Today

Streaming.

Today

Streaming.
Frequency Moments.

Streaming.

Input:

Streaming.

Input:

X1,

Streaming.

Input:

X1,X2,

Streaming.

Input:

X1,X2,X3,

Streaming.

Input:

X1,X2,X3, ...

I

Streaming.

Input:

X1,X2,X3, ..., Xn.

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Streaming.

Input:

X1,X2,X3, ..., Xn.
One at a time.
Pikachu,

Streaming.

Input:

X1,X2,X3, ..., Xn.
One at a time.
Pikachu, Squirtle,

Streaming.

Input:

X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew,

Streaming.

Input:

X1,X0,X3, ..., Xp.

One at a time.

Pikachu, Squirtle, Mew, Pikachu,

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!
Actually, no.

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!
Actually, no. O(log® n) space.

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!
Actually, no. O(log® n) space.
Model LARGE data

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!
Actually, no. O(log® n) space.
Model LARGE data smai space.

Streaming.

Input:
X1,X2,X3, ..., Xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!
Actually, no. O(log® n) space.
Model LARGE data smai space.

Extreme mismatch.

What to compute.

Data.

What to compute.

Data.
Moments!

What to compute.

Data.
Moments!
Fy

What to compute.

Data.
Moments!
Fie=Y;mk

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

FoZ

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?
F1 .

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?

F1: Length of stream.

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?

F1: Length of stream.
Easy to compute!

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?

F1: Length of stream.
Easy to compute!

What to compute.

Data.
Moments!
Fie=Y;mk

m; - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

Fo: Number of distinct elements.
How to compute?

F1: Length of stream.
Easy to compute!

F>: How to compute?

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle
How many distinct elements?

Answer: 3.

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See!

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Isx e S?

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.
Must know subset of [n]

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.
Must know subset of [n]
(at most n types)

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2" possibilities

Number Distinct Elements

Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2" possibilities — requires Q(n) bits!

Toy problem

Alg: Number of distinct elements

Toy problem

Alg: Number of distinct elements
<k

Toy problem

Alg: Number of distinct elements
< k Output: “no”

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k

Toy problem
Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don't care if in between.
Randomized Algorithm:

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

Toy problem
Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.
h:[n] — [B], where B= k.

Toy problem
Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Toy problem
Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Toy problem
Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr[A(x)=No | N < k] = (1

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Constant gap

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Prl[A(x) =No | N < k] = (1—)N2

Pr[A(x)=No| N > 2k] = (1 —1)N§

Constant gap (roughly 1/e—1/¢€?).

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Prl[A(x) =No | N < k] = (1—)N2

Pr[A(x)=No| N > 2k] = (1 —1)N§

Constant gap (roughly 1/e—1/¢€?).
Many trials,

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel gives good result.

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel gives good result. ..more later.

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

Pr[A(X):NO|N>2k]:(1_15)N§<1—1B)2k

Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

I\N 1\ 2K
= = - — < —
Pr[A(x) = No| N > 2kK] (1 B) < (1 B)
Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
k™ hash functions.

Toy problem

Alg: Number of distinct elements
< k Output: “no”
> 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h:[n] — [B], where B= k.

(2) If any h(x;) =0, say “yes”, else “no”.

Pr{A(X) = No | N < k] = (1‘/13)NZ (1_’13)k

I\N 1\ 2K
= = - — < —
Pr[A(x) = No| N > 2kK] (1 B) < (1 B)
Constant gap (roughly 1/e—1/¢€?).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
k™ hash functions. nlog k bits to specify!

2-wise independent hash functions
The family 27 : [n] — [p]

2-wise independent hash functions
The family 27 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

2-wise independent hash functions
The family 27 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:
]
Prh() =cnhly)=dl= 5 Vx#y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)

2-wise independent hash functions
The family 27 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:
]
Prh() =cnhly)=dl= 5 Vx#y

Proof: If h(x) = c and h(y) = d then
ax+b=c (mod p) ay+b=d (mod p)

has unique solution for a, b since (x — y) # 0.

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then
ax+b=c (mod p) ay+b=d (mod p)

has unique solution for a, b since (x — y) # 0.
— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

]
Prh() =cnhly)=dl= 5 Vx#y
Proof: If h(x) = c and h(y) = d then
ax+b=c (mod p) ay+b=d (mod p)

has unique solution for a, b since (x — y) # 0.
— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.

Nonprime |B| < p.

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)

has unique solution for a, b since (x — y) # 0.

— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.
Nonprime |B| < p.

0 [n] — |8,

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)

has unique solution for a, b since (x — y) # 0.

— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.
Nonprime |B| < p.

€ [n] — |B|, hap = (ax+b) (mod p) (mod |B|)

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)
has unique solution for a, b since (x — y) # 0.
— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.
Nonprime |B| < p.
€ [n] — |B|, hap = (ax+b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at ¢ and d] ~ ﬁ“ + %) Assume p >> 1, s0

basically assume perfectly independent.

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)
has unique solution for a, b since (x — y) # 0.
— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.
Nonprime |B| < p.
€ [n] — |B|, hap = (ax+b) (mod p) (mod |B|)
Approximately 2-wise indendependent.
Pr[collision at ¢ and d] ~ ﬁ“ + %) Assume p >> 1, s0
basically assume perfectly independent.

(k-wise independent hash family.

2-wise independent hash functions
The family 52 : [n] — [p]
hap(Xx)=ax+b modp, prime p>n, a,be{0,...,p—1}
is 2-wise independent:

Prlh() —enhy) =dl =z Vx2y

Proof: If h(x) = c and h(y) = d then

ax+b=c (mod p) ay+b=d (mod p)
has unique solution for a, b since (x — y) # 0.
— One h,y, out of p? functions has h(x) = ¢ and h(y) = d.
Nonprime |B| < p.
€ [n] — |B|, hap = (ax+b) (mod p) (mod |B|)
Approximately 2-wise indendependent.
Pr[collision at ¢ and d] ~ ﬁ“ + %) Assume p >> 1, s0
basically assume perfectly independent.

(k-wise independent hash family. degree k polynomials.)

Distinct elements with 2-wise hash functions.
N distinct items.

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound:

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y, Pr[Aj]

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y, Pr[Aj]

Pr[“yes"|N < k] <

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y, Pr[Aj]

Pr[“yes"|N < k] < ¥; Pr[h(j)= 0]

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y, Pr[Aj]

Pr[“yes"|N < k] < ¥, Pr[h(j)= 0] < k(z%)

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y Pr[Aj]

Pr["yes"|N < K] < ¥; Pr[h(j)= 0] < k(z%) <

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAU---UAN] <Y, Pr[Aj]
Pr["yes"|N < K] < ¥; Pr[h(j)= 0] < k(z%) <
Inclusion/Exclusion:

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes"|N < k] < ¥; Prlh(j)= 0] < k(5x) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']

Pr["yes"|N < k] < ¥; Pr[h(j)= 0] < k(4%) < }

Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']

Pr{"yes"|N < K] < ¥; Prh()= 0] < k(gx) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUA]] > ¥; Pr[Aj] = ¥ PriA N A]]

Pr[“yes” | N > 2k] 2%

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']

Pr{"yes"|N < K] < ¥; Prh()= 0] < k(gx) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUA]] > ¥; Pr[Aj] = ¥ PriA N A]]

2k 2k.(2k-1)
“ /! > _
Pr[“yes” | N > 2K] Z—B —%g

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAxU---UAN] <Y, Pr{Aj]
Pr{"yes"|N < K] < ¥; Prh()= 0] < k(gx) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

2k 2k.(2k—1) _ 2k
B

k
“ /! — _
Pr["yes” | N > 2k] Z—B — 5B >—1 B)

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAxU---UAN] <Y, Pr{Aj]
Pr{"yes"|N < K] < ¥; Prh()= 0] < k(gx) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

2k 2k.(2k—1) _ 2k
B

k. 3
“ /! —_)Y = (=
Prl'yes” |N>2K > — =22 > Z(1- 5)=(5)

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr[B]
PrlAjUAU---UAN] <Y, Pr[Aj]
Pr["yes”|N < k] < ¥; Pr[n()= 0] < k(g¢) < §

Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

. 2k 2k.(2k-1) 2k, Kk, 3
Pr[yes|N22k]zB —%g 28(1 B)_(S)

See this as one of two coins.

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”

Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
PrlAjUAxU---UAN] <Y, Pr{Aj]
Pr{"yes'|N < K] < ¥; Prh()= 0] < k(gz) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

2k 2k.(2k—1)

“ /! > >
Pr["yes |N_2k]_B 5B

2k
>
- B

k 3
(1-5)=()

See this as one of two coins.
Either heads with prob < §

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes”|N < k] < ¥; Pr[h(j)= 0] < k(7g) < §

Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

2k 2k.(2k—1)

“ /! >
Pr[“yes |N22k]_B 5B

2k
>
- B

k 3
(1-3)=(3)
See this as one of two coins.

Either heads with prob < §
Either heads with prob < 3

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes”|N < k] < ¥; Pr[h(j)= 0] < k(7g) < §

Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUAj] = ¥ Pr[Aj] — ¥ ; PrAin Aj]

2k 2k.(2k—1)

“ /! >
Pr[“yes |N22k]_B 5B

2k
>
- B

k 3
(1-5)=()

See this as one of two coins.

Either heads with prob < §
Either heads with prob < 3
Gap of .

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes"|N < k] < ¥; Prlh(j)= 0] < k(5x) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUA]] > ¥; Pr[Aj] = ¥ PriA N A]]

2k 2k.(2k—1)

“ /! > >
Pr["yes |N_2k]_B 5B

2k
>
- B

k 3
(1-3)=(3)
See this as one of two coins.

Either heads with prob < §
Either heads with prob < 3
Gap of .
Flip coin (in parallel)

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes"|N < k] < ¥; Prlh(j)= 0] < k(5x) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUA]] > ¥; Pr[Aj] = ¥ PriA N A]]

2k 2k.(2k—1)

2k, k., 3
“ /" —__Y=(=
Pr{"yes” | N > 2k] > & o5 2gl-5 =G

See this as one of two coins.

Either heads with prob < §
Either heads with prob < 3
Gap of .
Flip coin (in parallel) to pump up the volume!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from 2 : [n] — [4k].
(2) If h(x;) =0, say “yes”, else say “no”
Union Bound: Pr[AUB] < Pr[A]+ Pr|[B]
Pf[A1 UAQU"'UAN] < Z,'PI’[A,']
Pr("yes"|N < k] < ¥; Prlh(j)= 0] < k(5x) < §
Inclusion/Exclusion: Pr[AU B] > Pr[A]+ Pr[B] — Pr[An B]
PrlUA]] > ¥; Pr[Aj] = ¥ PriA N A]]

2k 2k.(2k—1)

2k, k., 3
“ /" —__Y=(=
Pr{"yes” | N > 2k] > & o5 2gl-5 =G

See this as one of two coins.

Either heads with prob < §
Either heads with prob < 3
Gap of .
Flip coin (in parallel) to pump up the velume! probability!

It gets better.
Simpl. Chernoff: Number of heads b in k = O(""J(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.

It gets better.
Simpl. Chernoff: Number of heads b in k = O("’Q(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.

Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:

“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:

“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 9.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:

“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢€)?

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.
Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.
Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1 —) < b < bk(1 +) with probability 1 — &.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.
Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.
Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.
Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.
“yes” with probability at least (1 + &)t when N > (1 +€)k.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.

“yes” with probability at most T when N < k.

“yes” with probability at least (1 + &)t when N > (1 +€)k.
log §

Run —

times to pump up the probability.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.
Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.
“yes” with probability at least (1 + &)t when N > (1 +€)k.
1
Run 'i% times to pump up the probability.
Run logy,. ntimes to get within factor of 1 +&.

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.

Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.
“yes” with probability at least (1 + &)t when N > (1 +€)k.
log §

Run =% times to pump up the probability.
Run logy,. ntimes to get within factor of 1 +&.

1
O(log nlogy , , n'(’*%) space,

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.

Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.
“yes” with probability at least (1 + &)t when N > (1 +€)k.
log §

Run =% times to pump up the probability.
Run logy,. ntimes to get within factor of 1 +&.

1
O(lognlogy ., n%) space, (1+¢) estimate,

It gets better.
Simpl. Chernoff: Number of heads b in k = O('OQ(E#) flips of bias b
coin satisfies bk(1—¢) < b< bk(1+ €) with probability 1 — 6.

Alg:
“yes” with probability at most 1/4 when N < k.
“yes” with probability at least 3/8 when N > 2k.

Run ©(log %) independent copies of Alg.
Output “yes” if more than % yes’s.

Use claim with & = §.
— Correct with probability > 1 — 6.
Run log n times to get within factor of two.

Factor of (1+¢)? Choose |B| = 0(%) in Alg.
“yes” with probability at most T when N < k.
“yes” with probability at least (1 + &)t when N > (1 +€)k.
log §

Run =% times to pump up the probability.
Run logy,. ntimes to get within factor of 1 +&.

1
O(lognlogy ., n%) space, (1+¢) estimate, w/prob 1 — 9.

Estimating F»

Second Moment: F, =Y, mj?.

Estimating F»

Second Moment: F, =Y, mj?.
Core Alg:

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j) =Y;

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.

h(j) =Y;
Z= Yicm] h(x;) = Yjes Yim

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.

h(j)=Y;

Z= Yicm] h(x;) = Yjes Yim
E[ZZ]

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.

h(j)=Y;

Z= Yicm] h(x;) = Yjes Yim
E[ZZ] =Y, E[Yl?]m/?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j) =Y;
Z = Yieim h(X;) = Ljes Yim,
E[Z%) = X E[YAm? + ¥ E[VIIE[Yl mim;

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j)=Y;
Z = Yieim h(x;) = Ljes Yim;
E2% = by E[Y/'Z]mjz +Xij EIVIE[Yjlmim; =¥ m? = Fp

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j)=Y;
Z = Yieim h(x;) = Ljes Yim;
E2% = by E[Y]?]m/? +Xij EIVIE[Yjlmim; =¥ m? = Fp

Show good probability of success?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j)=Y;
Z = Yieim h(x;) = Ljes Yim;
E2% = by E[Y]?]m/? +Xij EIVIE[Yjlmim; =¥ m? = Fp

Show good probability of success? Calculate variance.

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
) = Y;
Z = Yieim h(xi) = Ljes Yim;
ElZ?]=Y, E[Y]?]m/? + X EIVIEYlmim; =¥ m? = Fy
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
) = Y;
Z = Yieim h(xi) = Ljes Yim;
ElZ?]=Y, E[Y]?]m/? + X EIVIEYlmim; =¥ m? = Fy
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?
E[Z4]

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j)=Y;
Z = Yieim h(X;) = Ljes Yim,
E2% = by E[Y]?]m/? +Xij EIVIE[Yjlmim; =¥ m? = Fp
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?
E[Z4 = ¥ E[Y{m{]+8Y;; E[Y2Y2m2m?]

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
) = Y;
Z = Yieim h(xi) = Ljes Yim;
ElZ?]=Y, E[Y]?]m/? + X EIVIEYlmim; =¥ m? = Fy
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?

E[Z*) =¥, E[Y}mi] + 3% E[Y? Y mim?] = ¥ m} + 6%, mem?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j) =Y;
Z =Yicim h(Xi) = Ljes Yim;
E[Z?) = X E[YAm? + ¥ E[VIE[Y)]mim; = ¥;m? = F»
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?
E[Z*) =¥, E[Y}mi] + 3% E[Y? Y mim?] = ¥ m} + 6%, mem?
Var(Z?)

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — £1.
(2) Output 2% = (L; h(x;))?

Show E[Z?] = F,.
h(j) =Y;
Z = Yicim h(xi) = Ljes Yim;
E[Z?] = ¥, E[YAIm? + ¥ E[]E[YjImim; = ¥; m? = Fp
Show good probability of success? Calculate variance.
Var(X) = E[X?] - (E[X])?
E[Z%] = L E[Y!m{]+ 3%, E[YFY?mem?] = ¥ m} +6 X mem?
Var(Z?) = E[Z*] — E[Z?)?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — +1.
(2) Output 22 = (¥; h(x)))?
Show E[Z?] = F,.
h(j) =Y;
Z = Yieim h(xi) = Ljes Yim;
E[Z?] = ¥, E[YAIm? + ¥ E[]E[YjImim; = ¥; m? = Fp
Show good probability of success? Calculate variance.
Var(X) = E[X?] — (E[X])?
E[Z%] = L E[Y!m{]+ 3%, E[YFY?mem?] = ¥ m} +6 X mem?
Var(Z?) = E[Z%] - E[Z°? =2y m?m?

Estimating F»

Second Moment: F, =Y, ml?.

Core Alg:
(1) Random h from 4-wise ind. family ¢ : [n] — +1.
(2) Output Z% = (¥L; h(x;))?
Show E[Z?] = F,.
h(j) =Y;
Z = Yieim h(xi) = Ljes Yim;
E[Z?] = ¥, E[YAIm? + ¥ E[]E[YjImim; = ¥; m? = Fp
Show good probability of success? Calculate variance.
Var(X) = E[X?] — (E[X])?
E[Z%] = L E[Y!m{]+ 3%, E[YFY?mem?] = ¥ m} +6 X mem?
Var(Z?) = E[Z*] - E[Z%)? = 22m2m2 <2F2

Core Alg: analysis cont.

E[Z?] = F.

Core Alg: analysis cont.

E[Z?] = Fo.
Var(Z?)

Core Alg: analysis cont.

E[Z?] = F».
Var(Z2) = E[Z%] - E[Z2]2

Core Alg: analysis cont.

E[Z2] = F».
Var(2?) = E[Z4] - E[Z%)? = 2y m?m?

Core Alg: analysis cont.

E[Z?] = Fo.
Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}

Core Alg: analysis cont.

E[Z?] = Fo.
Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}

Close to expectation?

Core Alg: analysis cont.

E[Z?] = Fo.
Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}

Close to expectation? |22 — u| < eF,?

Core Alg: analysis cont.

E[Z?] = F».

Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}
Close to expectation? |22 — u| < eF,?
Chebyshev: Pr[|X —u| > A] < %

Core Alg: analysis cont.

E[Z?] = F».

Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}
Close to expectation? |22 — u| < eF,?
Chebyshev: Pr[|X —u| > A] < %

2
For 22, Pr{|Z2 —p| > eFo] < 55 = 2
2

Core Alg: analysis cont.

E[Z?] = F».

Var(Z?) = E[Z%] - E[Z°? =2y m?m? < 2F}
Close to expectation? |22 — u| < eF,?
Chebyshev: Pr[|X —u| > A] < %

2
For 22, Pr{|Z2 —p| > eFo] < 55 = 2
2

Uh oh.

Core Alg: analysis cont.

E[Z%] = F,.

Var(Z?) = E[Z%] - E[Z?)? = 2L m?m} < 2F%
Close to expectation? |22 — u| < eF?
Chebyshev: Pr[|X —u| > A] < M

For Z2, Pr[|Z2 — u| > eF) < 2F2:§2

Uh oh. Bigger than one for € < 2!

Independent trials.

Run Core Alg k times.

Independent trials.

Run Core Alg k times. Z,...,Z.

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[Z7] = F2

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[22] = F» Var(Z?) < 2F})

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[22] = F» Var(Z?) < 2F})

Output average.

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
E[Y] =

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
E[Y] =} £EIZ]

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
ElY]= X EZ) = F,

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
E[Y]=1LE[Z?]=F
Var(cX) = ¢ Var(X)

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
ElY]= X EZ) = F,

Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
ElY]= X EZ) = F,

Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Var(Y)

Independent trials.

Run Core Alg k times. Z,...,Z.

(E[ZP] = Fo Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
ElY]= X EZ) = F,

Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Var(Y) = ¥, Var(Z?)

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[Z7] = Fo Var(Z7) < 2F})
Output average. Y = 1 ¥, Z?
E[Y]= 4 LE[Z}]=F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

2
Var(Y) = 2 ¥ Var(Z?) = %

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = F2 Var(Z}) < 2F})
Output average. Y = 1 ¥, Z?
E[Y]= 4 LE[Z}]=F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Var(Y) = 2 ¥ Var(Z?) = 2F

k = 52 and Chebyshev

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = F2 Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
E[Y]= % YXE[ZA] = F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y
1 o 2F2
Var(Y) =z ¥ Var(Z7) = =2
k = 52 and Chebyshev
PrY —ul > eF] <6

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = F2 Var(Z?) < 2F3.)
Output average. Y = 1 ¥, Z?
E[Y]= % YXE[ZA] = F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y
1 o 2F2
Var(Y) =z ¥ Var(Z7) = =2
k = 52 and Chebyshev
PrY —ul > eF] <6

Space:

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = F2 Var(Z}) < 2F})
Output average. Y = 1 ¥, Z?
E[Y]= 4 LE[Z}]=F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Var() k2 Y Var(Z?) = 2F

k= &2 and Chebyshev
PrY —p|>eF] <8

Space: O(3 log s

Independent trials.

Run Core Alg k times. Z,...,Z.
(E[ZP] = F2 Var(Z}) < 2F})
Output average. Y = 1 ¥, Z?
E[Y]= 4 LE[Z}]=F2
Var(cX) = ¢ Var(X)
Var(X+Y) = Var(X)+ Var(Y); independent X and Y

Var() k2 Y Var(Z?) = 2F

k= &2 and Chebyshev
PrY —p|>eF] <8

Space: O(3 log s

Could get O(——2 logmog ——=38) using a Central Limit Theorem.

See you on Tuesday.

