Turn in homework!

Turn in homework!

I am away April 15-20.

Turn in homework!

I am away April 15-20.

Midterm out when I get back.

Turn in homework!

I am away April 15-20.

Midterm out when I get back.

Few days and take home. Shiftable.

Turn in homework!

I am away April 15-20.

Midterm out when I get back.

Few days and take home. Shiftable.

Have handle on projects before that.

Turn in homework!

I am away April 15-20.

Midterm out when I get back.

Few days and take home. Shiftable.

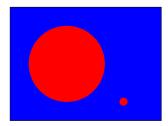
Have handle on projects before that.

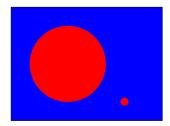
Progress report due Monday.

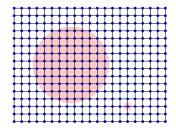
Example Problem: clustering.

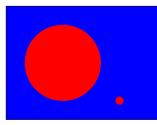
- Points: documents, dna, preferences.
- Graphs: applications to VLSI, parallel processing, image segmentation.

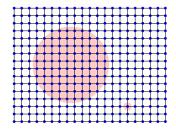
Image example.



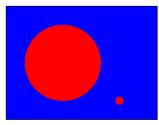


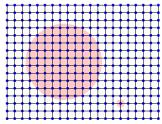






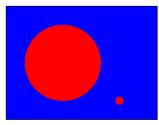
Which region?

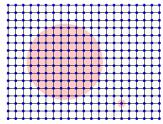




Which region? Normalized Cut: Find S, which minimizes

$$\frac{w(S,\overline{S})}{w(S) \times w(\overline{S})}$$





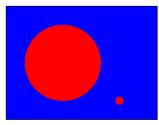
Which region? Normalized Cut: Find S, which minimizes

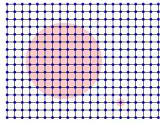
$$\frac{w(S,\overline{S})}{w(S)\times w(\overline{S})}$$

Ratio Cut: minimize

$$\frac{w(S,\overline{S})}{w(S)},$$

w(S) no more than half the weight. (Minimize cost per unit weight that is removed.)





Which region? Normalized Cut: Find S, which minimizes

$$\frac{w(S,\overline{S})}{w(S)\times w(\overline{S})}$$

Ratio Cut: minimize

$$\frac{w(S,\overline{S})}{w(S)},$$

w(S) no more than half the weight. (Minimize cost per unit weight that is removed.)

Either is generally useful!

Graph G = (V, E),

Graph G = (V, E),

Assume regular graph of degree d.

Graph G = (V, E),

Assume regular graph of degree *d*. Edge Expansion.

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d\min|S|, |V-S|}, \ h(G) = \min_{S} h(S)$$

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d\min|S|, |V-S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d\min|S|, |V-S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = rac{n|E(S,V-S)|}{d|S||V-S|}, \ \phi(G) = \min_{S} \phi(S)$$

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d\min|S|, |V-S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = \frac{n|E(S,V-S)|}{d|S||V-S|}, \ \phi(G) = \min_{S} \phi(S)$$

Note $n \ge \max(|S|, |V| - |S|) \ge n/2$

Graph G = (V, E),

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d\min|S|, |V-S|}, \ h(G) = \min_{S} h(S)$$

Conductance.

$$\phi(S) = \frac{n|E(S, V-S)|}{d|S||V-S|}, \ \phi(G) = \min_{S} \phi(S)$$

Note $n \ge \max(|S|, |V| - |S|) \ge n/2$

 $\rightarrow h(G) \leq \phi(G) \leq 2h(S)$

M = A/d adjacency matrix, A

M = A/d adjacency matrix, AEigenvector: $v - Mv = \lambda v$

M = A/d adjacency matrix, AEigenvector: $v - Mv = \lambda v$ Real, symmetric.

- M = A/d adjacency matrix, A
- Eigenvector: $v Mv = \lambda v$
- Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

- M = A/d adjacency matrix, A
- Eigenvector: $v Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' .

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v')$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$ $v^T M v' = \lambda v^T v'$

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$ $v^T M v' = \lambda v^T v' = \lambda v^T v.$

Distinct eigenvalues

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$

 $\mathbf{v}^{\mathsf{T}}\mathbf{M}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}.$

Distinct eigenvalues \rightarrow orthonormal basis.

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$

 $\mathbf{v}^{\mathsf{T}}\mathbf{M}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}.$

Distinct eigenvalues \rightarrow orthonormal basis.

In basis: matrix is diagonal..

M = A/d adjacency matrix, A

Eigenvector: $v - Mv = \lambda v$

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ' . $v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$

 $\mathbf{v}^{\mathsf{T}}\mathbf{M}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}' = \lambda \, \mathbf{v}^{\mathsf{T}}\mathbf{v}.$

Distinct eigenvalues \rightarrow orthonormal basis.

In basis: matrix is diagonal..

$$M = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Action of *M*.

v - assigns weights to vertices.

Action of *M*.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

v - assigns weights to vertices. Mv replaces v_i with $\frac{1}{d}\sum_{e=(i,j)} v_j$. Eigenvector with highest value?

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

 $\rightarrow V_i$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

 $\rightarrow v_i = (M\mathbf{1})_i$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x$. $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.Connected \rightarrow path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x$.ij $k = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x$. $i = (i,j), v_i = x, x_j < x_j < x_j$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.Connected \rightarrow path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x$.ij $k = (i,j), v_i = x, x_j < x$.ij $k = (i,j), v_i = x, x_j < x$.ijiii<

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x.$ Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x.$ Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x.$ Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_i = (Mx_i)$

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x.$ Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_i = (Mx_i) \implies$ eigenvector with $\lambda = 1$.

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value *x*. Connected \rightarrow path from *x* valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x.$ $i \quad j \quad (Mv)_i \leq \frac{1}{d}(x + x \dots + v_j) < x.$ Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_i = (Mx_i) \implies$ eigenvector with $\lambda = 1$. Choose δ to make $\sum_i x_i = 0$,

v - assigns weights to vertices.

Mv replaces v_i with $\frac{1}{d} \sum_{e=(i,j)} v_j$.

Eigenvector with highest value? v = 1. $\lambda_1 = 1$.

$$\rightarrow v_i = (M\mathbf{1})_i = \frac{1}{d} \sum_{e \in (i,j)} 1 = 1.$$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.Connected \rightarrow path from x valued node to lower value. $\rightarrow \exists e = (i,j), v_i = x, x_j < x$. $i \quad j$ $\vdots \quad x \quad \leq x$ ($Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x$.Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: Assign +1 to vertices in one component, $-\delta$ to rest. $x_i = (Mx_i) \implies$ eigenvector with $\lambda = 1$. Choose δ to make $\sum_i x_i = 0$, i.e., $x \perp 1$.

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

хМх

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

 $xMx = \sum_i \lambda_i x_i^2$

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

 $xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when *x* is first eigenvector.

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \le \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when *x* is first eigenvector.

Rayleigh quotient.

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1$

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|}$

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

 $\lambda_1 = \max_x \frac{x^T M x}{x^T x}$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

Rayleigh quotient is less than h(S) for any balanced cut S.

Rayleigh Quotient

$$\lambda_1 = \max_x \frac{x^T M x}{x^T x}$$

In basis, *M* is diagonal.

Represent *x* in basis, i.e., $x_i = x \cdot v_i$.

$$xMx = \sum_i \lambda_i x_i^2 \leq \lambda_1 \sum_i x_i^2 \lambda = \lambda x^T x$$

Tight when x is first eigenvector.

Rayleigh quotient.

 $\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$ $x \perp 1 \leftrightarrow \sum_i x_i = 0.$

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is $\frac{|E(S,S)|}{|S|} = h(S)$.

Rayleigh quotient is less than h(S) for any balanced cut *S*.

Find balanced cut from vector that acheives Rayleigh quotient?

Rayleigh quotient.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x - mx}{x^T x}.$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp 1} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

 $\frac{\mu}{2}$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \le h(G)$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$. h(G) large

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

 $\begin{array}{l} \text{Connected } \lambda_2 < \lambda_1. \\ h(G) \text{ large } \rightarrow \text{ well connected} \end{array}$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$. h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

 $\begin{array}{l} \text{Connected } \lambda_2 < \lambda_1. \\ h(G) \text{ large } \rightarrow \text{ well connected } \rightarrow \lambda_1 - \lambda_2 \text{ big.} \\ \text{Disconnected} \end{array}$

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected $\lambda_2 < \lambda_1$. h(G) large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big. Disconnected $\lambda_2 = \lambda_1$.

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected
$$\lambda_2 < \lambda_1$$
.
 $h(G)$ large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.
Disconnected $\lambda_2 = \lambda_1$.
 $h(G)$ small

Rayleigh quotient.

$$\lambda_2 = \max_{x \perp \mathbf{1}} \frac{x^T M x}{x^T x}.$$

Eigenvalue gap: $\mu = \lambda_1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \le |V|/2} \frac{|E(S, V-S)|}{|S|}$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Hmmm..

Connected
$$\lambda_2 < \lambda_1$$
.
 $h(G)$ large \rightarrow well connected $\rightarrow \lambda_1 - \lambda_2$ big.
Disconnected $\lambda_2 = \lambda_1$.
 $h(G)$ small $\rightarrow \lambda_1 - \lambda_2$ small.

Small cut \rightarrow small eigenvalue gap.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$

Small cut ightarrow small eigenvalue gap. $rac{\mu}{2} \leq h(G)$ Cut *S*.

Small cut \rightarrow small eigenvalue gap.

 $\frac{\mu}{2} \leq h(G)$

Cut *S*. $i \in S$: $v_i = |V| - |S|$, $i \in \overline{S}v_i = -|S|$.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}$.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}$. $v^T v$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp 1$. $v^T v = |S|(|V| - |S|)^2$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}$. $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|)$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}$. $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|)$.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut *S*. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp 1$. $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|)$. $v^T Mv$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T M v = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut S. $i \in S : v_i = |V| - |S|, i \in \overline{S}v_i = -|S|$. $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

$$v^{T}Mv = v^{T}v - (2|E(S,S)||S|(|V| - |S|))$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut $S. \ i \in S : v_i = |V| - |S|, \ i \in \overline{S}v_i = -|S|.$ $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

$$v^T M v = v^T v - (2|E(S,S)||S|(|V| - |S|))$$
$$\frac{v^T M v}{v^T v} = 1 - \frac{2|E(S,\overline{S})|}{|S|}$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut $S. \ i \in S : v_i = |V| - |S|, \ i \in \overline{S}v_i = -|S|.$ $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

$$\begin{aligned} v^T M v &= v^T v - (2|E(S,S)||S|(|V| - |S|) \\ \frac{v^T M v}{v^T v} &= 1 - \frac{2|E(S,\overline{S})|}{|S|} \\ \lambda_2 &\geq 1 - 2h(S) \end{aligned}$$

Easy side of Cheeger.

Small cut \rightarrow small eigenvalue gap. $\frac{\mu}{2} \leq h(G)$ Cut $S. \ i \in S : v_i = |V| - |S|, \ i \in \overline{S}v_i = -|S|.$ $\sum_i v_i = |S|(|V| - |S|) - |S|(|V| - |S|) = 0$ $\rightarrow v \perp \mathbf{1}.$ $v^T v = |S|(|V| - |S|)^2 + |S|^2(|V| - |S|) = |S|(|V| - |S|)(|V|).$ $v^T Mv = \frac{1}{d} \sum_{e=(i,j)} x_i x_j.$

Same side endpoints: like $v^T v$.

Different side endpoints: -|S|(|V| - |S|)

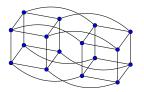
$$v^T M v = v^T v - (2|E(S,S)||S|(|V| - |S|)$$
$$\frac{v^T M v}{v^T v} = 1 - \frac{2|E(S,\overline{S})|}{|S|}$$
$$\lambda_2 \ge 1 - 2h(S) \to h(G) \ge \frac{1 - \lambda_2}{2}$$

Hypercube $V = \{0,1\}^d$

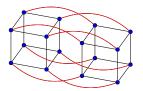
Hypercube
$$V = \{0,1\}^d$$
 $(x,y) \in E$

Hypercube $V = \{0,1\}^d$ $(x,y) \in E$ when x and y differ in one bit.

Hypercube $V = \{0,1\}^d$ $(x,y) \in E$ when x and y differ in one bit. $|V| = 2^d$

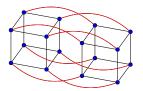


Good cuts?



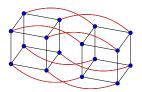
Good cuts?

Coordinate cut: *d* of them.



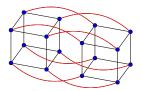
Good cuts?

Coordinate cut: *d* of them. Edge expansion:



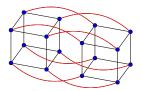
Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}}$



Good cuts?

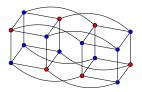
Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$



Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$.

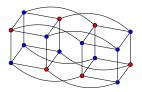


Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$.

Vertex cut size:

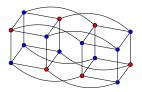


Good cuts?

Coordinate cut: d of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$.

Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's.



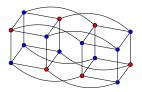
Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$.

Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's.

$$pprox rac{2^d}{\sqrt{d}}$$



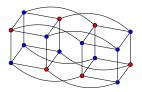
Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$.

Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's.

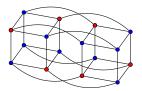
 $\approx \frac{2^d}{\sqrt{d}}$ Vertex expansion: $\approx \frac{1}{\sqrt{d}}$.



Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$. Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's. $\approx \frac{2^d}{\sqrt{d}}$ Vertex expansion: $\approx \frac{1}{\sqrt{d}}$. Edge expansion: d/2 edges to next level. $\approx \frac{1}{2\sqrt{d}}$



Good cuts?

Coordinate cut: *d* of them. Edge expansion: $\frac{2^{d-1}}{d2^{d-1}} = \frac{1}{d}$

Ball cut: All nodes within d/2 of node, say $00\cdots 0$. Vertex cut size: $\binom{d}{d/2}$ bit strings with d/2 1's. $\approx \frac{2^d}{\sqrt{d}}$ Vertex expansion: $\approx \frac{1}{\sqrt{d}}$. Edge expansion: d/2 edges to next level. $\approx \frac{1}{2\sqrt{d}}$ Worse by a factor of \sqrt{d}

Anyone see any symmetry?

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. *d* Eigenvectors.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. *d* Eigenvectors. Why orthogonal?

Next eigenvectors?

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. *d* Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. *d* Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Eigenvalue:

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Eigenvalue: 1 - 4/d.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Eigenvalue: 1 - 4/d. $\binom{d}{2}$ eigenvectors.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Eigenvalue: 1 - 4/d. $\binom{d}{2}$ eigenvectors.

Eigenvalues: 1 - 2k/d.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

 $(Mv)_i = (1 - 2/d)v_i.$

Eigenvalue 1 - 2/d. d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ± 1

Eigenvalue: 1 - 4/d. $\binom{d}{2}$ eigenvectors.

Eigenvalues: 1 - 2k/d. $\binom{d}{k}$ eigenvectors.

Back to Cheeger.

Coordinate Cuts:

Coordinate Cuts: Eigenvalue 1 - 2/d.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

```
Coordinate Cuts: Eigenvalue 1 - 2/d. d Eigenvectors.
```

 $\frac{\mu}{2}$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2}$$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$\tfrac{\mu}{2} = \tfrac{1-\lambda_2}{2} \le h(G)$$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)}$$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d}$

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Find coordinate cut?

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Find coordinate cut?

Eigenvector v maps to line.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Find coordinate cut?

Eigenvector *v* maps to line. Cut along line.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Find coordinate cut?

Eigenvector *v* maps to line. Cut along line.

Eigenvector algorithm yields some linear combination of coordinate cut.

Coordinate Cuts: Eigenvalue 1 - 2/d. *d* Eigenvectors.

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

For hypercube: $h(G) = \frac{1}{d} \lambda_1 - \lambda_2 = 2/d$. Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose "names" in hypercube, find coordinate cut?

Find coordinate cut?

Eigenvector *v* maps to line. Cut along line.

Eigenvector algorithm yields some linear combination of coordinate cut.

Find coordinate cut?

Tight example for Other side of Cheeger?

 $\frac{\mu}{2}$

$$\frac{\mu}{2} = \frac{1-\lambda_2}{2}$$

$$\frac{\mu}{2}=\frac{1-\lambda_2}{2}\leq h(G)$$

$$rac{\mu}{2} = rac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)}$$

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on *n* nodes.

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on *n* nodes.

Will show other side of Cheeger is tight.

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half.

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half. $|S| = n/2, |E(S,\overline{S})| = 2$

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half. $|S| = n/2, |E(S, \overline{S})| = 2$ $\rightarrow h(G) = \frac{2}{n}.$

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half. $|S| = n/2, |E(S, \overline{S})| = 2$ $\rightarrow h(G) = \frac{2}{n}.$

Show eigenvalue gap $\mu \leq \frac{1}{n^2}$.

Tight example for Other side of Cheeger?

$$rac{\mu}{2}=rac{1-\lambda_2}{2}\leq h(G)\leq \sqrt{2(1-\lambda_2)}=\sqrt{2\mu}$$

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half. $|S| = n/2, |E(S,\overline{S})| = 2$ $\rightarrow h(G) = \frac{2}{n}.$

Show eigenvalue gap $\mu \leq \frac{1}{n^2}$.

Find $x \perp \mathbf{1}$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with *M*.

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with *M*.

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with *M*.

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

 $\rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2}))$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with *M*.

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$\rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2})) \quad \rightarrow \lambda_2 \ge 1 - O(\frac{1}{n^2})$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2})) & \rightarrow \lambda_2 \geq 1 - O(\frac{1}{n^2}) \\ \mu = \lambda_1 - \lambda_2 = O(\frac{1}{n^2}) \\ h(G) = \frac{2}{n} = \Theta(\sqrt{\mu}) \\ \frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} \end{array}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2})) \quad \rightarrow \lambda_2 \geq 1 - O(\frac{1}{n^2}) \\ \mu = \lambda_1 - \lambda_2 = O(\frac{1}{n^2}) \\ h(G) = \frac{2}{n} = \Theta(\sqrt{\mu}) \\ \frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \end{array}$$

$$x_i = \begin{cases} i - n/4 & \text{if } i \le n/2\\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with *M*.

$$(Mx)_{i} = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_{i} & \text{otherwise} \end{cases}$$

)

Tight example for upper bound for Cheeger.

Eigenvalues: $\cos \frac{2\pi k}{n}$.

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$ $(Mx)_i$

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right)$

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi k i}{n}\right)$

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi k i}{n}\right)$
Eigenvalue: $\cos \frac{2\pi k}{n}$.

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi ki}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k(i+1)}{n}\right) + \cos \left(\frac{2\pi k(i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi ki}{n}\right)$
Eigenvalue: $\cos \frac{2\pi k}{n}$.
Eigenvalues:

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi k i}{n}\right)$
Eigenvalue: $\cos \frac{2\pi k}{n}$.

Eigenvalues:

vibration modes of system.

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi k i}{n}\right)$
Eigenvalue: $\cos \frac{2\pi k}{n}$.

Eigenvalues:

vibration modes of system. Fourier basis.

Eigenvalues:
$$\cos \frac{2\pi k}{n}$$
.
 $x_i = \cos \frac{2\pi k i}{n}$
 $(Mx)_i = \cos \left(\frac{2\pi k (i+1)}{n}\right) + \cos \left(\frac{2\pi k (i-1)}{n}\right) = 2\cos \left(\frac{2\pi k}{n}\right) \cos \left(\frac{2\pi k i}{n}\right)$
Eigenvalue: $\cos \frac{2\pi k}{n}$.

Eigenvalues:

vibration modes of system. Fourier basis.

p - probability distribution.

p - probability distribution.

Probability distrubtion after choose a random neighbor.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

 $M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots$

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

$$M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots$$

 $\lambda_1-\lambda_2$ - rate of convergence.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

 $M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots$

 $\lambda_1 - \lambda_2$ - rate of convergence.

 $\Omega(n^2)$ steps to get close to uniform.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

 $M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots$

 $\lambda_1 - \lambda_2$ - rate of convergence.

 $\Omega(n^2)$ steps to get close to uniform.

Start at node 0, probability distribution, $[1,0,0,\cdots,0]$. Takes $\Omega(n^2)$ to get *n* steps away.

p - probability distribution.

Probability distrubtion after choose a random neighbor. *Mp*.

Converge to uniform distribution.

Power method: $M^t x$ goes to highest eigenvector.

 $M^t x = a_1 \lambda_1^t v_1 + a_2 \lambda_2 v_2 + \cdots$

 $\lambda_1 - \lambda_2$ - rate of convergence.

 $\Omega(n^2)$ steps to get close to uniform.

Start at node 0, probability distribution, $[1,0,0,\cdots,0]$. Takes $\Omega(n^2)$ to get *n* steps away.

Recall druken sailor.

Sum up.

See you on Tuesday.