Points: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$.
Random $k=\frac{c \log n}{\varepsilon^{2}}$ dimensional subspace.
Claim: with probability $1-\frac{1}{n^{c-2}}$,

$$
(1-\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right|^{2} \leq\left|y_{i}-y_{j}\right|^{2} \leq(1+\varepsilon) \sqrt{\frac{k}{d}}\left|x_{i}-x_{j}\right|^{2}
$$

"Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of $1 \pm \varepsilon$."

Expected value of y_{i}.

Random projection: first k coordinates of random unit vector, z_{i}.
$E\left[\sum_{i \in[d]} z_{i}^{2}\right]=1$. Linearity of Expectation.
By symmetry, each z_{i} is identically distributed.
$E\left[\sum_{i \in[k]} z_{i}^{2}\right]=\frac{k}{d}$. Linearity of Expectation.
Expected length is $\sqrt{\frac{k}{d}}$.
Johnson-Lindenstrass: close to expectation.
k is large enough \rightarrow
$\approx(1 \pm \varepsilon) \sqrt{\frac{k}{d}}$ with decent probability.

Random subspace.

Method 1:

Pick unit v_{1},
v_{2} orthogonal to v_{1},
v_{k} orthogonal to previous vectors...

Method 2:

Choose k vectors v_{1}, \ldots, v_{k}
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_{i}. remove projection onto previous subspace.

Projections.

Project x into subspace spanned by $v_{1}, v_{2}, \cdots, v_{k}$.
$y_{1}=x \cdot v_{1}, y_{2}=x \cdot, v_{2}, \cdots, y_{k}=x \cdot v_{k}$
Projection: $\left(y_{1}, \ldots, y_{k}\right)$.
Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_{1}, \ldots, v_{k} onto e_{1}, \ldots, e_{k}
$y_{i}=\left\langle v_{i} \mid x\right\rangle=\left\langle U v_{i} \mid U x\right\rangle=\left\langle e_{i} \mid U x\right\rangle=\left\langle e_{i} \mid z\right\rangle$
Inverse of U maps e_{i} to random vector v_{i} and $U^{-1}=U$.
$z=U x$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^{d}$. y_{i} is i th coordinate of random vector z.

Concentration Bounds.

```
z is uniformly random unit vector.
    Random point on the unit sphere. }E[\mp@subsup{\sum}{i\in[k]}{}\mp@subsup{z}{i}{2}]=\frac{k}{d}\mathrm{ .
```

Claim: $\operatorname{Pr}\left[\left|z_{1}\right|>\frac{t}{\sqrt{d}}\right] \leq e^{-t^{2} / 2}$
Sphere view: surface "far" from equator defined by e_{1}.

$$
\left|z_{1}\right| \geq \Delta \text { if }
$$

$z \geq \Delta$ from equator of sphere.
Point on " Δ-spherical cap".

$$
\begin{aligned}
& \text { Area of caps } \\
& \leq \text { S.A. of sphere of radius } \sqrt{1-\Delta^{2}} \\
& \propto r^{d}=\left(1-\Delta^{2}\right)^{d / 2} \\
& \propto\left(1-\frac{t^{2}}{d}\right)^{d / 2} \approx e^{-t^{2}} 2 d
\end{aligned}
$$

$$
\text { Constant of } \propto \text { is unit sphere area. }
$$

$\operatorname{Pr}\left[\right.$ any $z_{i}^{2}>\sqrt{\left.2 \log d E\left[z_{i}^{2}\right]\right] \text { is small. } . \text {. } n \text {. }}$

Many coordinates
Proved $\operatorname{Pr}\left[\right.$ any $\left.z_{i}^{2}>\sqrt{2 \log d} E\left[z_{i}^{2}\right]\right]$ is small.
Length? $z=z_{1}^{2}+z_{2}^{2}+\cdots z_{k}^{2}$.
$\operatorname{Pr}\left|\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>t\right] \leq e^{-t^{2} d}$
Substituting $t=\varepsilon \sqrt{\frac{k}{d}}, k=\frac{c \log n}{\varepsilon^{2}}$.
$\operatorname{Pr}\left[\left|\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}}-\sqrt{\frac{k}{d}}\right|>\varepsilon \sqrt{\frac{k}{d}}\right] \leq e^{-\varepsilon^{2} k}=e^{-\operatorname{cog} n}=\frac{1}{n^{c}}$
Johnson-Lindenstraus: For n points, x_{1}, \ldots, x_{n}, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.
View one pair $x_{i}-x_{j}$ as vector.
Scale to unit.
Projection fails to preserve $\left|x_{i}-x_{j}\right|$
with probability $\leq \frac{1}{n^{c}}$
Scaled vector length also preserved
$\leq n^{2}$ pairs plus union bound
\rightarrow prob any pair fails to be preserved with $\leq \frac{1}{n^{c-2}}$.
Binary Johnson-Lindenstrass

Project onto $[-1,+1]$ vectors.
$E[C]=E\left[\sum_{i} C_{i}^{2}\right]=\frac{k}{d}$
Concentration?

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Choose $k=\frac{c \log n}{\varepsilon^{2}}$.
\rightarrow failure probability $\leq 1 / n^{c}$.

Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!
Hash function $h(\cdot)$ s.t. $h\left(x_{i}\right)=h\left(x_{j}\right)$ if $d\left(x_{i}, x_{j}\right) \leq \delta$.
Low dimensions: grid cells give \sqrt{d}-approximation
Not quite a solution. Why?
Close to grid boundary.
Find close points to x :
Check grid cell and neighboring grid cells.
Project high dimensional points into low dimensions.
Use grid hash function.

Analysis Idea.

$$
\operatorname{Pr}\left[\left|C-\frac{k}{d}\right| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^{2} k}
$$

Variance of $C_{i}^{2} ?\left(\frac{k}{d^{2}}\right)\left(\sum_{i} z_{i}^{4}+4 \sum_{i, j} z_{i}^{2} z_{j}^{2}\right) \leq\left(\frac{k}{d^{2}}\right) 2\left(\sum_{i} z_{i}^{2}\right)^{2} \leq \frac{2 k}{d^{2}}$.
Roughly normal (gaussian):
Density $\propto e^{-t^{2}} / 2$ for t std deviations away.
So, assuming normality
$\sigma=\frac{\sqrt{k}}{d}, t=\frac{\varepsilon \frac{\sqrt{d}}{\frac{\sqrt{2 k}}{d}}}{\frac{1}{d}}=\varepsilon \sqrt{k} / \sqrt{2}$.
Probability of failure roughly $\leq e^{-t^{2} / 2}$
$\rightarrow e^{\varepsilon^{2} k / 4}$
"Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: $\{-1,+1\}^{d}$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.
$C_{i}=\frac{1}{\sqrt{d}} \sum_{i} b_{i} z_{i}$
$E\left[C_{i}^{2}\right]=E\left[\frac{1}{d} \sum_{i, j} b_{i} b_{j} z_{i} z_{j}\right]=\frac{1}{d} \sum_{i, j} E\left[b_{i} b_{j}\right] z_{i} z_{j}=\frac{1}{d} \sum_{i} z_{i}^{2}=\frac{1}{d}$
$E\left[\sum_{i} C_{i}^{2}\right]=\frac{k}{d}$

