

Frequent Items.

Stream: x₁,

Stream: x_1, x_2 ,

Stream: x_1, x_2, x_3 ,

Stream: $x_1, x_2, x_3, ..., x_n$

Stream: $x_1, x_2, x_3, \dots x_n$ Resources: $O(\log^c n)$ storage.

Stream: $x_1, x_2, x_3, \dots x_n$ Resources: $O(\log^c n)$ storage. Today's Goal: find frequent items.

Additive $\frac{n}{k}$ error.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item?

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes?

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No?

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine. No item more frequent than $\frac{n}{k}$?

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine. No item more frequent than $\frac{n}{k}$? 0 estimate is fine.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine. No item more frequent than $\frac{n}{k}$? 0 estimate is fine.

Only reasonable for frequent items.

Alg:

Alg: (1) Set, *S*, of *k* counters, initially 0.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$ If *S* has space, add x_i to *S* w/value 1.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$ If *S* has space, add x_i to *S* w/value 1.

Otherwise decrement all counters. Delete zero count elts.

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

State: k = 3

Stream

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$ If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters. Delete zero count elts.

Example:

 State: k = 3

 Stream
 [(1,1)]

 1,
 Previous State

 []

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

State: k = 3

Stream

[(1,1)--(2,1)]

 $\mathbf{1},\mathbf{2}$

Previous State [(1,1)]

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream	[(1,1)(2,1)(3,1)]
1,2,3	Previous State $[(1,1)(2,1)]$

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

<u></u>.

Stream	[(1,2)(2,1)(3,1)]
1231	

Previous State
$$[(1,1) - -(2,1) - -(3,1)]$$

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream	
--------	--

$$[(1,2)--(2,2)--(3,1)]$$

1, 2, 3, 1, 2

Previous State [(1,2)--(2,1)--(3,1)]

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

$$[(1,1)--(2,1)--(3,0)]$$

1, 2, 3, 1, 2, 4

Previous State [(1,2) - -(2,2) - -(3,1)]

Alg:
(1) Set, *S*, of *k* counters, initially 0.
(2) If x_i ∈ S increment x_i's counter.
(3) If x_i ∉ S
If S has space, add x_i to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

State: k = 3

Stream

Alg:

Alg: (1) Set, *S*, of *k* counters, initially 0.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \notin S$

If S has space, add x_i to S w/value 1.

Alg:

- (1) Set, S, of k counters, initially 0.
- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$
 - If S has space, add x_i to S w/value 1.
 - Otherwise decrement all counters.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter. otherwise 0.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.

Underestimate clearly.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters.

Estimate for item:

if in S, value of counter.

otherwise 0.

Underestimate clearly.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T?

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n?

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k?

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \notin S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \notin S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.

Tk total decremting

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.

Tk total decremting *n* items.

Alg:

(1) Set, *S*, of *k* counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.

Tk total decremting

n items. *n* total incrementing.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If $x_i \in S$ increment x_i 's counter.

(3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.

Tk total decremting

n items. *n* total incrementing.

 $\leq \frac{n}{k}$.

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

```
Total decrements, T? n? n/k? k?
```

decrement k counters on each decrement.

```
Tk total decremting
```

n items. *n* total incrementing.

```
\leq \frac{n}{k}.
```

```
Off by at most \frac{n}{k}
```

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

```
Total decrements, T? n? n/k? k?
```

decrement k counters on each decrement.

```
Tk total decremting
```

```
n items. n total incrementing.
```

```
\leq \frac{n}{k}.
```

```
Off by at most \frac{n}{k}
```

Space?

Alg:

(1) Set, S, of k counters, initially 0.

- (2) If $x_i \in S$ increment x_i 's counter.
- (3) If $x_i \not\in S$

If S has space, add x_i to S w/value 1.

Otherwise decrement all counters.

Estimate for item:

if in *S*, value of counter.

otherwise 0.

Underestimate clearly.

Increment once when see an item, might decrement.

```
Total decrements, T? n? n/k? k?
```

decrement k counters on each decrement.

```
Tk total decremting
```

```
n items. n total incrementing.
```

```
\leq \frac{n}{k}.
```

```
Off by at most \frac{n}{k}
```

```
Space?O(k \log n)
```

Stream: ..., $(i, c_i), ...$

Stream: ..., (i, c_i) , ... item *i*, count c_i (possibly negative.)

Stream: ..., (i, c_i) ,... item *i*, count c_i (possibly negative.) Positive total for each item!

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

 $|f|_1 = \sum_j f_j$

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

 $|f|_1 = \sum_j f_j$ Smaller than $\sum_i c_i$.

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

 $|f|_1 = \sum_j f_j$ Smaller than $\sum_i c_i$.

Stream: \ldots , (i, c_i) , \ldots

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

$$|f|_1 = \sum_i f_i$$
 Smaller than $\sum_i c_i$.

Approximation:

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

$$|f|_1 = \sum_i f_i$$
 Smaller than $\sum_i c_i$.

Approximation:

Additive $\varepsilon |f|_1$ with probability $1 - \delta$

Stream: ..., $(i, c_i), ...$

item *i*, count c_i (possibly negative.) Positive total for each item!

Estimate frequency of item: $f_j = \sum c_j$.

$$|f|_1 = \sum_i f_i$$
 Smaller than $\sum_i c_i$.

Approximation:

Additive $\varepsilon |f|_1$ with probability $1 - \delta$ Space $O(\frac{1}{\varepsilon} \log \frac{1}{\delta} \log n)$.

Count Min Sketch

Sketch

Count Min Sketch

Sketch - Summary of stream.

Count Min Sketch

Sketch – Summary of stream. (1) t arrays A[i] of k souppore

(1) t arrays, A[i], of k counters.

Sketch – Summary of stream.
(1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_t from 2-wise ind. family.

Sketch – Summary of stream.
(1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_t from 2-wise ind. family.
(2) Process elt (*j*, *c_i*),

Sketch – Summary of stream. (1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$.

Sketch – Summary of stream. (1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Intution: $|f_1|/k$ other "counts" in same bucket.

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Intution: $|f_1|/k$ other "counts" in same bucket.

 \rightarrow Additive $|f_1|/k$ error on average for each of *t* arrays.

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Intution: $|f_1|/k$ other "counts" in same bucket.

 \rightarrow Additive $|f_1|/k$ error on average for each of *t* arrays.

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Intution: $|f_1|/k$ other "counts" in same bucket.

 \rightarrow Additive $|f_1|/k$ error on average for each of *t* arrays.

Why t buckets?

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

Intution: $|f_1|/k$ other "counts" in same bucket.

 \rightarrow Additive $|f_1|/k$ error on average for each of *t* arrays.

Why *t* buckets? To get high probability.

(1) t arrays, A[i], of k counters.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) ,

 (1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_t from 2-wise ind. family.
 (2) Process elt (*j*, *c_j*), *A*[*i*][*h_i*(*j*)]+ = *c_j*.

 (1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_l from 2-wise ind. family.
 (2) Process elt (*j*, *c_j*), *A*[*i*][*h_i*(*j*)]+ = *c_j*.
 (3) Item *j* estimate: min_i *A*[*i*][*h_i*(*j*)].

 (1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_l from 2-wise ind. family.
 (2) Process elt (*j*, *c_j*), *A*[*i*][*h_i*(*j*)]+ = *c_j*.
 (3) Item *j* estimate: min_i *A*[*i*][*h_i*(*j*)].

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$.

 $A[1][h_j(j)] = f_j + X$, where X is a random variable.

(1) *t* arrays, *A*[*i*], of *k* counters. *h*₁,..., *h*_t from 2-wise ind. family.
(2) Process elt (*j*, *c_j*), *A*[*i*][*h_i*(*j*)]+ = *c_j*.
(3) Item *j* estimate: min_i *A*[*i*][*h_i*(*j*)]. *A*[1][*h_j*(*j*)] = *f_j* + *X*, where *X* is a random variable.

 Y_i - item $h_1(i) = h_1(j)$

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$ E[X]

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$ $E[X] = \sum_i E[Y_i]f_i$

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$ $E[X] = \sum_i E[Y_i]f_i = \sum_i \frac{1}{k}f_i$

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. $A[1][h_j(j)] = f_j + X$, where *X* is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_i Y_i f_i$ $E[X] = \sum_i E[Y_i]f_i = \sum_i \frac{1}{k}f_i = \frac{|f|_1}{k}$

(1) *t* arrays, *A*[*i*], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_i Y_i f_i$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov.

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?)

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest.

 $\Pr[X > 2\frac{|f|_1}{k} \text{ in all t trials}]$

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest.

 $\Pr[X > 2\frac{|f|_1}{k} \text{ in all t trials}] \le (\frac{1}{2})^t$

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest.

 $\begin{aligned} & \Pr[X > 2\frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t \\ & \leq \delta \text{ when } t = \log \frac{1}{\delta}. \end{aligned}$

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$

 $\leq \delta$ when $t = \log \frac{1}{\delta}$.

Error $\varepsilon |f|_1$ if

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$

 $\leq \delta$ when $t = \log \frac{1}{\delta}$.

Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$.

Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

Space?

Space? O(k

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

Space? $O(k \log \frac{1}{\delta})$

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

Space? $O(k \log \frac{1}{\delta} \log n)$

Count min sketch:analysis

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_{i}]f_{i} = \sum_{i} \frac{1}{k}f_{i} = \frac{|f|_{1}}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

Space? $O(k \log \frac{1}{\delta} \log n) = O(\frac{1}{\varepsilon} \log \frac{1}{\delta})$

Count min sketch:analysis

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i.$ (3) Item *j* estimate: $\min_i A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(i)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_i] f_i = \sum_{i} \frac{1}{k} f_i = \frac{|f|_1}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] < \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $\leq \delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$.

Space? $O(k \log \frac{1}{\delta} \log n) = O(\frac{1}{\varepsilon} \log \frac{1}{\delta} \log n)$

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better.

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

 $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$. $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, *A*[*i*]:

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

 $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

```
(1) t arrays, A[i]:
t hash functions h_i : U \rightarrow [k]
```

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, *A*[*i*]:

t hash functions $h_i: U \to [k]$

t hash functions $g_i : U \rightarrow [-1, +1]$

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

 $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

```
(1) t arrays, A[i]:

t hash functions h_i : U \rightarrow [k]

t hash functions g_i : U \rightarrow [-1, +1]

(2) Elt (j, c_j)
```

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

 $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

```
(1) t arrays, A[i]:

t hash functions h_i : U \rightarrow [k]

t hash functions g_i : U \rightarrow [-1, +1]

(2) Elt (j, c_j)

A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j
```

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \rightarrow [k]$ *t* hash functions $g_i : U \rightarrow [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Buckets contains signed count (estimate con

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight!

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

No!

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median!

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas!

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

$$\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Analysis (1) ···

Analysis (1) \cdots $g_i : U \rightarrow [-1, +1], h_i : U \rightarrow [k]$ (2) Elt (j, c_j)

(1)
$$\cdots$$
 $g_i : U \to [-1, +1], h_i : U \to [k]$
(2) Elt (j, c_j)
 $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$

(1)
$$\cdots$$
 $g_i : U \rightarrow [-1,+1], h_i : U \rightarrow [k]$
(2) Elt (j, c_j)
 $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$
(3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

(1)
$$\cdots$$
 $g_i : U \rightarrow [-1,+1], h_i : U \rightarrow [k]$
(2) Elt (j, c_j)
 $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$
(3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.

(1)
$$\cdots$$
 $g_i : U \rightarrow [-1,+1], h_i : U \rightarrow [k]$
(2) Elt (j,c_j)
 $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$
(3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$.
Notice:

(1) \cdots $g_i : U \rightarrow [-1, +1], h_i : U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$

(1) \cdots $g_i : U \rightarrow [-1, +1], h_i : U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$

(1) \cdots $g_i : U \rightarrow [-1, +1], h_i : U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$

(1) \cdots $g_i: U \rightarrow [-1,+1], h_i: U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item j estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$

(1) ... $g_i : U \to [-1, +1], h_i : U \to [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j) \ Y_i = 0$, otherwise $E[Y_i] = 0$

(1) ... $g_i: U \to [-1, +1], h_i: U \to [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j) \ Y_i = 0$, otherwise $E[Y_i] = 0 \ Var(Y_i) = \frac{f_i^2}{k}$.

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item j estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0$ $Var(Y_i) = \frac{f_i^2}{k}$. E[X] = 0

(1) \cdots $g_i: U \rightarrow [-1,+1], h_i: U \rightarrow [k]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_j$ (3) Item j estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_i Y_i$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0$ $Var(Y_i) = \frac{f_i^2}{k}$. E[X] = 0 — Expected drift is 0!

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(i)] = A[i][h_i(i)] + g_i(i)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{h}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i)$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(i)] = A[i][h_i(i)] + g_i(i)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{h}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{k}$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(i)] = A[i][h_i(i)] + g_i(i)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{h}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{h}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{h}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{L} = \frac{|f|_2^2}{L}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{a^2}$:

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *i* estimate: median of $g_i(i)A[i][h_i(i)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{f_i^2}$. E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{L} = \frac{|f|_2^2}{L}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{c^2}$: $Pr[|X| > \varepsilon |f|_2]$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \le \frac{Var(X)^2}{\Delta^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{|f|_2^2/k}{\varepsilon^2 |f|^2}$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{L} = \frac{|f|_2^2}{L}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Delta^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2}$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{L} = \frac{|f|_2^2}{L}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Delta^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{\overline{|f|_2^2/k}}{\varepsilon^{2|f|_2^2}} \le \frac{\varepsilon^{2|f|_2^2/4}}{\varepsilon^{2|f|_2^2}} \le \frac{1}{4}$.

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_i \frac{f_i^2}{L} = \frac{|f|_2^2}{L}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Delta^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{\overline{|f|_2^2/k}}{\varepsilon^2 |f|_2^2} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4.

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $\Pr[|X| > \varepsilon |f|_2] \le \overline{\frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2}} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4. If > half tosses close, median is close!

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $\Pr[|X| > \varepsilon |f|_2] \le \overline{\frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2}} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4. If > half tosses close, median is close! Exists $t = \Theta(\log \frac{1}{s})$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $\Pr[|X| > \varepsilon |f|_2] \le \overline{\frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2}} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4. If > half tosses close, median is close! Exists $t = \Theta(\log \frac{1}{\delta})$ where $\geq \frac{1}{2}$ are correct with probability $\geq 1 - \delta$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4. If > half tosses close, median is close! Exists $t = \Theta(\log \frac{1}{\delta})$ where $\geq \frac{1}{2}$ are correct with probability $\geq 1 - \delta$ Total Space: $O(\frac{\log \frac{1}{\delta}}{2})$

(1) \cdots $g_i: U \rightarrow [-1, +1], h_i: U \rightarrow [k]$ (2) Elt (j, c_i) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Notice: $A[1][h_1(j)] = g_1(j)f_j + X$ $X = \sum_{i} Y_{i}$ $Y_i = \pm f_i$ if item $h_1(i) = h_1(j)$ $Y_i = 0$, otherwise $E[Y_i] = 0 Var(Y_i) = \frac{f_i^2}{L}$ E[X] = 0 — Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_i) = \sum_{i \neq k} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^2}{\Lambda^2}$ Choose $k = \frac{4}{\varepsilon^2}$: $Pr[|X| > \varepsilon |f|_2] \le \frac{|f|_2^2/k}{\varepsilon^2 |f|_2^2} \le \frac{\varepsilon^2 |f|_2^2/4}{\varepsilon^2 |f|_2^2} \le \frac{1}{4}$. Each trial is close with probability 3/4. If > half tosses close, median is close! Exists $t = \Theta(\log \frac{1}{\delta})$ where $\geq \frac{1}{2}$ are correct with probability $\geq 1 - \delta$ Total Space: $O(\frac{\log \frac{1}{\delta}}{n^2} \log n)$

Deterministic:

Deterministic: stream has items

Deterministic: stream has items Count within additive $\frac{n}{k}$

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space.

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

stream has $\pm \mbox{ counts}$

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

stream has \pm counts Count within additive $\varepsilon |f|_1$

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

stream has \pm counts Count within additive $\varepsilon |f|_1$ with probability at least $1 - \delta$

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

```
\begin{array}{l} \text{stream has } \pm \text{ counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}
```

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

 $\begin{array}{l} \text{stream has} \pm \text{counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}$

Count Sketch:

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

 $\begin{array}{l} \text{stream has} \pm \text{counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}$

Count Sketch: stream has \pm counts

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

 $\begin{array}{l} \text{stream has } \pm \text{ counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}$

Count Sketch:

stream has \pm counts Count within additive $\varepsilon |f|_2$

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

 $\begin{array}{l} \text{stream has } \pm \text{ counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}$

Count Sketch:

stream has \pm counts Count within additive $\varepsilon |f|_2$

with probability at least 1 – δ

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space.

Count Min:

 $\begin{array}{l} \text{stream has } \pm \text{ counts} \\ \text{Count within additive } \varepsilon |f|_1 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon}). \end{array}$

Count Sketch:

 $\begin{array}{l} \text{stream has} \pm \text{counts} \\ \text{Count within additive } \varepsilon |f|_2 \\ \text{with probability at least } 1 - \delta \\ O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon^2}). \end{array}$

See you on Tuesday.