
Today

Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj |2 ≤ |yi −yj |2 ≤ (1 + ε)

√
k
d
|xi −xj |2

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”

Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj |2 ≤ |yi −yj |2 ≤ (1 + ε)

√
k
d
|xi −xj |2

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”

Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj |2 ≤ |yi −yj |2 ≤ (1 + ε)

√
k
d
|xi −xj |2

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”

Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj |2 ≤ |yi −yj |2 ≤ (1 + ε)

√
k
d
|xi −xj |2

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”

Random subspace.

Method 1:

Pick unit v1 ,
v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1

,
v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,

. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .

vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:

Choose k vectors v1, . . . ,vk
Gram Schmidt orthonormalization of k×d matrix where rows are vi .

remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .

remove projection onto previous subspace.

Random subspace.

Method 1:
Pick unit v1 ,

v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi

= 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉

= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉

= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉

= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉

Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi

and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1.

Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d .

Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.

k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→

≈ (1± ε)
√

k
d with decent probability.

Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d] z2
i] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k] z2
i] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.

Concentration Bounds.

z is uniformly random unit vector.

Random point on the unit sphere. E [∑i∈[k] z2
i] = k

d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if

z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.

Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps

≤ S.A. of sphere of radius
√

1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2

≈ e−t2
2d

Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d

Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. E [∑i∈[k] z2

i] = k
d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i]] is small.

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length?

z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣

> ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]

≤ e−ε2k = e−c logn = 1
nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k

= e−c logn = 1
nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.

Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.

Projection fails to preserve |xi −xj |
with probability ≤ 1

nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs

plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound

→ prob any pair fails to be preserved with ≤ 1
nc−2 .

Many coordinates.
Proved Pr[any z2

i >
√

2logdE [z2
i]] is small.

Length? z = z2
1 + z2

2 + · · ·z2
k .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣> t]≤ e−t2d

Substituting t = ε

√
k
d , k = c logn

ε2 .

Pr[
∣∣∣∣√z2

1 + z2
2 + · · ·+ z2

k −
√

k
d

∣∣∣∣ > ε

√
k
d]≤ e−ε2k = e−c logn = 1

nc

Johnson-Lindenstraus: For n points, x1, . . . ,xn, all distances

preserved to within 1± ε under
√

k
d -scaled projection above.

View one pair xi −xj as vector.
Scale to unit.
Projection fails to preserve |xi −xj |

with probability ≤ 1
nc

Scaled vector length also preserved.

≤ n2 pairs plus union bound
→ prob any pair fails to be preserved with ≤ 1

nc−2 .

Locality Preserving Hashing

Find nearby points in high dimensional space.

Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.

Not quite a solution. Why?
Close to grid boundary.

Find close points to x :
Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution.

Why?
Close to grid boundary.

Find close points to x :
Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.

Find close points to x :
Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function h(·) s.t. h(xi) = h(xj) if d(xi ,xj)≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Implementing Johnson-Lindenstraus

Random vectors

have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.

Ci = 1√
d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] =

E [1
d ∑i ,j bibjzizj] = 1

d ∑i ,j E [bibj]zizj = 1
d ∑i z2

i = 1
d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj]

= 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i

= 1
d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i] = E [1

d ∑i ,j bibjzizj] = 1
d ∑i ,j E [bibj]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i] = k

d

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?

(
k

d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)

≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2

≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):

Density ∝ e−t2
/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d ,

t =
ε

k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.”

Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j)≤
(

k
d2

)
2(∑i z2

i)2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.

Sum up

Have a good break!

