-\lambda_{2}}{2} \leq h(G)$

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{\vee}-\operatorname{Span}\{1\}} \frac{\sum_{i j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}$

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{v}-\operatorname{Span}\{1\}} \frac{\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}}{}$
Consider $x$ as an embedding of the vertices to the real line.

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{v}-\operatorname{Span}\{1\}} \frac{\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}}{}$
Consider $x$ as an embedding of the vertices to the real line.
Round $x$ to get a $x \in\{0,1\}^{V}$

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{v}-\operatorname{Span}\{1\}} \frac{\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}}{}$
Consider $x$ as an embedding of the vertices to the real line.
Round $x$ to get a $x \in\{0,1\}^{V}$
Rounding: Take a threshold $t$,

$$
\begin{cases}x_{i} \geq t & \rightarrow x_{i}=1 \\ x_{i}<t & \rightarrow x_{i}=0\end{cases}
$$

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{\vee}-\operatorname{Span}\{1\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}$
Consider $x$ as an embedding of the vertices to the real line.
Round $x$ to get a $x \in\{0,1\}^{V}$
Rounding: Take a threshold $t$,
$\begin{cases}x_{i} \geq t & \rightarrow x_{i}=1 \\ x_{i}<t & \rightarrow x_{i}=0\end{cases}$
What will be a good $t$ ?

## Cheeger Hard Part.

Now let's get to the hard part of Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Idea: We have $1-\lambda_{2}$ as a continuous relaxation of $\phi(G)$
Take the $2^{\text {nd }}$ eigenvector $x=\operatorname{argmin}_{x \in \mathbb{R}^{V}-\operatorname{Span}\{1\}} \frac{\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}}{}$
Consider $x$ as an embedding of the vertices to the real line.
Round $x$ to get a $x \in\{0,1\}^{V}$
Rounding: Take a threshold $t$,
$\begin{cases}x_{i} \geq t & \rightarrow x_{i}=1 \\ x_{i}<t & \rightarrow x_{i}=0\end{cases}$
What will be a good $t$ ?
We don't know. Try all possible thresholds ( $n-1$ possibilities), and hope there is a $t$ leading to a good cut!

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp 1$

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp 1$
Sort the vertices in non-decreasing order in terms of their values in $x$ WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp \mathbf{1}$
Sort the vertices in non-decreasing order in terms of their values in $x$ WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Let $S_{i}=\{1, \ldots, i\} \quad i=1, \ldots, n-1$

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp 1$
Sort the vertices in non-decreasing order in terms of their values in $x$ WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Let $S_{i}=\{1, \ldots, i\} \quad i=1, \ldots, n-1$
Return $S=\operatorname{argmin}_{S_{i}} h\left(S_{i}\right)$

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp 1$
Sort the vertices in non-decreasing order in terms of their values in $x$ WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Let $S_{i}=\{1, \ldots, i\} \quad i=1, \ldots, n-1$
Return $S=\operatorname{argmin}_{S_{i}} h\left(S_{i}\right)$
Main Lemma: $G=(V, E)$, $d$-regular
$x \in \mathbb{R}^{V}, x \perp \mathbf{1}, \delta=\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}$
If $S$ is the ouput of the sweeping cut algorithm, then $h(S) \leq \sqrt{2 \delta}$

## Sweeping Cut Algorithm

Input: $G=(V, E), x \in \mathbb{R}^{V}, x \perp 1$
Sort the vertices in non-decreasing order in terms of their values in $x$ WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Let $S_{i}=\{1, \ldots, i\} \quad i=1, \ldots, n-1$
Return $S=\operatorname{argmin}_{S_{i}} h\left(S_{i}\right)$
Main Lemma: $G=(V, E)$, $d$-regular
$x \in \mathbb{R}^{V}, x \perp \mathbf{1}, \delta=\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}$
If $S$ is the ouput of the sweeping cut algorithm, then $h(S) \leq \sqrt{2 \delta}$
Note: Applying the Main Lemma with the $2^{\text {nd }}$ eigenvector $v_{2}$, we have $\delta=1-\lambda_{2}$, and $h(G) \leq h(S) \leq \sqrt{2\left(1-\lambda_{2}\right)}$. Done!

## Proof of Main Lemma

$$
\text { WLOG } V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}
$$

## Proof of Main Lemma

$$
\text { WLOG } V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}
$$

Want to show

$$
\exists i \text { s.t. } h\left(S_{i}\right)=\frac{\frac{1}{d}|E(S, V-S)|}{\min (|S|,|V-S|)} \leq \sqrt{2 \delta}
$$

## Proof of Main Lemma

WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Want to show

$$
\exists i \text { s.t. } h\left(S_{i}\right)=\frac{\frac{1}{d}|E(S, V-S)|}{\min (|S|,|V-S|)} \leq \sqrt{2 \delta}
$$

Probabilistic Argument: Construct a distribution $D$ over $\left\{S_{1}, \ldots, S_{n-1}\right\}$ such that

$$
\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}
$$

## Proof of Main Lemma

WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Want to show

$$
\exists i \text { s.t. } h\left(S_{i}\right)=\frac{\frac{1}{d}|E(S, V-S)|}{\min (|S|,|V-S|)} \leq \sqrt{2 \delta}
$$

Probabilistic Argument: Construct a distribution $D$ over $\left\{S_{1}, \ldots, S_{n-1}\right\}$ such that

$$
\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}
$$

$$
\rightarrow \mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|-\sqrt{2 \delta} \min (|S|,|V-S|)\right] \leq 0
$$

## Proof of Main Lemma

WLOG $V=\{1, \ldots, n\} \quad x_{1} \leq x_{2} \leq \ldots \leq x_{n}$
Want to show

$$
\exists i \text { s.t. } h\left(S_{i}\right)=\frac{\frac{1}{d}|E(S, V-S)|}{\min (|S|,|V-S|)} \leq \sqrt{2 \delta}
$$

Probabilistic Argument: Construct a distribution $D$ over $\left\{S_{1}, \ldots, S_{n-1}\right\}$ such that

$$
\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}
$$

$\rightarrow \mathbb{E}_{S \sim D}\left[{ }_{d}|E(S, V-S)|-\sqrt{2 \delta} \min (|S|,|V-S|)\right] \leq 0$
$\exists S \quad \frac{1}{d}|E(S, V-S)|-\sqrt{2 \delta} \min (|S|,|V-S|) \leq 0$

## The distribution $D$

WLOG, shift and scale so that $x_{\left\lfloor\frac{n}{2}\right\rfloor}=0$, and $x_{1}^{2}+x_{n}^{2}=1$

## The distribution $D$

WLOG, shift and scale so that $x_{\left\lfloor\frac{n}{2}\right\rfloor}=0$, and $x_{1}^{2}+x_{n}^{2}=1$
Take $t$ from the range $\left[x_{1}, x_{n}\right]$ with density function $f(t)=2|t|$.

## The distribution $D$

WLOG, shift and scale so that $x_{\left\lfloor\frac{n}{2}\right\rfloor}=0$, and $x_{1}^{2}+x_{n}^{2}=1$
Take $t$ from the range $\left[x_{1}, x_{n}\right]$ with density function $f(t)=2|t|$.
Check: $\int_{x_{1}}^{x_{n}} f(t) \mathrm{d} t=\int_{x_{1}}^{0}-2 t \mathrm{~d} t+\int_{0}^{x_{n}} 2 t \mathrm{~d} t=x_{1}^{2}+x_{n}^{2}=1$

## The distribution $D$

WLOG, shift and scale so that $x_{\left\lfloor\frac{n}{2}\right\rfloor}=0$, and $x_{1}^{2}+x_{n}^{2}=1$
Take $t$ from the range $\left[x_{1}, x_{n}\right]$ with density function $f(t)=2|t|$.
Check: $\int_{x_{1}}^{x_{n}} f(t) \mathrm{d} t=\int_{x_{1}}^{0}-2 t \mathrm{~d} t+\int_{0}^{x_{n}} 2 t \mathrm{~d} t=x_{1}^{2}+x_{n}^{2}=1$
$S=\left\{i: x_{i} \leq t\right\}$

## The distribution $D$

WLOG, shift and scale so that $x_{\left\lfloor\frac{n}{2}\right\rfloor}=0$, and $x_{1}^{2}+x_{n}^{2}=1$
Take $t$ from the range $\left[x_{1}, x_{n}\right]$ with density function $f(t)=2|t|$.
Check: $\int_{x_{1}}^{x_{n}} f(t) \mathrm{d} t=\int_{x_{1}}^{0}-2 t \mathrm{~d} t+\int_{0}^{x_{n}} 2 t \mathrm{~d} t=x_{1}^{2}+x_{n}^{2}=1$
$S=\left\{i: x_{i} \leq t\right\}$
Take $D$ as the distribution over $S_{1}, \ldots, S_{n-1}$ resulted from the above procedure.

Goal: $\frac{\mathbb{E}_{S \sim D}\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]}{\mathbb{E}_{S \sim D}[\min (|S,|V-S|)]} \leq \sqrt{2 \delta}$

Goal: $: \frac{\mathbb{E}_{S \sim D}\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Denominator:

Goal: $\frac{\left.\left.\mathbb{E}_{S \sim D[1}^{1} \mid E(S, V-S)\right]\right]}{\mathbb{E}_{S \sim D}[\min (|S,|V-S|)]} \leq \sqrt{2 \delta}$

## Denominator:

Let $T_{i}=i$ is in the smaller set of $S, V-S$

Goal: $\frac{\left.\mathbb{E}_{S \sim D[ }\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Denominator:

Let $T_{i}=i$ is in the smaller set of $S, V-S$
Can check

$$
\mathbb{E}_{S \sim D}\left[T_{i}\right]=\operatorname{Pr}\left[T_{i}\right]=x_{i}^{2}
$$

$$
\begin{aligned}
\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)] & =\mathbb{E}_{S \sim D}\left[\sum_{i} T_{i}\right] \\
& =\sum_{i} \mathbb{E}_{S \sim D}\left[T_{i}\right] \\
& =\sum_{i} x_{i}^{2}
\end{aligned}
$$

Goal: $\frac{\left.\left.\left.\mathbb{E}_{S \sim D\left[\frac{1}{d}\right.} \right\rvert\, E(S, V-S)\right]\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

Goal: $\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$
Numerator:

Goal: $\frac{\left.\left.\mathbb{E}_{S \sim D\left[{ }_{d}\right.} \mid E(S, V-S)\right]\right]}{\mathbb{E}_{S \sim D}[\min (|S|, \mid V-S)]} \leq \sqrt{2 \delta}$
Numerator:
Let $T_{i, j}=i, j$ is cut by $(S, V-S)$

Goal: $\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Numerator:

Let $T_{i, j}=i, j$ is cut by $(S, V-S)$

$$
\begin{cases}x_{i}, x_{j} \text { same sign: } & \operatorname{Pr}\left[T_{i, j}\right]=\left|x_{i}^{2}-x_{j}^{2}\right| \\ x_{i}, x_{j} \text { different sign: } & \operatorname{Pr}\left[T_{i, j}\right]=x_{i}^{2}+x_{j}^{2}\end{cases}
$$

Goal: $\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Numerator:

Let $T_{i, j}=i, j$ is cut by $(S, V-S)$

$$
\begin{cases}x_{i}, x_{j} \text { same sign: } & \operatorname{Pr}\left[T_{i, j}\right]=\left|x_{i}^{2}-x_{j}^{2}\right| \\ x_{i}, x_{j} \text { different sign: } & \operatorname{Pr}\left[T_{i, j}\right]=x_{i}^{2}+x_{j}^{2}\end{cases}
$$

A common upper bound: $\mathbb{E}\left[T_{i, j}\right]=\operatorname{Pr}\left[T_{i, j}\right] \leq\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right)$

Goal: $\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Numerator:

Let $T_{i, j}=i, j$ is cut by $(S, V-S)$

$$
\begin{cases}x_{i}, x_{j} \text { same sign: } & \operatorname{Pr}\left[T_{i, j}\right]=\left|x_{i}^{2}-x_{j}^{2}\right| \\ x_{i}, x_{j} \text { different sign: } & \operatorname{Pr}\left[T_{i, j}\right]=x_{i}^{2}+x_{j}^{2}\end{cases}
$$

A common upper bound: $\mathbb{E}\left[T_{i, j}\right]=\operatorname{Pr}\left[T_{i, j}\right] \leq\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right)$

$$
\begin{aligned}
\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right] & =\frac{1}{2} \sum_{i, j} M_{i j} \mathbb{E}\left[T_{i, j}\right] \\
& \leq \frac{1}{2} \sum_{i, j} M_{i j}\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right)
\end{aligned}
$$

## Cauchy-Schwarz Inequality

$$
|a \cdot b| \leq\|a\|\|b\|, \text { as } a \cdot b=\|a\|\|b\| \cos (a, b)
$$

## Cauchy-Schwarz Inequality

$|a \cdot b| \leq\|a\|\|b\|$, as $a \cdot b=\|a\|\|b\| \cos (a, b)$
Applying with $a, b \in \mathbb{R}^{n^{2}}$ with $a_{i j}=\sqrt{M_{i j}}\left|x_{i}-x_{j}\right|, b_{i j}=\sqrt{M_{i j}}\left|x_{i}\right|+\left|x_{j}\right|$

## Cauchy-Schwarz Inequality

$|a \cdot b| \leq\|a\|\|b\|$, as $a \cdot b=\|a\|\|b\| \cos (a, b)$
Applying with $a, b \in \mathbb{R}^{n^{2}}$ with $a_{i j}=\sqrt{M_{i j}}\left|x_{i}-x_{j}\right|, b_{i j}=\sqrt{M_{i j}}\left|x_{i}\right|+\left|x_{j}\right|$ Numerator:

$$
\begin{aligned}
\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right] & =\frac{1}{2} \sum_{i, j} M_{i j} \mathbb{E}\left[T_{i, j}\right] \\
& \leq \frac{1}{2} \sum_{i, j} M_{i j}\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right) \\
& =\frac{1}{2} a \cdot b \\
& \leq \frac{1}{2}\|a \mid\| b \|
\end{aligned}
$$

Recall $\delta=\frac{\sum_{i j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}, a_{i j}=\sqrt{M_{i j}}\left|x_{i}-x_{j}\right|, b_{i j}=\sqrt{M_{i j}}\left|x_{i}\right|+\left|x_{j}\right|$

Recall $\delta=\frac{\sum_{i j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i j,}\left(x_{i}-x_{j}\right)^{2}}, a_{i j}=\sqrt{M_{i j} \mid}\left|x_{i}-x_{j}\right|, b_{i j}=\sqrt{M_{i j} \mid}\left|x_{i}\right|+\left|x_{j}\right|$

$$
\begin{aligned}
\|a\|^{2} & =\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}=\frac{\delta}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} \\
& =\frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)-\sum_{i, j}^{2 x_{i} x_{j}} \\
& =\frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)-2\left(\sum_{i} x_{i}\right)^{2} \\
& \leq \frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)=2 \delta \sum_{i} x_{i}^{2}
\end{aligned}
$$

Recall $\delta=\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}, a_{i j}=\sqrt{M_{i j} \mid}\left|x_{i}-x_{j}\right|, b_{i j}=\sqrt{M_{i j} \mid}\left|x_{i}\right|+\left|x_{j}\right|$

$$
\begin{aligned}
&\|a\|^{2}=\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}=\frac{\delta}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} \\
&=\frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)-\sum_{i, j}^{2 x_{i} x_{j}} \\
&=\frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)-2\left(\sum_{i} x_{i}\right)^{2} \\
& \leq \frac{\delta}{n} \sum_{i, j}\left(x_{i}^{2}+x_{j}^{2}\right)=2 \delta \sum_{i} x_{i}^{2} \\
&\|b\|^{2}=\sum_{i, j} M_{i j}\left(\left|x_{i}\right|+\mid x_{i}\right)^{2} \\
& \leq \sum_{i, j} M_{i j}\left(2 x_{i}^{2}+2 x_{j}^{2}\right) \\
&=4 \sum_{i} x_{i}^{2}
\end{aligned}
$$

Goal: $: \mathbb{E}_{S \sim D\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]}^{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

Goal: $\frac{\left.\mathbb{E}_{S \sim D[ }\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}$

## Numerator:

$$
\begin{aligned}
\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right] & =\leq \frac{1}{2}\|a\|\|b\| \\
& \leq \frac{1}{2} \sqrt{2 \delta \sum_{i} x_{i}^{2}} \sqrt{4 \sum_{i} x_{i}^{2}} \quad=\sqrt{2 \delta} \sum_{i} x_{i}^{2}
\end{aligned}
$$

Recall Denominator:

$$
\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]=\sum_{i} x_{i}^{2}
$$

We get

$$
\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}
$$

Goal: $: \mathbb{E}_{\mathbb{E}_{S \sim D D}\left[\left.\frac{1}{d} \right\rvert\, E(S, V-S)\right]}^{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{\mathbf{2 \delta}}$

## Numerator:

$$
\begin{aligned}
\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right] & =\leq \frac{1}{2}\|a\|\|b\| \\
& \leq \frac{1}{2} \sqrt{2 \delta \sum_{i} x_{i}^{2}} \sqrt{4 \sum_{i} x_{i}^{2}}=\sqrt{2 \delta} \sum_{i} x_{i}^{2}
\end{aligned}
$$

Recall Denominator:

$$
\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]=\sum_{i} x_{i}^{2}
$$

We get

$$
\frac{\mathbb{E}_{S \sim D}\left[\frac{1}{d}|E(S, V-S)|\right]}{\mathbb{E}_{S \sim D}[\min (|S|,|V-S|)]} \leq \sqrt{2 \delta}
$$

Thus $\exists S_{i}$ such that $h\left(S_{i}\right) \leq \sqrt{2 \delta}$, which gives $h(G) \leq \sqrt{2(1-\lambda)}$

## Cycle

Tight example for hard part of Cheeger?

## Cycle

Tight example for hard part of Cheeger?
$\frac{\mu}{2}$

## Cycle

Tight example for hard part of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2}
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G)
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.
Edge expansion:Cut in half.

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.
Edge expansion:Cut in half.

$$
|S|=\frac{n}{2},|E(S, \bar{S})|=2
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=\frac{n}{2},|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{4}{n} .
\end{aligned}
$$

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=\frac{n}{2},|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{4}{n} .
\end{aligned}
$$

Show eigenvalue gap $\mu$ is $O\left(\frac{1}{n^{2}}\right)$.

## Cycle

Tight example for hard part of Cheeger?

$$
\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}
$$

Will show other side of Cheeger is asymptotically tight.


Cycle on $n$ nodes.
Edge expansion:Cut in half.

$$
\begin{aligned}
& |S|=\frac{n}{2},|E(S, \bar{S})|=2 \\
& \rightarrow h(G)=\frac{4}{n} .
\end{aligned}
$$

Show eigenvalue gap $\mu$ is $O\left(\frac{1}{n^{2}}\right)$.
Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{T} x}$ close to 1 .

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} X}$ close to 1 .

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} X}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{T} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} X}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$\rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right)$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$$
\rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \quad \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)
$$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} x}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$\rightarrow x^{T} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \quad \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)$
$\mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right)$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} X}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$\rightarrow x^{\top} M x=x^{T} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \quad \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)$
$\mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right)$
$h(G)=\frac{4}{n}=\Theta(\sqrt{2 \mu})$

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^{\top} M x}{x^{\top} X}$ close to 1 .

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$



Hit with $M$.

$$
(M x)_{i}= \begin{cases}-n / 4+1 / 2 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2 \\ x_{i} & \text { otherwise }\end{cases}
$$

$\rightarrow x^{\top} M x=x^{\top} x\left(1-O\left(\frac{1}{n^{2}}\right)\right) \quad \rightarrow \lambda_{2} \geq 1-O\left(\frac{1}{n^{2}}\right)$
$\mu=\lambda_{1}-\lambda_{2}=O\left(\frac{1}{n^{2}}\right)$
$h(G)=\frac{4}{n}=\Theta(\sqrt{2 \mu})$
Asymptotically tight example for upper bound for Cheeger $h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}=\sqrt{2 \mu}$.

## Sum up.

$1-\lambda_{2}$ as a relaxation of $\phi(G)$.

## Sum up.

$1-\lambda_{2}$ as a relaxation of $\phi(G)$.
Sweeping cut Algorithm

## Sum up.

$1-\lambda_{2}$ as a relaxation of $\phi(G)$.
Sweeping cut Algorithm
Probabilistic argument to show there exists a good threshold cut

## Sum up.

$1-\lambda_{2}$ as a relaxation of $\phi(G)$.
Sweeping cut Algorithm
Probabilistic argument to show there exists a good threshold cut Example: Cycle, Cheeger hard part is asymptotic tight .

Satish will be back on Tuesday.

Satish will be back on Tuesday.

