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Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.
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What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?
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Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!
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Toy problem
Alg: Number of distinct elements

≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi ) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k ] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k ] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!
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2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d ] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d ]≈ 1
|B|2 (1± k

p )2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)
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Distinct elements with 2-wise hash functions.
N distinct items.

Toy Alg:
(1) Random hash h from H : [n]→ [4k ].
(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!



Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:

(1) Random hash h from H : [n]→ [4k ].
(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!



Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k ].

(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!



Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k ].
(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!



Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k ].
(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound:

Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!



Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k ].
(2) If h(xi ) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]

Pr [A1∪A2∪·· ·∪AN ]≤ ∑i Pr [Ai ]

Pr [“yes′′|N < k ]≤ ∑j Pr [h(j)= 0]≤ k( 1
4k )≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai ]≥ ∑i Pr [Ai ]−∑i ,j Pr [Ai ∩Aj ]

Pr[“yes′′ | N ≥ 2k ]≥2k
B
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B
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B
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3
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Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!
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It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O( log(1/δ )

ε2 ) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ( k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2 ) space, (1± ε) estimate, w/prob 1−δ .
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Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi ))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi ) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j ]m2

j + ∑i ,j E [Yi ]E [Yj ]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X ) = E [X 2]− (E [X ])2

E [Z 4] = ∑i E [Y 4
i m4

i ] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j ] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2
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Close to expectation? |Z 2−µ| ≤ εF2?
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∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!
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Independent trials.

Run Core Alg k times.

Z1, . . . ,Zk .

(E [Z 2
i ] = F2 Var(Z 2

i )≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y ] = 1
k ∑E [Z 2

i ] = F2

Var(cX ) = c2Var(X )
Var(X + Y ) = Var(X ) + Var(Y ); independent X and Y

Var(Y ) = 1
k2 ∑i Var(Z 2

i ) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O( logn
ε2δ

).

Could get O(
logn log 1

δ

ε2 ) using a Central Limit Theorem.
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See you on Tuesday.


