Today

Johnson-Lindenstrass

Points: $x_1, \ldots, x_n \in \mathbb{R}^d$.

Random $k = \frac{c \log n}{r^2}$ dimensional subspace.

Claim: with probability $1 - \frac{1}{n^{c-2}}$,

$$(1-\varepsilon)\sqrt{\frac{k}{d}}|x_i-x_j|^2 \leq |y_i-y_j|^2 \leq (1+\varepsilon)\sqrt{\frac{k}{d}}|x_i-x_j|^2$$

"Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of $1 \pm \varepsilon$."

Projections.

Project x into subspace spanned by v_1, v_2, \dots, v_k .

$$y_1 = x \cdot v_1, y_2 = x \cdot, v_2, \cdots, y_k = x \cdot v_k$$

Projection: (y_1, \ldots, y_k) .

Have: Arbitrary vector, random *k*-dimensional subspace.

View As: Random vector, standard basis for *k* dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$$

Inverse of *U* maps e_i to random vector v_i and $U^{-1} = U$.

z = Ux is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.

 v_i is ith coordinate of random vector z.

Expected value of y_i .

Random projection: first k coordinates of random unit vector, z_i .

 $E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

 $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.

Expected length is $\sqrt{\frac{k}{d}}$.

Johnson-Lindenstrass: close to expectation.

k is large enough \rightarrow

 $pprox (1\pm\varepsilon)\sqrt{\frac{k}{d}}$ with decent probability.

Random subspace.

Method 1:

Pick unit v_1 ,

 v_2 orthogonal to v_1 ,

. . .

 v_k orthogonal to previous vectors...

Method 2:

Choose k vectors v_1, \ldots, v_k

Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_i . remove projection onto previous subspace.

Concentration Bounds.

z is uniformly random unit vector.

Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \le e^{-t^2/2}$

Sphere view: surface "far" from equator defined by e_1 .

 $|z_1| \geq \Delta$ if

 $z \ge \Delta$ from equator of sphere.

Point on "Δ-spherical cap".

Area of caps

 \leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$ $\propto r^d = (1 - \Delta^2)^{d/2}$

 $\propto \left(1 - \frac{t^2}{d}\right)^{d/2} \approx e^{-t^2} 2d$

Constant of ∝ is unit sphere area.

Pr[any $z_i^2 > \sqrt{2 \log d} E[z_i^2]$] is small.

Many coordinates.

Proved Pr[any $z_i^2 > \sqrt{2\log d}E[z_i^2]$] is small.

Length?
$$z = z_1^2 + z_2^2 + \cdots + z_k^2$$
.

$$\Pr[\left|\sqrt{z_1^2 + z_2^2 + \dots + z_k^2} - \sqrt{\frac{k}{d}}\right| > t] \le e^{-t^2 d}$$

Substituting
$$t = \varepsilon \sqrt{\frac{k}{d}}$$
, $k = \frac{c \log n}{\varepsilon^2}$.

$$\Pr[\left|\sqrt{z_1^2 + z_2^2 + \dots + z_k^2} - \sqrt{\tfrac{k}{d}}\right| > \varepsilon \sqrt{\tfrac{k}{d}}] \le e^{-\varepsilon^2 k} = e^{-c\log n} = \tfrac{1}{n^c}$$

Johnson-Lindenstraus: For n points, x_1, \ldots, x_n , all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$ -scaled projection above.

View one pair $x_i - x_i$ as vector.

Scale to unit.

Projection fails to preserve $|x_i - x_j|$

with probability $\leq \frac{1}{n^c}$

Scaled vector length also preserved.

 $\leq n^2$ pairs plus union bound

 \rightarrow prob any pair fails to be preserved with $\leq \frac{1}{n^{c-2}}$.

Binary Johnson-Lindenstrass

Project onto [-1,+1] vectors.

$$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$$

Concentration?

$$\mathsf{Pr}\left[|C - \frac{k}{d}| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^2 k}$$

Choose $k = \frac{c \log n}{c^2}$.

 \rightarrow failure probability $\leq 1/n^c$.

Locality Preserving Hashing

Find nearby points in high dimensional space.

Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_i)$ if $d(x_i, x_i) \le \delta$.

Low dimensions: grid cells give \sqrt{d} -approximation.

Not quite a solution. Why?

Close to grid boundary. Find close points to *x*:

Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.

Analysis Idea.

$$\Pr\left[|C - \frac{k}{d}| \ge \varepsilon \frac{k}{d}\right] \le e^{-\varepsilon^2 k}$$

Variance of
$$C_i^2$$
? $\left(\frac{k}{d^2}\right)\left(\sum_i z_i^4 + 4\sum_{i,j} z_i^2 z_i^2\right) \le \left(\frac{k}{d^2}\right) 2\left(\sum_i z_i^2\right)^2 \le \frac{2k}{d^2}$.

Roughly normal (gaussian):

Density $\propto e^{-t^2}/2$ for t std deviations away.

So, assuming normality

$$\sigma = \frac{\sqrt{k}}{d}, \ t = \frac{\varepsilon \frac{k}{d}}{\frac{\sqrt{2k}}{d}} = \varepsilon \sqrt{k} / \sqrt{2}.$$

Probability of failure roughly $\leq e^{-t^2/2} \to e^{\epsilon^2 k/4}$

"Roughly normal." Chernoff, Berry-Esseen, Central Limit Theorems.

Implementing Johnson-Lindenstraus

Random vectors have many bits

Use random bit vectors: $\{-1,+1\}^d$ instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.

$$C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i$$

$$E[C_i^2] = E[\frac{1}{d}\sum_{i,j}b_ib_jz_iz_j] = \frac{1}{d}\sum_{i,j}E[b_ib_j]z_iz_j = \frac{1}{d}\sum_iz_i^2 = \frac{1}{d}$$

$$E[\sum_i C_i^2] = \frac{k}{d}$$

Sum up

