
Today

Streaming.

Frequent Items.

Streaming

Stream: x1,x2,x3, , . . .xn

Resources: O(logc n) storage.

Today’s Goal: find frequent items.

Frequent Items: deterministic.

Additive n
k error.

Accurate count for k + 1th item?

Yes?
No?
k + 1st most frequent item occurs < n

k+1
Off by 100%. 0 estimate is fine.

No item more frequent than n
k ?

0 estimate is fine.

Only reasonable for frequent items.

Deteministic Algorithm.

Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

Example:

Stream

1,1,21,2,31,2,3,11,2,3,1,21,2,3,1,2,41,2,3,1,2,4/stream7

State: k = 3

Previous State
[]

[(1,1)]

Previous State
[(1,1)]

[(1,1)−−(2,1)]

Previous State
[(1,1)−−(2,1)]

[(1,1)−−(2,1)−−(3,1)]

Previous State
[(1,1)−−(2,1)−−(3,1)]

[(1,2)−−(2,1)−−(3,1)]

Previous State
[(1,2)−−(2,1)−−(3,1)]

[(1,2)−−(2,2)−−(3,1)]

Previous State
[(1,2)−−(2,2)−−(3,1)]

[(1,1)−−(2,1)−−(3,0)]

Previous State
[(1,1)−−(2,1)−−(3,0)]

[(1,2)−−(2,2)−−(3,0)]/stream7

Deterministic Algorithm.
Alg:
(1) Set, S, of k counters, initially 0.
(2) If xi ∈ S increment xi ’s counter.
(3) If xi 6∈ S

If S has space, add xi to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.

Underestimate clearly.
Increment once when see an item, might decrement.

Total decrements, T ? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
n items. n total incrementing.
≤ n

k .
Off by at most n

k

Space?O(k logn)

Turnstile Model and Randomization

Stream: . . . ,(i ,ci), . . .
item i , count ci (possibly negative.)

Positive total for each item!

Estimate frequency of item: fj = ∑cj .

|f |1 = ∑j fj Smaller than ∑i ci .

Approximation:

Additive ε|f |1 with probability 1−δ

Space O(1
ε log 1

δ logn).



Count Min Sketch

Sketch – Summary of stream.

(1) t arrays, A[i], of k counters.
h1, . . . ,ht from 2-wise ind. family.

(2) Process elt (j ,cj ),
A[i][hi (j)]+ = cj .

(3) Item j estimate: mini A[i][hi (j)].

Intution:|f1|/k other “counts” in same bucket.

→ Additive |f1|/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count min sketch:analysis
(1) t arrays, A[i], of k counters.

h1, . . . ,ht from 2-wise ind. family.
(2) Process elt (j ,cj ),

A[i][hi (j)]+ = cj .
(3) Item j estimate: mini A[i][hi (j)].

A[1][hj (j)] = fj + X , where X is a random variable.

Yi - item h1(i) = h1(j)
X = ∑i Yi fi

E [X ] = ∑i E [Yi ]fi = ∑i
1
k fi = |f |1

k

Markov: Pr [X > 2 |f |1k ]≤ 1
2

Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

Pr[X > 2 |f |1k in all t trials] ≤ ( 1
2 )t

≤ δ when t = log 1
δ .

Error ε|f |1 if ε = 2
k .

Space? O(k log 1
δ logn) O( 1

ε log 1
δ logn)

Count sketch.
Error in terms of |f |2 =

√
∑i f 2

2 .

|f |1√
n ≤ |f |2 ≤ |f |1.

Could be much better. E.g., uniform frequency |f |1√n = |f |2
Alg:

(1) t arrays, A[i]:
t hash functions hi : U→ [k ]
t hash functions gi : U→ [−1,+1]

(2) Elt (j ,cj )
A[i][h(j)] = A[i][hi (j)] + gi (j)cj

(3) Item j estimate: median of gi (j)A[i][hi (j)].

Buckets contains signed count (estimate cancels sign.)

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?

No! Median! Two ideas! One simple algorithm!

Analysis
(1) · · · gi : U→ [−1,+1],hi : U→ [k ]
(2) Elt (j ,cj )

A[i][h(j)] = A[i][hi (j)] + gi (j)cj
(3) Item j estimate: median of gi (j)A[i][hi (j)].

Notice: A[1][h1(j)] = g1(j)fj + X

X = ∑i Yi
Yi =±fi if item h1(i) = h1(j) Yi = 0, otherwise

E [Yi ] = 0 Var(Yi ) =
f 2
i
k .

E [X ] = 0 — Expected drift is 0!

Var [X ] = ∑i∈[m] Var(Yi ) = ∑i
f 2
i
k =

|f |22
k

Cheybshev: Pr [|X −µ|> ∆]≤ Var(X )2

∆2

Choose k = 4
ε2 : Pr [|X |> ε|f |2]≤ |f |

2
2/k

ε2|f |22
≤ ε2|f |22/4

ε2|f |22
≤ 1

4 .

Each trial is close with probability 3/4.
If > half tosses close, median is close!
Exists t = Θ(log 1

δ ) where ≥ 1
2 are correct with probability ≥ 1−δ

Total Space: O(
log 1

δ
ε2 logn)

Sum up

Deterministic:
stream has items
Count within additive n

k
O(k logn) space.
Within εn with O(1

ε logn) space.

Count Min:
stream has ± counts
Count within additive ε|f |1

with probability at least 1−δ
O(

logn log 1
δ

ε ).

Count Sketch:
stream has ± counts
Count within additive ε|f |2

with probability at least 1−δ
O(

logn log 1
δ

ε2 ).

See you on Tuesday.


