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Path Routing.

Given G = (V ,E), (s1, t1), . . . ,(sk , tk ), find a set of k paths
connecting si and ti and minimize max load on any edge.
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Toll problem.

Given G = (V ,E), (s1, t1), . . . ,(sk , tk ), find a set of k paths assign one
unit of “toll” to edges to maximize total toll for connecting pairs.
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11 on each of 11 edges.

Total toll: 3
11 + 3

11 + 3
11 = 9

11

Can we do better?

Assign 1/2 on these two edges.
Total toll: 1

2 + 1
2 + 1

2 = 3
2
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Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
maxe c(e)≥ ∑e c(e)d(e)
Total length is total congestion: ∑e c(e)d(e) = ∑i d(pi)

Each path, pi , in routing has length d(pi)≥ d(si , ti).

max
e

c(e)≥ ∑
e

c(e)d(e) =∑
i

d(pi)≥∑
i

d(si , ti).

A toll solution is lower bound on any routing solution.
Any routing solution is an upper bound on a toll solution.
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Algorithm.

Assign tolls.

How to route? Shortest paths!
Assign routing.
How to assign tolls? Higher tolls on congested edges.
Toll: d(e) ∝ 2c(e).

Equilibrium:
The shortest path routing has has d(e) ∝ 2c(e).

The routing does not change, the tolls do not change.
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How good is equilibrium?
Path is routed along shortest path and d(e) ∝ 2c(e).

For e with c(e)≤ cmax −2logm; 2c(e) ≤ 2cmax−2logm = 2cmax

m2 .

copt ≥ ∑
i

d(si , ti) = ∑
e

d(e)c(e)

= ∑
e

2c(e)

∑e′ 2c(e′) c(e) =
∑e 2c(e)c(e)

∑e 2c(e)
Let ct = cmax −2logm.

≥
∑e:c(e)>ct 2c(e)c(e)

∑e:c(e)>ct 2c(e) + ∑e:c(e)≤ct 2c(e)

≥
(ct )∑e:c(e)>ct 2c(e)

(1 + 1
m )∑e:c(e)>ct 2c(e)

≥ (ct )

1 + 1
m

=
cmax−2logm

(1 + 1
m )

Or cmax ≤ (1 + 1
m )copt + 2logm.

(Almost) within 2 logm of optimal!
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e

d(e)c(e)

= ∑
e

2c(e)

∑e′ 2c(e′) c(e) =
∑e 2c(e)c(e)

∑e 2c(e)
Let ct = cmax −2logm.

≥
∑e:c(e)>ct 2c(e)c(e)

∑e:c(e)>ct 2c(e) + ∑e:c(e)≤ct 2c(e)

≥
(ct )∑e:c(e)>ct 2c(e)

(1 + 1
m )∑e:c(e)>ct 2c(e)

≥ (ct )

1 + 1
m

=
cmax−2logm

(1 + 1
m )

Or cmax ≤ (1 + 1
m )copt + 2logm.

(Almost) within 2 logm of optimal!



The end: sort of.

Got to here in class. Feel free to continue reading.



Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length
within a factor of 3 of the shortest path and d(e) ∝ 2c(e).

Lose a factor of three at the beginning.
copt ≥ ∑i d(si , ti)≥ 1

3 ∑e d(pi).

We obtain cmax = 3(1 + 1
m )copt + 2logm.

This is worse!
What do we gain?
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An algorithm!

Algorithm: reroute paths that are off by a factor of three.
(Note: d(e) recomputed every rerouting.)

si ti

p: w(p) = X

=⇒ w ′(p) = X/2−1 for c(e)

+1 for c(e)

p′: w(p′)≤ X/3

=⇒ w ′(p′)≤ 2X/3

Potential function: ∑e w(e), w(e) = 2c(e)

Moving path:
Divides w(e) along long path (with w(p) of X ) by two.
Multiplies w(e) along shorter (w(p)≤ X/3) path by two.

−X
2 + X

3 =−X
6 .

Potential function decreases. =⇒ termination and existence.
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Tuning...

Replace d(e) = (1 + ε)c(e).

Replace factor of 3 by (1 + 2ε)

cmax ≤ (1 + 2ε)copt + 2logm/ε.. (Roughly)

Fractional paths?
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Wrap up.

Dueling players:

Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!



Wrap up.

Dueling players:
Toll player raises tolls on congested edges.

Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!



Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!



Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!



Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),

and helpful (mysterious?)!



Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)
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Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change
strategy.
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Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.
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Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.
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Mixed Strategies.

R P S

.33 .33 .33

R

.33

0 1 -1
P

.33

-1 0 1
S

.33

1 -1 0
How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over
strategies.

Pure strategies: Each player plays single strategy.
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Payoffs: Equilibrium.
R P S

.33 .33 .33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs?

Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X ] = 0.1

1Remember zero sum games have one payoff.
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Equilibrium
R P S

.33 .33 .33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy?

Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!
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Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for
row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
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Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:

Row: (0, 1
3 , 1

6 , 1
2 ). Column: ( 1

3 , 1
2 , 1

6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!
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3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0

= − 1
6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1

= − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 )

=−1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies!

Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one?

Change payoff for other guy!



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:
Row: (0, 1

3 , 1
6 , 1

2 ). Column: ( 1
3 , 1

2 , 1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!



Lecture 2 ended here..and Lecture 3 reviewed a few of the
previous slides and continued into lecture 3 notes.



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)
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Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At )(j) ·x = (x∗)tAy∗.

2A(i) is i th row.



Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At )(j) ·x = (x∗)tAy∗.

2A(i) is i th row.



Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At )(j) ·x = (x∗)tAy∗.

2A(i) is i th row.



Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?
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Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!
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Proof of Equilibrium.

Later. Let’s see some examples.



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.
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Green with prob. 1/6.
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Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.

Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!
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Toll/Congestion
Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponentially (squared) number of paths for route player.
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Finding Equilibrium.

...see you Tuesday.


