Today

Load balancing.

Balls in Bins.

Power of two choices.
Cuckoo hashing.

Balls in bins.

For each of n balls, choose random bin: X; balls in bin i.
Pr{X; > k] < Y.scin, 5=« Prlballs in S chooses bin i]
From Union Bound: Pr[U;Aj] < Y; Pr[Aj]

Pr[balls in S chooses bin /] = (%)k and () subsets S.

wn = (0)(3)
20

Choose k, so that Pr[X; > k] < %
1

Prlany X; > k] < nx % =1 — maxload < kw.p. >1-1

ki > n? for k = 2elogn (Recall k! > (X))

Lemma: Max load is ©(log n) with probability > 1 — %
Much better than n.

(n) _ n(n=1)--(n—k+1) _ n_ n-1_ n—k+i >
k) — k(k—=1)1 — k k-1 1 =

n(n—1)---(n—k+1) < nk

t

K= (

X

Power of two..

nballs in n bins.
Choose two bins, pick least loaded.
still distributed, but a bit less than not looking.
Is max load lower? Yes? No? Yes.
How much lower?
logn/2? \/logn? O(loglog n)?
O(loglogn) 111

Exponentially better! Old bound is exponential of new bound.

Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
n. Uh Oh!
Max load with probability > 1 —67?
8 = % for today. cis 1 or 2.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph. °
Bin is vertex. /\
Each ball is edge. I

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k.
neighbors with counts > k—1,k—2,k—3,....
and so on!
No cycles and max-load k — > 2/ nodes in tree.
No connected component of size X and no cycles
= max load O(log X).

Will show:
Max conn. comp is O(logn) w.h.p.

A1

Actually Max load is ©(log n/loglog n) w.h.p.

. . Average induced degree is small. (E.g.: cycle degree 2)
(W.h.p. - means with probability at least 1 — O(1/n°) for today.)

Extend tree intuition.

Connected Component.

Power of two choices.

Not dense.

Claim: Component size in n vertex, ! edge random graph is O(log) Induced degree of node on subset, S, is degree of internal edges.

w/ prob. > 1 - 1.
pause
Proof: Size k component, C, contains > k — 1 edges.

n\ [/ n/8 K\ 2k
raici= k= (1) (%) () (1)
Possible C. Which edges. Prob. both endpoints inside C.
n/n\ (n/8\ [k*
ez = () (%)(5)
n snexk rnevk (kN2 n/e* n
< (%) (80) (5) 7(@) < ((093)12)

Choose k = —(c+ 1)log g3 n make probability < 1/n°.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is < 8 with
probability > 1— O(-5).

Proof: Induced degree > 8
— 4k internal edges for subset of size k.

A

o ()(3) ()< (%) ()" <)

Starts at 1/n®, decreasing till k < n/8 (at least)
— Total O(1/r?).

Cuckoo hashing.
Hashing with two choices: max load O(loglogn).
Cuckoo hashing:
Array. Two hash functions hy, ho.
Insert x: place in hy(x) or hy(x) if space.
Else bump elt y in h;j(x) u.a.r.
Bump y, x: place y in hj(y) # hi(x) if space.

Max load: log X where X is max component size. Else bump y’ in hi(y).

X is O(log n) with high probability.
Max load is O(loglogn).

If go too long. Fail. Rehash entire hash table.
Fails if cycle.
C, - event of cycle of length /.

(")) (D)< (5) e

I
Probability that an insert makes a cycle of length / < % (%)
Rehash every Q(n) inserts (if < n/8 items in table.)

O(1) time on averaae.

Removal Process!

Random Graph: Component size is clog n and max-induced degree
is 8 w.h.p.

Process: Remove degree < 16 nodes
and incident edges. Repeat.
Claim: O(log X) iterations where X is max component size.

For any connected component:
Average induced degree 8 — half nodes w/degree < 16.
— half nodes removed in each iteration.

— log X iterations to remove all nodes.

Claim: Max load is O(loglog n) w.h.p.

Recall edge corresponds to ball.
Height of ball, h;, is load of bin when it is placed in bin.
Corresponding edge removed in iteration r;.
Property: h; < 16r;.
Case rj =1 - only 16 balls incident to bin — h; < 16.
Induction: Previous removed edges(ball) induce load < 16(r; —1).
+16 edges/balls this iteration.
— h; <16r;.

Sum up

Balls in bins: ©(log n/loglog n) load.
Power of two: ©(loglog n).
Cuckoo hashing.

See you on Thursday...

