## Streaming.

Frequent Items.

Stream: $x_{1}, x_{2}, x_{3}, \ldots x_{n}$
Resources: $O\left(\log ^{c} n\right)$ storage.
Today's Goal: find frequent items.

## Deterministic Algorithm

Alg:
(1) Set, $S$, of $k$ counters, initially 0 .
(2) If $x_{i} \in S$ increment $x_{i}$ 's counter
(3) If $x_{i} \notin S$

If $S$ has space, add $x_{i}$ to $S$ w/value 1 .
Otherwise decrement all counters.
Estimate for item:
if in $S$, value of counter
otherwise 0 .
Underestimate clearly
Increment once when see an item, might decrement.
Total decrements, $T$ ? $n$ ? $n / k$ ? $k$ ?
decrement $k$ counters on each decrement.
Tk total decremting
$n$ items. $n$ total incrementing.
$\leq \frac{n}{k}$.
Off by at most $\frac{n}{k}$
Space?O(klog $n)$

Frequent Items: deterministic.

## Additive $\frac{n}{k}$ error.

Accurate count for $k+1$ th item?
Yes?
No?
$k+1$ st most frequent item occurs $<\frac{n}{k+1}$ Off by $100 \%$. 0 estimate is fine
No item more frequent than $\frac{n}{k}$ ? 0 estimate is fine.

Only reasonable for frequent items.

Turnstile Model and Randomization

Stream: ..., $\left(i, c_{i}\right), .$. item $i$, count $c_{i}$ (possibly negative.)
Positive total for each item!
Estimate frequency of item: $f_{j}=\sum c_{j}$.
$\left.f\right|_{1}=\sum_{j} f_{j} \quad$ Smaller than $\sum_{i} c_{i}$.
Approximation:
Additive $\varepsilon|f|_{1}$ with probability 1 - $\delta$
Space $O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta} \log n\right)$

## Count Min Sketch

## Sketch - Summary of stream.

(1) $t$ arrays, $A[i]$, of $k$ counters $h_{1}, \ldots, h_{t}$ from 2-wise ind. family.
(2) Process elt $\left(j, c_{j}\right)$
$A[i]\left[h_{i}(j)\right]+=c_{j}$.
(3) Item $j$ estimate: $\min _{i} A[i]\left[h_{i}(j)\right]$.

Intution: $\left|f_{1}\right| / k$ other "counts" in same bucket
$\rightarrow$ Additive $\left|f_{1}\right| / k$ error on average for each of $t$ arrays.
Why $t$ buckets? To get high probability.

## Analysis

(1) $\cdots g_{i}: U \rightarrow[-1,+1], h_{i}: U \rightarrow[k]$
(2) $\operatorname{Elt}\left(j, c_{j}\right)$
$A[i][h(j)]=A[i]\left[h_{i}(j)\right]+g_{i}(j) c_{j}$
(3) Item $j$ estimate: median of $g_{i}(j) A[i]\left[h_{i}(j)\right]$.

Notice: $A[1]\left[h_{1}(j)\right]=g_{1}(j) f_{j}+X$
$X=\sum_{i} Y_{i}$
$X=\sum_{i} Y_{i}$
$Y_{i}= \pm t_{i}$ if item $h_{1}(i)=h_{1}(j) Y_{i}=0$, otherwise
$E\left[Y_{i}\right]=0 \operatorname{Var}\left(Y_{i}\right)=\frac{f_{2}^{2}}{k}$.
$E[X]=0$ - Expected drift is $0!$
$\operatorname{Var}[X]=\sum_{i \in[m]} \operatorname{Var}\left(Y_{i}\right)=\sum_{i} \frac{f_{k}^{2}}{k}=\frac{| | f_{2}^{2}}{k}$
Cheybshev: $\operatorname{Pr}[|X-\mu|>\Delta] \leq \frac{\operatorname{Var}(X)^{2}}{\Delta^{2}}$
Choose $k=\frac{4}{\varepsilon^{2}}: \operatorname{Pr}\left[|X|>\varepsilon| |_{2}\right] \leq \frac{\mid f^{2} / k}{\varepsilon^{2}| |_{2}^{2}} \leq \frac{\varepsilon^{2}| |_{2}^{2} / 4}{\varepsilon^{2} \mid \|_{2}^{2}} \leq \frac{1}{4}$.
Each trial is close with probability $3 / 4$.
If $>$ half tosses close, median is close!
Exists $t=\Theta\left(\log \frac{1}{\delta}\right)$ where $\geq \frac{1}{2}$ are correct with probability $\geq 1-\delta$
Total Space: $O\left(\frac{\log \frac{1}{8}}{\varepsilon^{2}} \log n\right)$

Count min sketch:analysis
(1) $t$ arrays, $A[i]$, of $k$ counters.
(2) $h_{1}, \ldots, h_{t}$ from 2 -wise ind. family.
(2) Process elt $\left(j, c_{j}\right)$,
$A[i]\left[h_{i}(j)\right]+=c_{j}$.
(3) Item $j$ estimate: $\min _{i} A[i]\left[h_{i}(j)\right]$.
$A[1]\left[h_{j}(j)\right]=f_{j}+X$, where $X$ is a random variable.
$Y_{i}$ - item $h_{1}(i)=h_{1}(j)$
$X=\sum_{i} Y_{i} f_{i}$
$E[X]=\sum_{i} E\left[Y_{j}\right] f_{i}=\sum_{i} \frac{1}{k} f_{i}=\frac{\left|| |_{1}\right.}{k}$
Markov: $\operatorname{Pr}\left[X>2 \frac{|f|_{1}}{k}\right] \leq \frac{1}{2}$
Exercise: proof of Markov. (All above average?)
$t$ independent trials, pick smallest.
$\operatorname{Pr}\left[X>2 \frac{\left.|f| l\right|_{k} ^{k}}{k}\right.$ in all trials $] \leq\left(\frac{1}{2}\right)^{t}$
$\leq \delta$ when $t=\log \frac{1}{\delta}$.
Error $\varepsilon|f|_{1}$ if $\varepsilon=\frac{2}{k}$.
Space? $O\left(k \log \frac{1}{\delta} \log n\right) \quad O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta} \log n\right)$

## Sum up

## Deterministic:

stream has items
Count within additive $\frac{n}{k}$
$O(k \log n)$ space.
Within $\varepsilon n$ with $O\left(\frac{1}{\varepsilon} \log n\right)$ space.

## Count Min:

stream has $\pm$ counts
Count within additive $\varepsilon|f|$ with probability at least $1-\delta$
$O\left(\frac{\log n \log \frac{1}{8}}{\varepsilon}\right)$.
Count Sketch:
stream has $\pm$ counts
Count within additive $\varepsilon \mid f_{2}$ with probability at least $1-\delta$
$O\left(\frac{\log n \log \frac{1}{8}}{\varepsilon^{2}}\right)$.

## Count sketch.

Error in terms of $|f|_{2}=\sqrt{\sum_{i} f_{2}^{2}}$.
$\frac{|f|_{1}}{\sqrt{n}} \leq|f|_{2} \leq|f|_{1}$.
Could be much better. E.g., uniform frequency $\frac{\mid f_{1}}{\sqrt{n}}=|f|_{2}$
Alg:
(1) $t$ arrays, $A[i]$ :
$t$ hash functions $h_{i}: U \rightarrow[k]$
$t$ hash functions $h_{i}: U \rightarrow[k]$
$t$ hash functions $g_{i}: U \rightarrow[-1,+1]$
(2) Elt $\left(j, c_{j}\right)$
$A[i][h(j)]=A[i]\left[h_{i}(j)\right]+g_{i}(j) c_{j}$
(3) Item $j$ estimate: median of $g_{i}(j) A[i]\left[h_{i}(j)\right]$.

Buckets contains signed count (estimate cancels sign.)
Other items cancel each other out!
Tight! (Not an asymptotic statement.)
Do $t$ times and average?
No! Median! Two ideas! One simple algorithm!

See you on Tuesday.

