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Assume regular graph of degree d.
Edge Expansion.

h(S) = gamsvasy N(G) = mingcy h(S)
Conductance (Sparsity).

9(S) = 07—, 6(G) = mingcy 9(S)
Note n > max(|S|,|V|—1|S|) > n/2

— h(G) < ¢(G) < 2h(S)
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Spectra of the graph.

A: Adjacency Matrix Aj =1 < (i,j) € E
M = 1 A, normalized adjacency matrix, M real, symmetric

orthonormal eigenvectors: v4,..., v, with eigenvalues
M>X>...>2 A

Claim: Any two eigenvectors with different eigenvalues are
orthogonal.

Proof: Eigenvectors: v, Vv’ with eigenvalues A,1'.
vIMY =vT(AV)=2AvTV

vIMV =avTv =avTy.
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Spectral gap: u =41 —A =1— 2.
Recall: h(G) = minsl‘s‘g‘v‘/z ‘E(S‘%
1-2 =04 A, =1« Gdisconnected < h(G) =0

In general, small spectral gap 1 — A suggests "poorly connected”
graph

Formally
Cheeger’s Inequality

12 <n(6)< vali %)
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Spectral Gap and Conductance.
We will show 1 — A, as a continuous relaxation of ¢(G).
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d
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ny;; Mj(x;— x))?
Li(Xi —x;)?

¢(G) = minyc10.13v_10.1}
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Recall Rayleigh Quotient: Az = maX, pv_(o} x 1177,

' 2(xTx — xT Mx)
1=l =minyepv_(oyx1— 5,7,
Claim: 2x7x = 1y, (x;— x))®
Proof:
200 x)" = Lx? 4+ x5~ 2x1%
i.f i.f
=2nY X2 -2(Yx)? =20 =2
7 i i

Weusedx L1=Y,x; =0
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Recall Rayleigh Quotient: A2 = maX, pv_(oy x 1177,

2(xTx — xTMx)

1-2= minycrv_101 x11 oxT x

Claim: 2(x"x — xTMx) = ¥; ; Mj(x; — x;)?
Proof:
Y Mj(xi— x)? = Y My(xF +x7) — 2 Myxix;
i i i
1
=YY a(x,-2 +Xj2) —2xT Mx
T i
1
=2 Y —(xP+xP)—2xTMx
(if)eE
=2) x?—2x"Mx =2x"x —2x" Mx
i
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Cheeger Hard Part.

Now let’s get to the hard part of Cheeger h(G) < \/2(1 — A2).
Idea: We have 1 — A, as a continuous relaxation of ¢(G)

d A o LijMy(xi— Xj)2
Take the 27 eigenvector x = argmin, v _ Span{1} 1, (g x)?
Consider x as an embedding of the vertices to the real line.
Round x to geta x € {0,1}V

Rounding: Take a threshold t,
x>t —x=1
Xi<t —x=0

What will be a good t?

We don’t know. Try all possible thresholds (n— 1 possibilities), and
hope there is a t leading to a good cut!
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Sweeping Cut Algorithm

Input: G=(V,E),xcRY x 1.1

Sort the vertices in non-decreasing order in terms of their values in x
WLOG V={1,...,n} X1 <X <...< Xp
Let S;={1,...,i} i=1,...,n—1
Return S = argming h(S;)
Main Lemma: G= (V,E), d-regular
2

RY x | 1.6 = ZuMiti—x)
XeRT,X 0 Ly i6—x)2
If Sis the ouput of the sweeping cut algorithm, then h(S) < v24

Note: Applying the Main Lemma with the 2™ eigenvector v», we have

§=1-12, and h(G) < h(S) < /2(1 — A2). Donel!
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Proof of Main Lemma

WLOG V={1,...,n} X1 <X <...< Xp
Want to show

|
- _ ME(S,V-8)
i st h(S)) = min(S.[V=8]) <V26

Probabilistic Argument: Construct a distribution D over {Sy,...,S,_1}
such that ]
Es.plglE(S, V-S|
- <V268
Es.p[min(|S|,|V —S|)] ~

— Esplg|E(S,V—8)|-Vv28min(|S|,|V - S|)] <0
s YE(S,v-S8)|-v25min(|S],|V-S|) <0
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The distribution D

WLOG, shift and scale so that x5 =0, and X2 +x2=1
Take t from the range [x1, X, with density function f(t) = 2|¢|.
Check: [37f(t)dt = [ —2tdt+ [5"2tdt = xZ + X2 = 1
S={i:x<t)

Take D as the distribution over Sy, ..., S,_4 resulted from the above
procedure.
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. Es plFIE(S,V-9)I]
Goal: 5= tmmgerv—sn] < V29
Denominator:
Let T; =iisin the smaller setof S,V —-S

Can check
Es-plTi] = Pr[Tj] = x?
Es-p[min(|S|,|V - S|)] =Es-p[} Til
I
=Y Es.p[T]
7

— Y
i
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. Eg plJIE(S.V-9)I]
Goal: g~ mnqsiv—syy < V29

Numerator:
Let T;;=i,jis cutby (S,V—-S)

Xj, X; same sign: Pr{Tij] = [x? — x|
x;, x; different sign:  Pr[T;] = x2 + x?

A common upper bound: IE[T,-J-] = Pr[T,-_j] < |x; —xj\(|x,-| + |x/-|)

1 1
Es-ol4lE(S,V=S)l1=3 Y ME[T;)]
L)

]
< 5 2 Mylxi =11l + 1)
I7j
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Cauchy-Schwarz Inequality

|a-b| < [|all[|b], as a- b= ||a]|[|b]|cos(a, b)
Applying with a,b € R™ with aj = /Mj|x; — x|, by = /M| x;| + | x|

Numerator:

1 1
Esw[glE(S, V-8 = EZM/]]E[T:',/]
i
’
< EZMU\XI' = X[ (|xi| + |x;])
i

1
_§a~b

]
< —
< 5 lallibll



Recaua:M
P50 8 = VMilxi =51, by = /Myl + x|



Recall § = M

3 Lij(x—x)? aj = \/7|X’ X, bU_\/7|XI|+‘X/

K
I'rj
= EZ(X,?H,?)—sz,Xj
ij ij
s
= a L 0Ff) 2L
i -
5
< Y (F+xf) =26 5
!



M (Xi— X )2 x| by = /Ml x| + | x;
Recall 6 = HLTUA . aj = /Ml x|, by = /Mylxi| + x|
n &,

5 .
lall® = Y M(xi = )" = = ¥ (xi = %)
i7j

i
= X0t ) - Towy
i 7

= %Z(Xiz +x7) —2()xi)?
ij i

6 o >
< EZ(XIZ-FX/ ) _26;)(1

i

2

6] = Y My(1xi] + )
ij

<Y My(2x¢ +2x7)
i7j

—4x
i
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Numerator:

1 1
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i i

Recall Denominator:

Es-olmin(|S|.|V — S])] = ¥.x

1

We get
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. Es plglE(S,V-9)]
Goal: g5 o mmsiv—sy < V29

Numerator:

1 1
Es-ol4|E(S,V - S)ll == 5l alllb]

g;\/262x,.2\/42x/2 — V25 Y ¥
i i i

Recall Denominator:

Es-olmin(|S|.|V — S])] = ¥.x

1

We get
Es-plg|E(S.V-S)|]
- <v26
Esplmin(|S|,|V - S])]

Thus 3S; such that h(S;) < V28, which gives h(G) < \/2(1—1)

O
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Cycle

Tight example for hard part of Cheeger?
b= <hG) < V2(1-2)=\/2u

Will show other side of Cheeger is asymptotically tight.
Cycle on n nodes.

Edge expansion:Cut in half.
S| =3, |E(S,5)| =2
— h(G)=*%

n:

Show eigenvalue gap i is O(-;).

Find x L 1 with Rayleigh quotient, X/¥* close to 1.
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~n
Xn2 ™

i =

i—n/4 ifi<n/2
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Hit with M.
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Find x L 1 with Rayleigh quotient, X ¢ close to 1.

~n
Xn2 ™

i =

i—n/4 ifi<n/2
3n/4—i ifi>n/2

Hit with M.
-n/4+1/2 ifi=1,n
(Mx)j =< n/4—1 ifi=n/2
X; otherwise

= xTMx=xTx(1-0(%)) — A >1-0(%)
w=2n—-22=0(%)
h(G) =7 =0O(/2p)

Asymptotically tight example for upper bound for Cheeger

h(G) < 2(1—22) = \/21.
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Sum up.

1 — 2, as a relaxation of ¢(G).

Sweeping cut Algorithm

Probabilistic argument to show there exists a good threshold cut
Example: Cycle, Cheeger hard part is asymptotic tight .
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