CS270: Lecture 2.

Admin:

Check Piazza. There is a poll on bspace. Today:

- Finish Path Routing.
- Games

Toll is lower bound on Path Routing.

From before:

Max bigger than minimum weighted average:

 $\max_e c(e) \ge \sum_e c(e)d(e)$

Total length is total congestion: $\sum_{e} c(e)d(e) = \sum_{i} d(p_i)$ Each path, p_i , in routing has length $d(p_i) > d(s_i, t_i)$.

$$\max_{e} c(e) \geq \sum_{e} c(e) d(e) = \sum_{i} d(p_i) \geq \sum_{i} d(s_i, t_i).$$

A toll solution is lower bound on any routing solution. Any routing solution is an upper bound on a toll solution.

Path Routing.

Given G = (V, E), (s_1, t_1) ,..., (s_k, t_k) , find a set of k paths connecting s_i and t_i and minimize max load on any edge.

Algorithm.

Assign tolls.

How to route? Shortest paths!

Assign routing.

How to assign tolls? Higher tolls on congested edges.

Toll: $d(e) \propto 2^{c(e)}$.

Equilibrium:

The shortest path routing has $\underline{has} d(e) \propto 2^{c(e)}$.

The routing does not change, the tolls do not change.

Toll problem.

Given G = (V, E), (s_1, t_1) ,..., (s_k, t_k) , find a set of k paths assign one unit of "toll" to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges. Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$

Can we do better?

Assign 1/2 on these two edges. Total toll: $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$

How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$. For e with $c(e) \leq c_{max} - 2\log m$; $2^{c(e)} \leq 2^{c_{max}-2\log m} = \frac{2^{c_{max}}}{2^{c_{max}}}$

$$C_{opt} \geq \sum_{i} d(s_{i}, t_{i}) = \sum_{e} d(e)c(e)$$

$$= \sum_{e} \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_{e} 2^{c(e)} c(e)}{\sum_{e} 2^{c(e)}} \text{ Let } c_{t} = c_{max} - 2\log m.$$

$$\geq \frac{\sum_{e: c(e) > c_{i}} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_{i}} 2^{c(e)} + \sum_{e: c(e) \le c_{i}} 2^{c(e)}}$$

$$\geq \frac{(c_{t}) \sum_{e: c(e) > c_{i}} 2^{c(e)}}{(1 + \frac{1}{m}) \sum_{e: c(e) > c_{i}} 2^{c(e)}}$$

$$\geq \frac{(c_{t})}{1 + \frac{1}{m}} = \frac{c_{max} - 2\log m}{(1 + \frac{1}{m})}$$

Or $c_{max} \le (1 + \frac{1}{m})c_{opt} + 2\log m$. (Almost) within $2\log m$ of optimal!

The end: sort of.

Got to here in class. Feel free to continue reading.

Tuning...

Replace $d(e)=(1+\varepsilon)^{c(e)}$. Replace factor of 3 by $(1+2\varepsilon)$ $c_{max} \leq (1+2\varepsilon)c_{opt} + 2\log m/\varepsilon$.. (Roughly) Fractional paths?

Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$.

Lose a factor of three at the beginning. $c_{opt} \geq \sum_i d(s_i,t_i) \geq \frac{1}{3} \sum_{\mathcal{E}} d(p_i)$. We obtain $c_{max} = \frac{3}{3} (1 + \frac{1}{m}) c_{opt} + 2 \log m$. This is worse! What do we gain?

Wrap up.

Dueling players:

Toll player raises tolls on congested edges. Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is "necessary" (natural), and helpful (mysterious?)!

An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: d(e) recomputed every rerouting.)

Potential function: $\sum_{e} w(e)$, $w(e) = 2^{c(e)}$

Moving path:

Divides w(e) along long path (with w(p) of X) by two. Multiplies w(e) along shorter ($w(p) \le X/3$) path by two.

$$-\frac{X}{2} + \frac{X}{3} = -\frac{X}{6}$$
.

Potential function decreases. \implies termination and existence.

Strategic Games.

N players.

Each player has strategy set. $\{S_1, ..., S_N\}$.

Vector valued payoff function: $u(s_1,...,s_n)$ (e.g., $\in \Re^N$).

Example:

2 players

Player 1: { Defect, Cooperate }.

Player 2: { **D**efect, **C**ooperate }.

Payoff:

Famous because?

	С	D
С	(3,3)	(0,5)
_	(5,0)	(.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Mixed Strategies.

		R	Р	S
		.33	.33	.33
R	.33	0	1	-1
Ρ	.33	-1	0	1
S	.33	1	-1	0

How do you play?

Player 1: play each strategy with equal probability. Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Digression..

What situations?

Prisoner's dilemma:

Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.

Companies compete, don't cooperate.

No Monopoly:

E.G., OPEC, Airlines, .

Should defect.

Why don't they?

Free market economics ...not so much?

More sophisticated models ,e.g, iterated dominance, coalitions, complexity..

Lots of interesting Game Theory!

This class(today): simpler version.

Payoffs: Equilibrium.

		R	Р	S
		.33	.33	.33
R	.33	0	1	-1
Ρ	.33	-1	0	1
S	.33	1	-1	0

Payoffs? Can't just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$$

Each player chooses independently:

$$Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.$$

$$E[X] = 0.1$$

Two Person Zero Sum Games

2 players.

Each player has strategy set:

m strategies for player 1 n strategies for player 2

Payoff function: u(i,j) = (-a,a) (or just a).

"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *m* by *n* matrix: *A*.

Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.

	R	Р	S
R	0	1	-1
Ρ	-1	0	1
S	1	-1	0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Equilibrium

		R	Р	S
		.33	.33	.33
R	.33	0	- 1	-1
Р	.33	-1	0	1
S	.33	1	-1	0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$. Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$. Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. ⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$$E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j]) X(i,j) = \sum_{i} Pr[i] (\sum_{j} Pr[j] \times X(i,j))$$

Mixed strategy can't be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

¹Remember zero sum games have one payoff.

Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.

Payoffs.

ĺ	R	Р	S	Ε
R	0	1	-1	1
Ρ	-1	0	1	1
S	1	-1	0	1
Ε	-1	-1	-1	0
_		٠ ـ	'	

Equilibrium? (E,E). Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4. Payoff Matrix.

$$A = \left[\begin{array}{rrrr} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{array} \right]$$

Lecture 2 ended here..and Lecture 3 reviewed a few of the previous slides and continued into lecture 3 notes.

Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!) Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

$$A = \left[\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right]$$

Note: column knows row cheats.

Why play?

Row is column's advisor.

... boss.

Two person zero sum games.

 $m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, ..., x_m)$. Column mixed strategy: $y = (y_1, ..., y_n)$.

Payoff for strategy pair (x, y):

$$p(x,y) = x^t A y$$

That is.

$$\sum_{i} x_{i} \left(\sum_{j} a_{i,j} y_{j} \right) = \sum_{j} \left(\sum_{i} x_{i} a_{i,j} \right) y_{j}.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*) ?

$$(x^*)^t A y^* = \max_y (x^*)^t A y = \min_x x^t A y^*.$$

(No better column strategy, no better row strategy.)

Equilibrium: play the boss...

$$A = \left[\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right]$$

Equilibrium:

Row: $(0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})$. Column: $(\frac{1}{3}, \frac{1}{2}, \frac{1}{6})$.

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1:
$$\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}$$

Strategy 2: $\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}$
Strategy 3: $\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}$
Strategy 4: $\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}$
Payoff is $0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}$

Column player: every column payoff is $-\frac{1}{6}$.

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!

Equilibrium.

Equilibrium pair: (x^*, y^*) ?

$$p(x,y) = (x^*)^t A y^* = \max_y (x^*)^t A y = \min_x x^t A y^*.$$

(No better column strategy, no better row strategy.)

No row is better:

$$\min_{i} A^{(i)} \cdot y = (x^*)^t A y^*.$$
²

No column is better:

$$\max_{j}(A^{t})^{(j)}\cdot x=(x^{*})^{t}Ay^{*}.$$

 $^{{}^{2}}A^{(i)}$ is *i*th row.

Best Response

Column goes first:

Find y, where best row is not too low..

$$R = \max_{y} \min_{x} (x^{t}Ay).$$

Note: x can be (0,0,...,1,...0).

Example: Roshambo. Value of *R*?

Row goes first:

Find x, where best column is not high.

$$C = \min_{x} \max_{y} (x^{t} A y).$$

Agin: y of form $(0,0,\ldots,1,\ldots 0)$. Example: Roshambo. Value of C?

An "asymptotic" game.

"Catch me."

Given: G = (V, E). Given $a, b \in V$.

Row ("Catch me"): choose path from a to b.

Column("Catcher"): choose edge.

Row pays if column chooses edge on path.

Matrix:

row for each path: p column for each edge: e A[p, e] = 1 if $e \in p$.

Duality.

$$R = \max_{y} \min_{x} (x^{t}Ay).$$

$$C = \min_{x} \max_{y} (x^{t}Ay).$$

Weak Duality: $R \le C$. **Proof:** Better to go second.

At Equilibrium (x^*, y^*) , payoff v: row payoffs (Ay^*) all $\geq v \implies R \geq v$. column payoffs $((x^*)^t A)$ all $\leq v \implies v \geq C$. $\implies R > C$

Equilibrium $\implies R = C!$

Strong Duality: There is an equilibrium point! and R = C!

Doesn't matter who plays first!

v1 (v3) (v6) (v4) (v6) (v5)

Catchme:

Use Blue Path Flue with preb. 1/8. Green with preb. 1/8. Pink with prob. 1/2.

Catcher:

Caughti sometimes.
With probability 1/2.

Proof of Equilibrium.

Later. Let's see some examples.

Example.

Row solution: $Pr[p_1] = 1/2$, $Pr[p_2] = 1/3$, $Pr[p_3] = 1/6$. Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Eage solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher's distribution.)
Catcher: raise toll on most congested edge.
(Knows catch me's distribution.)

Defense:

Where should "catcher" play to catch any path? a cut. **Minimum cut** allows the maximum toll on any edge!

What should "catch me" do to avoid catcher? minimize maximum load on any edge!

Max-Flow Problem.

Note: exponentially many strategies for "catch me"!

Toll/Congestion

Given: G = (V, E). Given $(s_1, t_1) \dots (s_k, t_k)$.

Row: choose routing of all paths.

Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:

row for each routing: r column for each edge: e

A[r,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths. Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max loaded on any edge.

Again: exponentially (squared) number of paths for route player.

Summary...

You should now know about

Games

Nash Equilibrium Pure Strategies

Zero Sum Two Person Games

Mixed Strategies. Checking Equilibrium.

Best Response.

Statement of Duality Theorem.

Finding Equilibrium.

...see you Tuesday.