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Johnson-Lindenstrass

Points: x1, . . . ,xn ∈ Rd .

Random k = c logn
ε2 dimensional subspace.

Claim: with probability 1− 1
nc−2 ,

(1− ε)

√
k
d
|xi −xj |2 ≤ |yi −yj |2 ≤ (1 + ε)

√
k
d
|xi −xj |2

“Projecting and scaling by
√

d
k preserves all pairwise distances w/in

factor of 1± ε.”
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Random subspace.

Method 1:

Pick unit v1 ,
v2 orthogonal to v1,
. . .
vk orthogonal to previous vectors...

Method 2:
Choose k vectors v1, . . . ,vk

Gram Schmidt orthonormalization of k×d matrix where rows are vi .
remove projection onto previous subspace.
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Projections.

Project x into subspace spanned by v1,v2, · · · ,vk .

y1 = x ·v1,y2 = x ·,v2, · · · ,yk = x ·vk

Projection: (y1, . . . ,yk ).

Have: Arbitrary vector, random k -dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v1, . . . ,vk onto e1, . . . ,ek

yi = 〈vi |x〉= 〈Uvi |Ux〉= 〈ei |Ux〉= 〈ei |z〉
Inverse of U maps ei to random vector vi and U−1 = U.

z = Ux is uniformly distributed on d sphere for unit x ∈ Rd .

yi is i th coordinate of random vector z.
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Expected value of yi .

Random projection: first k coordinates of random unit vector, zi .

E [∑i∈[d ] z2
i ] = 1. Linearity of Expectation.

By symmetry, each zi is identically distributed.

E [∑i∈[k ] z2
i ] = k

d . Linearity of Expectation.

Expected length is
√

k
d .

Johnson-Lindenstrass: close to expectation.
k is large enough→
≈ (1± ε)

√
k
d with decent probability.
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Concentration Bounds.

z is uniformly random unit vector.

Random point on the unit sphere. E [∑i∈[k ] z2
i ] = k

d .

Claim: Pr[|z1|> t√
d

]≤ e−t2/2

Sphere view: surface “far” from equator defined by e1.

∆

|z1| ≥∆ if
z ≥∆ from equator of sphere.
Point on “∆-spherical cap”.

Area of caps
≤ S.A. of sphere of radius

√
1−∆2

∝ rd =
(
1−∆2)d/2

∝

(
1− t2

d

)d/2
≈ e−t2

2d
Constant of ∝ is unit sphere area.

Pr[any z2
i >

√
2logdE [z2

i ]] is small.
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Locality Preserving Hashing

Find nearby points in high dimensional space.

Points could be images!

Hash function h(·) s.t. h(xi ) = h(xj ) if d(xi ,xj )≤ δ .

Low dimensions: grid cells give
√

d-approximation.
Not quite a solution. Why?

Close to grid boundary.
Find close points to x :

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.
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Implementing Johnson-Lindenstraus

Random vectors

have many bits

Use random bit vectors: {−1,+1}d instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.
Ci = 1√

d ∑i bizi

E [C2
i ] = E [ 1

d ∑i ,j bibjzizj ] = 1
d ∑i ,j E [bibj ]zizj = 1

d ∑i z2
i = 1

d

E [∑i C2
i ] = k

d
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Binary Johnson-Lindenstrass

Project onto [−1,+1] vectors.

E [C] = E [∑i C2
i ] = k

d

Concentration?

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Choose k = c logn
ε2 .

→ failure probability ≤ 1/nc .
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Analysis Idea.

Pr
[
|C− k

d
| ≥ ε

k
d

]
≤ e−ε2k

Variance of C2
i ?
(

k
d2

)
(∑i zi

4 + 4∑i ,j z2
i z2

j )≤
(

k
d2

)
2(∑i z2

i )2 ≤ 2k
d2 .

Roughly normal (gaussian):
Density ∝ e−t2

/2 for t std deviations away.

So, assuming normality

σ =
√

k
d , t =

ε
k
d√
2k
d

= ε
√

k/
√

2.

Probability of failure roughly ≤ e−t2/2

→ eε2k/4

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.
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Sum up



Have a good break!


