
Today

Streaming.

Frequency Moments.

Today

Streaming.

Frequency Moments.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,

x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,

x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3,

. . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,

xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu,

Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle,

Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew,

Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu,

. . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no.

O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data

small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

Streaming.

Input:

x1,x2,x3, . . . ,xn.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, . . .

Got to get ’em all!

Actually, no. O(logc n) space.

Model LARGE data small space.

Extreme mismatch.

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk

= ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0:

Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1:

Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

What to compute.

Data.

Moments!

Fk = ∑i mk
i

mi - number of items of type i .

E.g., number of Pikachus, Squirtles, . . .

F0: Number of distinct elements.

How to compute?

F1: Length of stream.

Easy to compute!

F2: How to compute?

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See!

Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.

Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?

Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.

Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]

(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities

→ requires Ω(n) bits!

Number Distinct Elements

Claim: takes Ω(n) space for exact number of distinct items!

Pikachu, Squirtle, Mew, Squirtle, Pikachu, Squirtle

How many distinct elements?

Answer: 3.

See! Ω(n) time.

Algorithm A takes stream S
maintains number of distinct elements.
Is x ∈ S?
Add x , see if number of distinct elements change.
Must know subset of [n]
(at most n types)

2n possibilities→ requires Ω(n) bits!

Toy problem
Alg: Number of distinct elements

≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k

Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”

≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k

Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:

(1) Choose random hash function.
h : [n]→ [B], where B = k .

(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .

(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap

(roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).

Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials,

in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel

gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result.

..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?

kn hash functions. n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions.

n logk bits to specify!

Toy problem
Alg: Number of distinct elements
≤ k Output: “no”
≥ 2k Output: “yes”

Don’t care if in between.

Randomized Algorithm:
(1) Choose random hash function.

h : [n]→ [B], where B = k .
(2) If any h(xi) = 0, say “yes”, else “no”.

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N

≥
(

1− 1
B

)k

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N

≤
(

1− 1
B

)2k

Constant gap (roughly 1/e−1/e2).
Many trials, in parallel gives good result. ..more later.

Number of bits for random hash function?
kn hash functions. n logk bits to specify!

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}

is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.

→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|,

ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)

Approximately 2-wise indendependent.
Pr[collision at c and d]≈ 1

|B|2 (1± k
p)2 Assume p >> 1, so

basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family.

degree k polynomials.)

2-wise independent hash functions
The family H : [n]→ [p]

ha,b(x) = ax + b mod p, prime p ≥ n, a,b ∈ {0, . . . ,p−1}
is 2-wise independent:

Pr
a,b

[h(x) = c∧h(y) = d] =
1
p2 ∀x 6= y

Proof: If h(x) = c and h(y) = d then

ax + b = c (mod p) ay + b = d (mod p)

has unique solution for a,b since (x−y) 6= 0.
→ One ha,b out of p2 functions has h(x) = c and h(y) = d .

Nonprime |B|< p.

H : [n]→ |B|, ha,b = (ax + b) (mod p) (mod |B|)
Approximately 2-wise indendependent.

Pr[collision at c and d]≈ 1
|B|2 (1± k

p)2 Assume p >> 1, so
basically assume perfectly independent.

(k -wise independent hash family. degree k polynomials.)

Distinct elements with 2-wise hash functions.
N distinct items.

Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:

(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].

(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound:

Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]

Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤

∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]

≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)

≤ 1
4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion:

Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]

Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B

− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B

≥ 2k
B

(1− k
B

) = (
3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
)

= (
3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel)

to pump up the volume!probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!

probability!

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from H : [n]→ [4k].
(2) If h(xi) = 0, say “yes”, else say “no”

Union Bound: Pr [A∪B]≤ Pr [A] + Pr [B]
Pr [A1∪A2∪·· ·∪AN]≤ ∑i Pr [Ai]

Pr [“yes′′|N < k]≤ ∑j Pr [h(j)= 0]≤ k(1
4k)≤ 1

4

Inclusion/Exclusion: Pr [A∪B]≥ Pr [A] + Pr [B]−Pr [A∩B]
Pr [∪Ai]≥ ∑i Pr [Ai]−∑i ,j Pr [Ai ∩Aj]

Pr[“yes′′ | N ≥ 2k]≥2k
B
− 2k .(2k −1)

2B
≥ 2k

B
(1− k

B
) = (

3
8

)

See this as one of two coins.

Either heads with prob ≤ 1
4

Either heads with prob ≤ 3
8

Gap of 1
8 .

Flip coin (in parallel) to pump up the volume!

volume!

probability!

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:

“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.

Output “yes” if more than 5
16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .

Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)?

Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.

“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .

“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.

Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space,

(1± ε) estimate, w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate,

w/prob 1−δ .

It gets better.
Simpl. Chernoff: Number of heads b̂ in k = O(log(1/δ)

ε2) flips of bias b

coin satisfies bk(1− ε)≤ b̂ ≤ bk(1 + ε) with probability 1−δ .

Alg:
“yes” with probability at most 1/4 when N < k .
“yes” with probability at least 3/8 when N > 2k .

Run Θ(log 1
δ

) independent copies of Alg.
Output “yes” if more than 5

16 yes’s.

Use claim with ε = 1
3 .

→ Correct with probability ≥ 1−δ .
Run logn times to get within factor of two.

Factor of (1 + ε)? Choose |B|= θ(k
ε

) in Alg.
“yes” with probability at most τ when N < k .
“yes” with probability at least (1 + ε)τ when N > (1 + ε)k .

Run
log 1

δ

ε2 times to pump up the probability.
Run log1+ε n times to get within factor of 1 + ε.

O(logn log1+ε n
log 1

δ

ε2) space, (1± ε) estimate, w/prob 1−δ .

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:

(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.

(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj

Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2]

= ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j

+ ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj

= ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success?

Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4]

= ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j]

= ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2)

= E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2

= 2∑m2
i m2

j ≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j

≤ 2F 2
2

Estimating F2

Second Moment: F2 = ∑j m2
j .

Core Alg:
(1) Random h from 4-wise ind. family H : [n]→±1.
(2) Output Z 2 = (∑i h(xi))2

Show E [Z 2] = F2.

h(j) = Yj
Z = ∑i∈[m] h(xi) = ∑j∈S Yjmj

E [Z 2] = ∑j E [Y 2
j]m2

j + ∑i ,j E [Yi]E [Yj]mimj = ∑i m2
i = F2

Show good probability of success? Calculate variance.

Var(X) = E [X 2]− (E [X])2

E [Z 4] = ∑i E [Y 4
i m4

i] + 3∑i ,j E [Y 2
i Y 2

j m2
i m2

j] = ∑i m4
i + 6∑i ,j m2

i m2
j

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2)

= E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2

= 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j

≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation?

|Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh.

Bigger than one for ε ≤ 2!

Core Alg: analysis cont.

E [Z 2] = F2.

Var(Z 2) = E [Z 4]−E [Z 2]2 = 2∑m2
i m2

j ≤ 2F 2
2

Close to expectation? |Z 2−µ| ≤ εF2?

Chebyshev: Pr [|X −µ|> ∆]≤ Var(X)

∆2

For Z 2, Pr [|Z 2−µ|> εF2]≤ 2F2
2

ε2F2
2

= 2
ε2

Uh oh. Bigger than one for ε ≤ 2!

Independent trials.

Run Core Alg k times.

Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2

Var(Z 2
i)≤ 2F 2

2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average.

Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] =

1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i]

= F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)

Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y)

= 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i)

=
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space:

O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

Independent trials.

Run Core Alg k times. Z1, . . . ,Zk .

(E [Z 2
i] = F2 Var(Z 2

i)≤ 2F 2
2 .)

Output average. Y = 1
k ∑i Z 2

i

E [Y] = 1
k ∑E [Z 2

i] = F2

Var(cX) = c2Var(X)
Var(X + Y) = Var(X) + Var(Y); independent X and Y

Var(Y) = 1
k2 ∑i Var(Z 2

i) =
2F2

2
k

k = 2
δε2 and Chebyshev

Pr[|Y −µ| ≥ εF2]≤ δ

Space: O(logn
ε2δ

).

Could get O(
logn log 1

δ

ε2) using a Central Limit Theorem.

See you on Tuesday.

