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Claim: takes €2(n) space for exact number of distinct items!
Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Q(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x € §?
Add x, see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2" possibilities — requires Q(n) bits!
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Core Alg: analysis cont.

E[Z%] = F,.

Var(Z?) = E[Z%] - E[Z?)? = 2L m?m} < 2F%
Close to expectation? |22 — u| < eF?
Chebyshev: Pr[|X —u| > A] < M

For Z2, Pr[|Z2 — u| > eF) < 2F2:§2

Uh oh. Bigger than one for € < 2!
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Output average. Y = 1 ¥, Z?
E[Y]= 4 LE[Z}]=F2
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Could get O(——2 logmog ——=38) using a Central Limit Theorem.



See you on Tuesday.



