
Today

Load balancing.

Balls in Bins.

Power of two choices.

Cuckoo hashing.

(n
k

)k
≤
(

n
k

)
≤ nk

k !
≤
(ne

k

)k

(n
k

)
= n(n−1)···(n−k+1)

k(k−1)·1 = n
k · n−1

k−1 · · · n−k+1
1 ≥ n

k · n
k · · · n

k

n(n−1) · · ·(n−k + 1)≤ nk

k !≥
(

k
e

)k

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.

Balls in bins.
For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi]≤ ∑i Pr [Ai]

Pr [balls in S chooses bin i] =
(1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k]≤ 1
n2 .

Pr [any Xi ≥ k]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n

k !≥ n2 for k = 2e logn (Recall k !≥ (k
e)k .)

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

Much better than n.
Actually Max load is Θ(logn/ log logn) w.h.p.
(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes? No? Yes.

How much lower?

logn/2?
√

logn? O(log logn)?

O(log logn) ! ! ! !

Exponentially better! Old bound is exponential of new bound.

Analysis.
n/8 balls in n bins.

Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k .
neighbors with counts ≥ k −1,k −2,k −3,
and so on!

No cycles and max-load k → ≥ 2k/2 nodes in tree.
No connected component of size X and no cycles

=⇒ max load O(logX).

Will show:
Max conn. comp is O(logn) w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.

Connected Component.

Claim: Component size in n vertex, n
8 edge random graph is O(logn)

w/ prob. ≥ 1− 1
nc .

pause
Proof: Size k component, C, contains ≥ k −1 edges.

Pr[|C| ≥ k]≤
(

n
k

)(
n/8

k −1

)(
k
n

)2(k−1)

(1)

Possible C. Which edges. Prob. both endpoints inside C.

Pr[|C| ≥ k] ≤ n
k

(
n
k

)(
n/8
k

)(
k
n

)2k

≤ n
k

(ne
k

)k (ne
8k

)k
(

k
n

)2k

=
n
k

(
e2

8

)k

≤ n
k

(0.93)k(2)

Choose k =−(c + 1) log.93 n make probability ≤ 1/nc .

Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with
probability ≥ 1−O(1

n2).

Proof: Induced degree ≥ 8
→ 4k internal edges for subset of size k .

Pr[dense S]≤
(

n
k

)(
n/8
4k

)(
k
n

)8k

≤
(

e1.25

32

)4k (k
n

)3k

≤
(

k
n

)3k

Starts at 1/n3, decreasing till k ≤ n/8 (at least)
→ Total O(1/n2).

Removal Process!
Random Graph: Component size is c logn and max-induced degree
is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
and incident edges. Repeat.

Claim: O(logX) iterations where X is max component size.

For any connected component:
Average induced degree 8→ half nodes w/degree ≤ 16.
→ half nodes removed in each iteration.
→ logX iterations to remove all nodes.

Claim: Max load is O(log logn) w.h.p.

Recall edge corresponds to ball.
Height of ball, hi , is load of bin when it is placed in bin.
Corresponding edge removed in iteration ri .

Property: hi ≤ 16ri .
Case ri = 1 - only 16 balls incident to bin→ hi ≤ 16.
Induction: Previous removed edges(ball) induce load ≤ 16(ri −1).

+16 edges/balls this iteration.
→ hi ≤ 16ri .

Power of two choices.

Max load: logX where X is max component size.

X is O(logn) with high probability.

Max load is O(log logn).

Cuckoo hashing.
Hashing with two choices: max load O(log logn).

Cuckoo hashing:
Array. Two hash functions h1, h2.

Insert x : place in h1(x) or h2(x) if space.
Else bump elt y in hi (x) u.a.r.

Bump y ,x : place y in hi (y) 6= hi (x) if space.
Else bump y ′ in hi (y).

If go too long. Fail. Rehash entire hash table.

Fails if cycle.

Cl - event of cycle of length l .

Pr[Cl]≤
(

m
l + 1

)(
n
l

)(
l
n

)2(l+1)

≤
(

e2

8

)l

(3)

Probability that an insert makes a cycle of length l ≤ l
n

(
e2

8

)l

Rehash every Ω(n) inserts (if ≤ n/8 items in table.)

O(1) time on average.

Sum up

Balls in bins: Θ(logn/ log logn) load.

Power of two: Θ(log logn).

Cuckoo hashing.

See you on Thursday...

