Today

Streaming.

Today

Streaming.

Frequency Moments.

Input:

Input:

 x_1 ,

Input:

 $x_1, x_2,$

Input:

 $x_1, x_2, x_3,$

Input:

 $x_1, x_2, x_3, \ldots,$

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu,

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle,

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew,

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu,

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Actually, no.

Input:

 $x_1, x_2, x_3, \ldots, x_n$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Actually, no. $O(\log^c n)$ space.

Input:

$$x_1, x_2, x_3, \ldots, x_n$$
.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Actually, no. $O(\log^c n)$ space.

Model LARGE data

Input:

$$x_1, x_2, x_3, \ldots, x_n$$
.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Actually, no. $O(\log^c n)$ space.

Model LARGE data small space.

Input:

$$x_1, x_2, x_3, \ldots, x_n$$
.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...

Got to get 'em all!

Actually, no. $O(\log^c n)$ space.

Model LARGE data small space.

Extreme mismatch.

Data.

Data.

Moments!

Data.

Moments!

 F_k

Data.

Moments!

$$F_k = \sum_i m_i^k$$

Data.

Moments!

 $F_k = \sum_i m_i^k$

 m_i - number of items of type i.

Data.

Moments!

 $F_k = \sum_i m_i^k$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

```
Data.
```

Moments!

```
F_k = \sum_i m_i^k
```

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, \dots

 F_0 :

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

```
Data.
```

Moments!

```
F_k = \sum_i m_i^k
```

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

 F_1 :

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

 F_1 : Length of stream.

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

 F_1 : Length of stream.

Easy to compute!

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

 F_1 : Length of stream.

Easy to compute!

Data.

Moments!

$$F_k = \sum_i m_i^k$$

 m_i - number of items of type i.

E.g., number of Pikachus, Squirtles, ...

 F_0 : Number of distinct elements.

How to compute?

 F_1 : Length of stream.

Easy to compute!

 F_2 : How to compute?

Number Distinct Elements

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Number Distinct Elements

Claim: takes $\Omega(n)$ space for exact number of distinct items! Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

Claim: takes $\Omega(n)$ space for exact number of distinct items! Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle How many distinct elements?

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See!

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S* maintains number of distinct elements.

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S* maintains number of distinct elements.

Is $x \in S$?

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S* maintains number of distinct elements.

Is $x \in S$?

Add x, see if number of distinct elements change.

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S* maintains number of distinct elements.

Is $x \in S$?

Add x, see if number of distinct elements change.

Must know subset of [n]

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S* maintains number of distinct elements.

Is *x* ∈ *S*?

Add x, see if number of distinct elements change.

Must know subset of [n]

(at most *n* types)

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream *S*maintains number of distinct elements.

Is $x \in S$?

Add x, see if number of distinct elements change.

Must know subset of [n]

(at most *n* types)

2ⁿ possibilities

Claim: takes $\Omega(n)$ space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! $\Omega(n)$ time.

Algorithm A takes stream \mathcal{S}

maintains number of distinct elements.

Is $x \in S$?

Add x, see if number of distinct elements change.

Must know subset of [n]

(at most *n* types)

 2^n possibilities \rightarrow requires $\Omega(n)$ bits!

Alg: Number of distinct elements

Alg: Number of distinct elements

 $\leq k$

Alg: Number of distinct elements

≤ *k* Output: "no"

Alg: Number of distinct elements

≤ *k* Output: "no"

 $\geq 2k$

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h:[n] \rightarrow [B]$, where B = k.

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$\Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h:[n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$). Many trials,

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$). Many trials, in parallel

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h:[n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Many trials, in parallel gives good result.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h:[n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Many trials, in parallel gives good result. ..more later.

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?

Alg: Number of distinct elements

 $\leq k$ Output: "no" $\geq 2k$ Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h: [n] \rightarrow [B]$, where B = k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$\Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$

$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function? k^n hash functions.

Alg: Number of distinct elements

 $\leq k$ Output: "no" > 2k Output: "yes"

Don't care if in between.

Randomized Algorithm:

(1) Choose random hash function.

 $h:[n] \rightarrow [B]$, where B=k.

(2) If any $h(x_i) = 0$, say "yes", else "no".

$$Pr[A(x) = No \mid N \le k] = \left(1 - \frac{1}{B}\right)^{N} \ge \left(1 - \frac{1}{B}\right)^{k}$$
$$Pr[A(x) = No \mid N > 2k] = \left(1 - \frac{1}{B}\right)^{N} \le \left(1 - \frac{1}{B}\right)^{2k}$$

Constant gap (roughly $1/e - 1/e^2$).

Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function? k^n hash functions. $n \log k$ bits to specify!

2-wise independent hash functions

The family $\mathscr{H}:[n]\to[p]$

2-wise independent hash functions

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p, \text{ prime } p \ge n, \ a,b \in \{0,\dots,p-1\}$

2-wise independent hash functions

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

The family $\mathscr{H}:[n]\to[p]$ $h_{a,b}(x)=ax+b\mod p$, prime $p\geq n$, $a,b\in\{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

The family $\mathscr{H}:[n]\to[p]$ $h_{a,b}(x)=ax+b\mod p, \text{ prime }p\geq n,\ a,b\in\{0,\dots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

The family $\mathscr{H}:[n]\to[p]$ $h_{a,b}(x)=ax+b\mod p, \text{ prime }p\geq n,\ a,b\in\{0,\dots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

The family $\mathcal{H}: [n] \rightarrow [p]$

 $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a, b \in \{0, ..., p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

$$\mathscr{H}: [n] \rightarrow |B|,$$

The family $\mathcal{H}: [n] \to [p]$

 $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

$$\mathscr{H}: [n] \to |B|, h_{a,b} = (ax+b) \pmod{p} \pmod{|B|}$$

The family $\mathcal{H}: [n] \rightarrow [p]$

 $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

$$\mathscr{H}: [n] \rightarrow |B|, h_{a,b} = (ax+b) \pmod{p} \pmod{|B|}$$

Approximately 2-wise indendependent.

Pr[collision at c and d] $\approx \frac{1}{|B|^2} (1 \pm \frac{k}{\rho})^2$ Assume $\rho >> 1$, so basically assume perfectly independent.

The family $\mathscr{H}: [n] \to [p]$ $h_{a,b}(x) = ax + b \mod p$, prime $p \ge n$, $a,b \in \{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

$$\mathscr{H}: [n] \rightarrow |B|, h_{a,b} = (ax+b) \pmod{p} \pmod{|B|}$$

Approximately 2-wise indendependent.

Pr[collision at c and d] $\approx \frac{1}{|B|^2} (1 \pm \frac{k}{\rho})^2$ Assume $\rho >> 1$, so basically assume perfectly independent.

(k-wise independent hash family.

The family $\mathscr{H}:[n]\to[p]$ $h_{a,b}(x)=ax+b\mod p,$ prime $p\geq n,\ a,b\in\{0,\ldots,p-1\}$ is 2-wise independent:

$$\Pr_{a,b}[h(x) = c \land h(y) = d] = \frac{1}{p^2} \qquad \forall x \neq y$$

Proof: If h(x) = c and h(y) = d then

$$ax + b = c \pmod{p}$$
 $ay + b = d \pmod{p}$

has unique solution for a, b since $(x - y) \neq 0$.

$$\rightarrow$$
 One $h_{a,b}$ out of p^2 functions has $h(x) = c$ and $h(y) = d$.

Nonprime |B| < p.

$$\mathscr{H}: [n] \to |B|, h_{a,b} = (ax+b) \pmod{p} \pmod{|B|}$$

Approximately 2-wise indendependent.

Pr[collision at c and d] $\approx \frac{1}{|B|^2} (1 \pm \frac{k}{\rho})^2$ Assume $\rho >> 1$, so basically assume perfectly independent.

(k-wise independent hash family. degree k polynomials.)

N distinct items.

N distinct items.

Toy Alg:

N distinct items.

Toy Alg:

(1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound:

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \le \sum_i Pr[A_i]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le$$

N distinct items.

Toy Alg:

- (1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0]$$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k})$$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

N distinct items.

Toy Alg:

- (1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion:

N distinct items.

Toy Alg:

(1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.

(2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$ $Pr[A \cup A_0 \cup \dots \cup A_n] \leq \sum_i Pr[A_i]$

 $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \le \sum_i Pr[A_i]$

$$A_1 \cup A_2 \cup \cdots \cup A_N \le \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion:
$$Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$$

 $Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_i Pr[A_i \cap A_i]$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes" | N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion:
$$Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$$

 $Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_i Pr[A_i \cap A_i]$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{R}$$

N distinct items.

Toy Alg:

(1) Random hash h from $\mathcal{H}: [n] \to [4k]$.

(2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

 $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$ $Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i \neq i} Pr[A_i \cap A_i]$

$$\frac{\sum_{i,j} \sum_{j} \sum_{i,j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B}$$

N distinct items.

Toy Ala:

- (1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] < Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes" | N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] > Pr[A] + Pr[B] - Pr[A \cap B]$

$$Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B})$$

N distinct items.

Toy Alg:

(1) Random hash
$$h$$
 from $\mathcal{H}: [n] \to [4k]$.

(2) If
$$h(x_i) = 0$$
, say "yes", else say "no"

Union Bound:
$$Pr[A \cup B] \leq Pr[A] + Pr[B]$$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes" | N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion:
$$Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$$

 $Pr[\cup A_i] > \sum_i Pr[A_i] - \sum_i Pr[A_i \cap A_i]$

$$||P_{i}|| \ge \sum_{i=1}^{k} |P_{i}| - \sum_{i=1}^{k} |P_{i}| + \sum_{i=1}^$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

N distinct items.

Toy Ala:

- (1) Random hash *h* from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] < Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] > Pr[A] + Pr[B] - Pr[A \cap B]$

$$Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k \cdot (2k-1)}{2B} \ge \frac{2k}{B} (1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$ $Pr[\cup A:] > \sum_{i} Pr[A:] - \sum_{i} Pr[A: \cap A:]$

$$Pr[\cup A_i] \geq \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$ $Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$ Either heads with prob $\leq \frac{3}{8}$

N distinct items.

Toy Alg:

- (1) Random hash h from $\mathcal{H}: [n] \to [4k]$.
- (2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

$$Pr[A_1 \cup A_2 \cup \cdots \cup A_N] \leq \sum_i Pr[A_i]$$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j)=0] \le k(\frac{1}{4k}) \le \frac{1}{4}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$ $Pr[\cup A_i] > \sum_i Pr[A_i] - \sum_i Pr[A_i \cap A_i]$

$$|\mathcal{D}_{A_i}| \geq |\mathcal{L}_{i} \cap |\mathcal{A}_{i}| - |\mathcal{L}_{i,j} \cap |\mathcal{A}_{i} \cap |\mathcal{A}_{j}|$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$ Either heads with prob $\leq \frac{3}{8}$

Gap of $\frac{1}{8}$.

N distinct items.

Toy Alg:

(1) Random hash h from $\mathcal{H}: [n] \to [4k]$.

(2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] < \sum_i Pr[A_i]$

$$Pr["yes"|N < k] \le \sum_{i} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4k}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$

$$Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$ Either heads with prob $\leq \frac{3}{8}$ Gap of $\frac{1}{8}$.

Flip coin (in parallel)

N distinct items.

Toy Alg:

(1) Random hash h from $\mathcal{H}: [n] \to [4k]$.

(2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] < \sum_i Pr[A_i]$

$$Pr["yes"|N < k] \le \sum_{i} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4k}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$

$$Pr[\cup A_i] \ge \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k.(2k-1)}{2B} \ge \frac{2k}{B}(1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$ Either heads with prob $\leq \frac{3}{8}$ Gap of $\frac{1}{6}$.

Flip coin (in parallel) to pump up the volume!

N distinct items.

Toy Alg:

(1) Random hash h from $\mathcal{H}: [n] \to [4k]$.

(2) If $h(x_i) = 0$, say "yes", else say "no"

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ $Pr[A_1 \cup A_2 \cup \cdots \cup A_N] < \sum_i Pr[A_i]$

$$Pr["yes"|N < k] \le \sum_{j} Pr[h(j) = 0] \le k(\frac{1}{4k}) \le \frac{1}{4k}$$

Inclusion/Exclusion: $Pr[A \cup B] \ge Pr[A] + Pr[B] - Pr[A \cap B]$ $Pr[\cup A_i] > \sum_i Pr[A_i] - \sum_{i,j} Pr[A_i \cap A_j]$

$$\Pr["yes" \mid N \ge 2k] \ge \frac{2k}{B} - \frac{2k \cdot (2k-1)}{2B} \ge \frac{2k}{B} (1 - \frac{k}{B}) = (\frac{3}{8})$$

See this as one of two coins.

Either heads with prob $\leq \frac{1}{4}$ Either heads with prob $\leq \frac{3}{8}$ Gap of $\frac{1}{6}$.

Flip coin (in parallel) to pump up the volume! probability!

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Simpl. Chernoff: Number of heads \hat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \hat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

ightarrow Correct with probability $\geq 1 - \delta$.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

$$ightarrow$$
 Correct with probability $\geq 1 - \delta$.

Run $\log n$ times to get within factor of two.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

ightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1+\varepsilon)$?

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

$$ightarrow$$
 Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \leq \widehat{b} \leq bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

 \rightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg. "yes" with probability at most τ when N < k.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

 \rightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1+\varepsilon)\tau$ when $N > (1+\varepsilon)k$.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

 \rightarrow Correct with probability $\geq 1 - \delta$. Run log *n* times to get within factor of two.

Factor of $(1+\varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1+\varepsilon)\tau$ when $N > (1+\varepsilon)k$.

Run $\frac{\log \frac{1}{\delta}}{\epsilon^2}$ times to pump up the probability.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

 \rightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1+\varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1+\varepsilon)\tau$ when $N > (1+\varepsilon)k$.

Run $\frac{\log \frac{1}{\delta}}{\epsilon^2}$ times to pump up the probability.

Run $\log_{1+\varepsilon} n$ times to get within factor of $1+\varepsilon$.

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

ightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1+\varepsilon)\tau$ when $N > (1+\varepsilon)k$.

Run $\frac{\log \frac{1}{\delta}}{c^2}$ times to pump up the probability.

Run $\log_{1+\varepsilon} n$ times to get within factor of $1+\varepsilon$.

$$O(\log n \log_{1+\varepsilon} n \frac{\log \frac{1}{\delta}}{\varepsilon^2})$$
 space,

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

ightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two.

Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1+\varepsilon)\tau$ when $N > (1+\varepsilon)k$.

Run $\frac{\log \frac{1}{\delta}}{\varepsilon^2}$ times to pump up the probability.

Run $\log_{1+\varepsilon}^{\varepsilon^2} n$ times to get within factor of $1+\varepsilon$.

 $O(\log n \log_{1+\varepsilon} n \frac{\log \frac{1}{\delta}}{\varepsilon^2})$ space, $(1 \pm \varepsilon)$ estimate,

Simpl. Chernoff: Number of heads \widehat{b} in $k = O(\frac{\log(1/\delta)}{\varepsilon^2})$ flips of bias b coin satisfies $bk(1-\varepsilon) \le \widehat{b} \le bk(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most 1/4 when N < k.

"yes" with probability at least 3/8 when N > 2k.

Run $\Theta(\log \frac{1}{\delta})$ independent copies of Alg.

Output "yes" if more than $\frac{5}{16}$ yes's.

Use claim with $\varepsilon = \frac{1}{3}$.

ightarrow Correct with probability $\geq 1 - \delta$.

Run log *n* times to get within factor of two. Factor of $(1 + \varepsilon)$? Choose $|B| = \theta(\frac{k}{\varepsilon})$ in Alg.

"yes" with probability at most τ when N < k.

"yes" with probability at most τ when N < k.

"yes" with probability at least $(1 + \varepsilon)\tau$ when $N > (1 + \varepsilon)k$.

Run $\frac{\log \frac{1}{\delta}}{c^2}$ times to pump up the probability.

Run $\log_{1+\varepsilon} n$ times to get within factor of $1+\varepsilon$.

 $O(\log n \log_{1+\varepsilon} n \frac{\log \frac{1}{\delta}}{\varepsilon^2})$ space, $(1 \pm \varepsilon)$ estimate, w/prob $1 - \delta$.

Second Moment: $F_2 = \sum_j m_j^2$.

Estimating *F*₂

Second Moment: $F_2 = \sum_j m_j^2$.

Second Moment: $F_2 = \sum_j m_i^2$.

Core Alg:

(1) Random *h* from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.

Second Moment: $F_2 = \sum_j m_i^2$.

- (1) Random h from 4-wise ind. family $\mathscr{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Second Moment: $F_2 = \sum_j m_i^2$.

- (1) Random h from 4-wise ind. family $\mathscr{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathscr{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show $E[Z^2] = F_2$.

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random h from 4-wise ind. family $\mathscr{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{j \in S} Y_j m_j$$

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random \underline{h} from 4-wise ind. family $\mathcal{H}: [\underline{n}] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2]$$

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2$$

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j$$

Second Moment: $F_2 = \sum_j m_j^2$.

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_{j} E[Y_i^2] m_i^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_{i} m_i^2 = F_2$$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random \underline{h} from 4-wise ind. family $\mathcal{H}: [\underline{n}] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_{j} E[Y_i^2] m_i^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_{i} m_i^2 = F_2$$

Show good probability of success?

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

$$Var(X) = E[X^2] - (E[X])^2$$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random \underline{h} from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

$$Var(X) = E[X^2] - (E[X])^2$$

 $E[Z^4]$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[Z^{4}] = \sum_{i} E[Y_{i}^{4} m_{i}^{4}] + 3\sum_{i,j} E[Y_{i}^{2} Y_{i}^{2} m_{i}^{2} m_{i}^{2}]$$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

$$Var(X) = E[X^2] - (E[X])^2$$

$$E[Z^4] = \sum_i E[Y_i^4 m_i^4] + 3\sum_{i,j} E[Y_i^2 Y_j^2 m_i^2 m_j^2] = \sum_i m_i^4 + 6\sum_{i,j} m_i^2 m_j^2$$

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[Z^{4}] = \sum_{i} E[Y_{i}^{4} m_{i}^{4}] + 3\sum_{i,j} E[Y_{i}^{2} Y_{j}^{2} m_{i}^{2} m_{j}^{2}] = \sum_{i} m_{i}^{4} + 6\sum_{i,j} m_{i}^{2} m_{j}^{2}$$

$$Var(Z^{2})$$

Estimating F_2

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random *h* from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

Show good probability of success? Calculate variance.

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[Z^{4}] = \sum_{i} E[Y_{i}^{4} m_{i}^{4}] + 3\sum_{i,j} E[Y_{i}^{2} Y_{j}^{2} m_{i}^{2} m_{j}^{2}] = \sum_{i} m_{i}^{4} + 6\sum_{i,j} m_{i}^{2} m_{j}^{2}$$

$$Var(Z^{2}) = E[Z^{4}] - E[Z^{2}]^{2}$$

Estimating F_2

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random h from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{i \in S} Y_i m_i$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

Show good probability of success? Calculate variance.

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[Z^{4}] = \sum_{i} E[Y_{i}^{4} m_{i}^{4}] + 3\sum_{i,j} E[Y_{i}^{2} Y_{j}^{2} m_{i}^{2} m_{j}^{2}] = \sum_{i} m_{i}^{4} + 6\sum_{i,j} m_{i}^{2} m_{j}^{2}$$

$$Var(Z^{2}) = E[Z^{4}] - E[Z^{2}]^{2} = 2\sum_{i} m_{i}^{2} m_{i}^{2}$$

Estimating F_2

Second Moment: $F_2 = \sum_j m_j^2$.

Core Alg:

- (1) Random *h* from 4-wise ind. family $\mathcal{H}: [n] \to \pm 1$.
- (2) Output $Z^2 = (\sum_i h(x_i))^2$

Show
$$E[Z^2] = F_2$$
.

$$h(j) = Y_j$$

$$Z = \sum_{i \in [m]} h(x_i) = \sum_{j \in S} Y_j m_j$$

$$E[Z^2] = \sum_j E[Y_j^2] m_j^2 + \sum_{i,j} E[Y_i] E[Y_j] m_i m_j = \sum_i m_i^2 = F_2$$

Show good probability of success? Calculate variance.

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[Z^{4}] = \sum_{i} E[Y_{i}^{4} m_{i}^{4}] + 3\sum_{i,j} E[Y_{i}^{2} Y_{j}^{2} m_{i}^{2} m_{j}^{2}] = \sum_{i} m_{i}^{4} + 6\sum_{i,j} m_{i}^{2} m_{j}^{2}$$

$$Var(Z^{2}) = E[Z^{4}] - E[Z^{2}]^{2} = 2\sum_{i} m_{i}^{2} m_{i}^{2} \leq 2F_{2}^{2}$$

 $E[Z^2] = F_2$.

 $E[Z^2] = F_2.$ $Var(Z^2)$

$$E[Z^2] = F_2.$$

 $Var(Z^2) = E[Z^4] - E[Z^2]^2$

$$E[Z^2] = F_2.$$

 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_i^2$

$$E[Z^2] = F_2.$$

 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$

$$E[Z^2] = F_2.$$
 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$ Close to expectation?

$$E[Z^2] = F_2.$$
 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$ Close to expectation? $|Z^2 - \mu| \le \varepsilon F_2$?

$$E[Z^2] = F_2.$$
 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$ Close to expectation? $|Z^2 - \mu| \le \varepsilon F_2$?

Chebyshev:
$$Pr[|X - \mu| > \Delta] \le \frac{Var(X)}{\Delta^2}$$

$$E[Z^2] = F_2.$$

 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$

Close to expectation? $|Z^2 - \mu| \le \varepsilon F_2$?

Chebyshev:
$$Pr[|X - \mu| > \Delta] \le \frac{Var(X)}{\Delta^2}$$

For
$$Z^2$$
, $Pr[|Z^2 - \mu| > \varepsilon F_2] \le \frac{2F_2^2}{\varepsilon^2 F_2^2} = \frac{2}{\varepsilon^2}$

$$\begin{split} E[Z^2] &= F_2. \\ Var(Z^2) &= E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \leq 2F_2^2 \\ \text{Close to expectation? } |Z^2 - \mu| \leq \varepsilon F_2? \\ \text{Chebyshev: } Pr[|X - \mu| > \Delta] \leq \frac{Var(X)}{\Delta^2} \\ \text{For } Z^2, \ Pr[|Z^2 - \mu| > \varepsilon F_2] \leq \frac{2F_2^2}{\varepsilon^2 F_2^2} = \frac{2}{\varepsilon^2} \\ \text{Uh oh.} \end{split}$$

$$E[Z^2] = F_2.$$

 $Var(Z^2) = E[Z^4] - E[Z^2]^2 = 2\sum m_i^2 m_j^2 \le 2F_2^2$

Close to expectation? $|Z^2 - \mu| \le \varepsilon F_2$?

Chebyshev:
$$Pr[|X - \mu| > \Delta] \le \frac{Var(X)}{\Delta^2}$$

For
$$Z^2$$
, $Pr[|Z^2 - \mu| > \varepsilon F_2] \le \frac{2F_2^2}{\varepsilon^2 F_2^2} = \frac{2}{\varepsilon^2}$

Uh oh. Bigger than one for $\varepsilon \leq 2!$

Run Core Alg k times.

$$(E[Z_i^2] = F_2$$

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Run Core Alg k times. Z_1, \ldots, Z_k .

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average.

Run Core Alg k times. Z_1, \ldots, Z_k .

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$

Run Core Alg k times. Z_1, \ldots, Z_k .

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$

$$E[Y] =$$

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average.
$$Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$$

$$E[Y] = \frac{1}{k} \sum E[Z_i^2]$$

Run Core Alg k times. Z_1, \ldots, Z_k .

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$

$$E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$$

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average.
$$Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$$

$$E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$$

$$Var(cX) = c^2 Var(X)$$

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_i Z_i^2$ $E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X+Y) = Var(X) + Var(Y); independent <math>X and Y

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_i Z_i^2$ $E[Y] = \frac{1}{k} \sum_i E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X+Y) = Var(X) + Var(Y); independent X and Y Var(Y)

Run Core Alg k times. Z_1, \dots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$

Output average.
$$Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$$

$$E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$$
$$Var(cX) = c^2 Var(X)$$

$$Var(cX) = c^2 Var(X)$$

 $Var(X + Y) = Var(X) + Var(Y)$; independent X and Y

$$Var(Y) = \frac{1}{k^2} \sum_i Var(Z_i^2)$$

$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$

Output average.
$$Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$$

$$E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$$

$$Var(cX) = c^2 Var(X)$$

 $Var(X + Y) = Var(X) + Var(Y)$; independent X and Y

$$Var(Y) = \frac{1}{k^2} \sum_{i} Var(Z_i^2) = \frac{2F_2^2}{k}$$

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_i Z_i^2$ $E[Y] = \frac{1}{k} \sum_i E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X+Y) = Var(X) + Var(Y); independent X and Y $Var(Y) = \frac{1}{k^2} \sum_i Var(Z_i^2) = \frac{2F_2^2}{k}$ $k = \frac{2}{3 \times 2} \text{ and Chebyshev}$

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) < 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$ $E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X + Y) = Var(X) + Var(Y); independent X and Y $Var(Y) = \frac{1}{k^2} \sum_{i} Var(Z_i^2) = \frac{2F_2^2}{k}$ $k = \frac{2}{5a^2}$ and Chebyshev $\Pr[|Y - \mu| > \varepsilon F_2] < \delta$

Space:

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) < 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$ $E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X + Y) = Var(X) + Var(Y); independent X and Y $Var(Y) = \frac{1}{k^2} \sum_{i} Var(Z_i^2) = \frac{2F_2^2}{k}$ $k = \frac{2}{5a^2}$ and Chebyshev $\Pr[|Y - \mu| > \varepsilon F_2] < \delta$

Run Core Alg k times. Z_1, \ldots, Z_k . $(E[Z_i^2] = F_2 \ Var(Z_i^2) < 2F_2^2.)$ Output average. $Y = \frac{1}{k} \sum_{i} Z_{i}^{2}$ $E[Y] = \frac{1}{k} \sum E[Z_i^2] = F_2$ $Var(cX) = c^2 Var(X)$ Var(X + Y) = Var(X) + Var(Y); independent X and Y $Var(Y) = \frac{1}{k^2} \sum_{i} Var(Z_i^2) = \frac{2F_2^2}{k}$ $k = \frac{2}{5a^2}$ and Chebyshev $\Pr[|Y - \mu| > \varepsilon F_2] < \delta$ Space: $O(\frac{\log n}{a^2s})$.

Run Core Alg
$$k$$
 times. Z_1, \ldots, Z_k .
$$(E[Z_i^2] = F_2 \ Var(Z_i^2) \le 2F_2^2.)$$
 Output average. $Y = \frac{1}{k} \sum_i Z_i^2$
$$E[Y] = \frac{1}{k} \sum_i E[Z_i^2] = F_2$$

$$Var(cX) = c^2 Var(X)$$

$$Var(X+Y) = Var(X) + Var(Y); \text{ independent } X \text{ and } Y$$

$$Var(Y) = \frac{1}{k^2} \sum_i Var(Z_i^2) = \frac{2F_2^2}{k}$$

$$k = \frac{2}{\delta \varepsilon^2} \text{ and Chebyshev }$$

$$\Pr[|Y-\mu| \ge \varepsilon F_2] \le \delta$$
 Space: $O(\frac{\log n}{c^2 \delta}).$

Could get $O(\frac{\log n \log \frac{1}{\delta}}{\varepsilon^2})$ using a Central Limit Theorem.

