Welcome back.

Today.

Sampling combinatorial structures.
Random Walks.
Spectral Gap/Mixing Time
Expansion/Spectral Gap.
Example: partial orders.

Convex Bodies.

$S \subset[k]^{n}$ is grid points inside Convex Body.
Ex: Numerically integrate convex function in d dimensions. Compute $\sum_{i} v_{i} \operatorname{Vol}\left(f(x)>v_{i}\right)$ where $v_{i}=i \delta$.
Example: P defined by set of linear inequalities. Or other "membership oracle" for P
S is set of grid points inside Convex Body. Grid points that satisfy linear inequalities. or "other" membership oracle
Choose a uniformly random elt?
Easy to choose randomly from $[k]^{n}$ which is big.
For convex body?
Choose random point in $[k]^{n}$ and check if in P. Works.
But P could be exponentially small compared to $\left|[k]^{n}\right|$. Takes a long time.

Cheeger's inequality

```
Rayleigh quotient.
    \(\lambda_{2}=\max _{x \perp 1} \frac{x^{\top} M x}{x^{T} x}\)
Eigenvalue gap: \(\mu=\lambda_{1}-\lambda_{2}\).
Recall: \(h(G)=\min _{S,|S| \leq|V| / 2} \frac{|E(S, V-S)|}{|S|}\)
    \(\left.\frac{\mu}{2}=\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right.}\right)=\sqrt{2 \mu}\)
Hmmm..
Connected \(\lambda_{2}<\lambda_{1}\)
    \(h(G)\) large \(\rightarrow\) well connected \(\rightarrow \lambda_{1}-\lambda_{2}\) big
    \(h(G)\) large \(\rightarrow\) well
    \(h(G)\) small \(\rightarrow \lambda_{1}-\lambda_{2}\) small.
```


Convex Body Graph.

$S \subset[k]^{n}$ is set of grid points inside Convex Body.
Sample Space: S.
Graph on grid points inside P or on Sample Space.
One neighbor in each direction for each dimension (if neighbor is inside P)
Degree: $2 d$.
How big is graph? Big!
So big it ..sits around the house.
$O\left(k^{n}\right)$ if coordinates in $[k]$.
That could be a big graph!
How to find a random node?
Start at a grid point, and take a (random) walk.
When close to uniform distribution...have a sample point.
How long does this take? More later
But remember power method...which finds first eigenvector.

Sampling

Sampling: Random element of subset $S \subset\{0,1\}^{n}$ or $\{0, \ldots, k\}^{n}$. Related Problem: Approximate $|S|$ within factor of $1+\varepsilon$
Random walk to do both for some interesting sets S.

Spanning Trees.

Problem: How many?

Another Problem: find a random one.

Algorithm:

Start with spanning tree.
Repeat:
Swap a random nontree edge with a random tree edge

How long?

Sample space graph (BIG GRAPH) of spanning trees.
Node for each tree
Neighboring trees differ in two edges.
Algorithm is random walk on BIG GRAPH (sample space graph.)

Spin systems.

Each element of S may have associated weight.

Sample element proportional to weight.

Example? 2 or 3 dimensional grid of particles. Particle State ± 1. System State $\{-1,+1\}^{n}$.
Energy on local interactions: $E=\sum_{(i, j)}-\sigma_{i} \sigma_{j}$
"Ferromagnetic regime": same spin is good.
Gibbs distribution $\propto e^{-E / k T}$.
Physical properties from Gibbs distribution.
Metropolis Algorithm:
At x, generate y with a single random flip.
Go to y with probability $\min (1, w(y) / w(x))$
Random walk in sample space graph (BIG GRAPH ALERT) (not random walk in 2d grid of particles.)
Markov Chain on statespace of system.

Fix-it-up chappie!

"Lazy" random walk: With probability $1 / 2$ stay at current vertex.
Evolution Matrix: $\frac{1+M}{2}$

```
Eigenvalues: \(\frac{1+\lambda_{i}}{2}\)
    \(\frac{1}{2}(I+M) v_{i}=\frac{1}{2}\left(v_{i}+\lambda_{i} v_{i}\right)=\frac{1+\lambda_{i}}{2} v_{i}\)
    Eigenvalues in interval \([0,1]\).
```

Spectral gap: $\frac{1-\lambda_{2}}{2}=\frac{\mu}{2}$
Uniform distribution: $\pi=\left[\frac{1}{n}, \ldots, \frac{1}{n}\right]$
Distance to uniform: $d_{1}\left(v_{t}, \pi\right)=\sum_{i}\left|\left(v_{t}\right)_{i}-\pi_{i}\right|$
"Rapidly mixing": $d_{1}\left(v_{t}, \pi\right) \leq \varepsilon$ in poly $\left(\log N, \frac{1}{\varepsilon}\right)$ time
When is chain rapidly mixing?
Another measure: $d_{2}\left(v_{t}, \pi\right)=\sum_{i}\left(\left(v_{t}\right)_{i}-\pi_{i}\right)^{2}$.
Note: $d_{1}\left(v_{t}, \pi\right) \leq \sqrt{N} d_{2}\left(v_{t}, \pi\right)$
n-degree of node, $\mu \geq \frac{1}{p(n)}$ for poly $p(n), t=O(p(n) \log N)$.
$d_{2}\left(v_{t}, \pi\right)=\left|A^{t} e_{1}-\pi\right|^{2} \leq\left(\frac{\left(1+\lambda_{2}\right)}{2}\right)^{2} \leq\left(1-\frac{1}{2 p(n)}\right)^{t} \leq \frac{1}{\operatorname{poly}(N)}$
Rapidly mixing with big $\left(\geq \frac{1}{p(n)}\right)$ spectral gap.

Sampling structures and the BIG GRAPH

Sampling Algorithms \equiv Random walk on BIG GRAPH. Small degree. Vertices Nieghbors Degree (ish)
Grid points in convex body.
Spanning Trees.
Spin States.
Change one dimension
Change two edges.
Change on spin
$\leq|V|^{2}$ neighbors/ node $O(n)$ neighbors.

Rapid mixing, volume, and surface area..

Recall volume of convex body.
Grid graph on grid points inside convex body.
Recall Cheeger: $\frac{\mu}{2} \leq h(G) \leq \sqrt{2 \mu}$.
Lower bound expansion \rightarrow lower bounds on spectral gap $\mu \rightarrow$ Upper bound mixing time.
$h(G) \approx \frac{\text { Surface Area }}{\text { Volume }}$
Isoperimetric inequality.

$$
\operatorname{Vol}_{n-1}(S, \bar{S}) \geq \frac{\min (\operatorname{Vol}(S), \operatorname{Vol}(\bar{S}))}{\operatorname{diam}(P)}
$$

Edges \propto surface area, Assume $\operatorname{Diam}(P) \leq p(n)$
$\rightarrow h(G) \geq 1 / p^{\prime}(n)$
$\rightarrow \mu>1 / 2 p^{\prime}(n)^{2}$
$\rightarrow O\left(p^{\prime}(n)^{2} \log N\right)$ convergence for Markov chain on BIG GRAPH.
\rightarrow Rapidly mixing chain:

Analyzing random walks on graph.
Start at vertex, go to random neighbor.
For d-regular graph: eventually uniform.
if not bipartite. Odd /even step!

How to analyse?

Random Walk Matrix: M.
M - normalized adjacency matrix
M-normalized adjacency
Symmetric, $\sum_{j} M[i, j]=1$.
$M[i, j]$ - probability of going to j from i.
Probability distribution at time t : v_{t}.
$v_{t+1}=M v_{t} \quad$ Each node is average over neighbors.
Evolution? Random walk starts at 1 , distribution $e_{1}=[1,0, \ldots, 0]$.
$M^{t} v_{1}=\frac{1}{\sqrt{n}} v_{1}+\sum_{i>1} \lambda_{i}^{t} \alpha_{i} v_{i}$.
$v_{1}=\left[\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right] \rightarrow$ Uniform distribution.
Doh! What if bipartite?
Negative eigenvalues of value 1: $(+1,-1)$ on two sides.
Side question: Why the same size? Assumed regular graph.

Sum up.

Sampling by random walks.

Random Walks mix if μ is "large".
If expanding μ is large. "Cheeger
Example: partial orders.

