Streaming. Frequent Items.

Streaming

Stream: $x_1, x_2, x_3, \dots x_n$ Resources: $O(\log^c n)$ storage. Today's Goal: find frequent items.

Frequent Items: deterministic.

Additive $\frac{n}{k}$ error. Accurate count for k + 1th item? Yes? No? k + 1st most frequent item occurs $< \frac{n}{k+1}$ Off by 100%. 0 estimate is fine. No item more frequent than $\frac{n}{k}$? 0 estimate is fine. Only reasonable for frequent items.

Deteministic Algorithm.

Alg: (1) Set, *S*, of *k* counters, initially 0. (2) If $x_i \in S$ increment x_i 's counter. (3) If $x_i \notin S$ If *S* has space, add x_i to *S* w/value 1. Otherwise decrement all counters. Delete zero count elts.

Example:

State: k = 3

Stream

[(1,2)(1,2)(2,2)(2,2)(3,0)(3,0)]am7

1,2,3122283324am7

 $\begin{array}{l} \mbox{Previous State} \\ [(1,2](+,+](2]2)(2,+)(3,0)] \end{array}$

Deterministic Algorithm.

Alg:

 Set, S, of k counters, initially 0.
If x_i ∈ S increment x_i's counter.
If x_i ∉ S If S has space, add x_i to S w/value 1. Otherwise decrement all counters.

Estimate for item: if in *S*, value of counter. otherwise 0. Underestimate clearly. Increment once when see an item, might decrement. Total decrements, *T*? *n*? *n*/*k*? *k*? decrement *k* counters on each decrement. *Tk* total decremting *n* items. *n* total incrementing. $\leq \frac{n}{k}$. Off by at most $\frac{n}{k}$

Space? $O(k \log n)$

Turnstile Model and Randomization

Stream: ..., (i, c_i) , ... item *i*, count c_i (possibly negative.) Positive total for each item! Estimate frequency of item: $f_j = \sum c_j$. $|f|_1 = \sum_i f_j$ Smaller than $\sum_i c_i$. Approximation: Additive $\varepsilon |f|_1$ with probability $1 - \delta$ Space $O(\frac{1}{\varepsilon} \log \frac{1}{\delta} \log n)$.

Count Min Sketch

Sketch - Summary of stream.

(1) *t* arrays, A[i], of *k* counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_j) , $A[i][h_i(j)] + = c_j$. (3) Item *j* estimate: min_i $A[i][h_i(j)]$. Intution: $|f_1|/k$ other "counts" in same bucket. \rightarrow Additive $|f_1|/k$ error on average for each of *t* arrays.

Why t buckets? To get high probability.

Analysis

 $(1) \cdots g_{i} : U \rightarrow [-1,+1], h_{i} : U \rightarrow [k]$ $(2) \text{ Elt } (j, c_{j}) \qquad A[i][h(j)] = A[i][h_{i}(j)] + g_{i}(j)c_{j}$ $(3) \text{ Item } j \text{ estimate: median of } g_{i}(j)A[i][h_{i}(j)].$ Notice: $A[1][h_{1}(j)] = g_{1}(j)f_{j} + X$ $X = \sum_{i} Y_{i}$ $Y_{i} = \pm f_{i} \text{ if item } h_{1}(i) = h_{1}(j) Y_{i} = 0, \text{ otherwise}$ $E[Y_{i}] = 0 \quad Var(Y_{i}) = \frac{f_{i}^{2}}{k}.$ E[X] = 0 - Expected drift is 0! $Var[X] = \sum_{i \in [m]} Var(Y_{i}) = \sum_{i} \frac{f_{k}^{2}}{k} = \frac{|f_{k}|^{2}}{k}$ Cheybshev: $Pr[|X - \mu| > \Delta] \leq \frac{Var(X)^{2}}{\Delta^{2}}$ Choose $k = \frac{4}{\epsilon^{2}}: Pr[|X| > \epsilon|f|_{2}] \leq \frac{|f|_{2}^{2}/k}{\epsilon^{2}|f|_{2}^{2}} \leq \frac{\epsilon^{2}|f|_{2}^{2}}{k} \leq \frac{1}{4}.$ Each trial is close with probability 3/4. If > half tosses close, median is close! Exists $t = \Theta(\log \frac{1}{\delta})$ where $\geq \frac{1}{2}$ are correct with probability $\geq 1 - \delta$

Total Space: $O(\frac{\log \frac{1}{\delta}}{\epsilon^2} \log n)$

Count min sketch:analysis

(1) t arrays, A[i], of k counters. h_1, \ldots, h_t from 2-wise ind. family. (2) Process elt (j, c_i) , $A[i][h_i(j)] + = c_i$. (3) Item *i* estimate: min_i $A[i][h_i(j)]$. $A[1][h_i(j)] = f_i + X$, where X is a random variable. Y_i - item $h_1(i) = h_1(j)$ $X = \sum_{i} Y_{i} f_{i}$ $E[X] = \sum_{i} E[Y_i] f_i = \sum_{i} \frac{1}{k} f_i = \frac{|f|_1}{k}$ Markov: $Pr[X > 2\frac{|f|_1}{k}] \le \frac{1}{2}$ Exercise: proof of Markov. (All above average?) t independent trials, pick smallest. $\Pr[X > 2 \frac{|f|_1}{k} \text{ in all t trials}] \leq (\frac{1}{2})^t$ $<\delta$ when $t = \log \frac{1}{\delta}$. Error $\varepsilon |f|_1$ if $\varepsilon = \frac{2}{k}$. Space? $O(k \log \frac{1}{\delta} \log n) = O(\frac{1}{\epsilon} \log \frac{1}{\delta} \log n)$

Sum up

Deterministic: stream has items Count within additive $\frac{n}{k}$ $O(k \log n)$ space. Within εn with $O(\frac{1}{\varepsilon} \log n)$ space. Count Min: stream has \pm counts Count within additive $\varepsilon |f|_1$ with probability at least $1 - \delta$ $O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon})$. Count Sketch: stream has \pm counts Count within additive $\varepsilon |f|_2$ with probability at least $1 - \delta$ $O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon^2})$.

Count sketch.

Error in terms of $|f|_2 = \sqrt{\sum_i f_2^2}$.

 $\frac{|f|_1}{\sqrt{n}} \le |f|_2 \le |f|_1.$

Could be much better. E.g., uniform frequency $\frac{|f|_1}{\sqrt{n}} = |f|_2$

Alg:

(1) *t* arrays, A[i]: *t* hash functions $h_i : U \to [k]$ *t* hash functions $g_i : U \to [-1, +1]$ (2) Elt (j, c_j) $A[i][h(j)] = A[i][h_i(j)] + g_i(j)c_i$ (3) Item *j* estimate: median of $g_i(j)A[i][h_i(j)]$. Buckets contains signed count (estimate cancels sign.) Other items cancel each other out! Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

See you on Tuesday.