Today
Streaming.

Streaming.

Frequency Moments.

Input:
 $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$.

One at a time.

Pikachu, Squirtle, Mew, Pikachu, ...
Got to get 'em all!
Actually, no. $O\left(\log ^{c} n\right)$ space.
Model LARGE data smal space.
Extreme mismatch.

Toy problem
Alg: Number of distinct elements
$\leq k$ Output: "no"
$\geq 2 k$ Output: "yes"
Don't care if in between.
Randomized Algorithm:
(1) Choose random hash function.
$h:[n] \rightarrow[B]$, where $B=k$.
(2) If any $h\left(x_{i}\right)=0$, say "yes", else "no".

$$
\begin{aligned}
& \operatorname{Pr}[A(x)=N o \mid N \leq k]=\left(1-\frac{1}{B}\right)^{N} \geq\left(1-\frac{1}{B}\right)^{k} \\
& \operatorname{Pr}[A(x)=N o \mid N>2 k]=\left(1-\frac{1}{B}\right)^{N} \leq\left(1-\frac{1}{B}\right)^{2 k}
\end{aligned}
$$

Constant gap (roughly $1 / e-1 / e^{2}$).
Many trials, in parallel gives good result. ..more later.
Number of bits for random hash function?
k^{n} hash functions. nlog k bits to specify!

What to compute.

Data.

Moments!

$F_{k}=\sum_{i} m_{i}^{k}$

m_{i} - number of items of type i.
E.g., number of Pikachus, Squirtles, ...
F_{0} : Number of distinct elements.
How to compute?
F_{1} : Length of stream.
Easy to compute!
F_{2} : How to compute?

2-wise independent hash functions
The family $\mathscr{H}:[n] \rightarrow[p]$
$h_{a, b}(x)=a x+b \bmod p$, prime $p \geq n, a, b \in\{0, \ldots, p-1\}$
is 2 -wise independent:

$$
\underset{a, b}{\operatorname{Pr}}[h(x)=c \wedge h(y)=d]=\frac{1}{p^{2}} \quad \forall x \neq y
$$

Proof: If $h(x)=c$ and $h(y)=d$ then

$$
a x+b=c \quad(\bmod p) \quad a y+b=d \quad(\bmod p)
$$

has unique solution for a, b since $(x-y) \neq 0$.
\rightarrow One $h_{a, b}$ out of p^{2} functions has $h(x)=c$ and $h(y)=d$.
$\mathscr{H}:[n] \rightarrow|B|, h_{a, b}=(a x+b)(\bmod p)(\bmod |B|)$
Approximately 2 -wise indendependent.
$\operatorname{Pr}[$ collision at c and $d] \approx \frac{1}{|B|^{2}}\left(1 \pm \frac{k}{p}\right)^{2}$ Assume $p \gg 1$, so basically assume perfectly independent.
(k-wise independent hash family. degree k polynomials.)

Distinct elements with 2-wise hash functions.
N distinct items.
Toy Alg:
(1) Random hash h from $\mathscr{H}:[n] \rightarrow[4 k]$.
(2) If $h\left(x_{i}\right)=0$, say "yes", else say "no"

Union Bound: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
$\operatorname{Pr}\left[A_{1} \cup A_{2} \cup \cdots \cup A_{N}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]$
$\operatorname{Pr}\left[" y e s^{\prime \prime} \mid N<k\right] \leq \sum_{j} \operatorname{Pr}[\mathrm{~h}(\mathrm{j})=0] \leq k\left(\frac{1}{4 k}\right) \leq \frac{1}{4}$
Inclusion/Exclusion: $\operatorname{Pr}[A \cup B] \geq \operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

$$
\operatorname{Pr}\left[\cup A_{i}\right] \geq \sum_{i} \operatorname{Pr}\left[A_{i}\right]-\sum_{i, j} \operatorname{Pr}\left[A_{i} \cap A_{j}\right]
$$

$$
\operatorname{Pr}\left[" y e s^{\prime \prime} \mid N \geq 2 k\right] \geq \frac{2 k}{B}-\frac{2 k \cdot(2 k-1)}{2 B} \geq \frac{2 k}{B}\left(1-\frac{k}{B}\right)=\left(\frac{3}{8}\right)
$$

See this as one of two coins.
Either heads with prob $\leq \frac{1}{4}$
Either heads with prob $\leq \frac{3}{8}$
Gap of $\frac{1}{8}$.
Flip coin (in parallel) to pump up the volume! probability!
Core Alg: analysis cont.
$E\left[Z^{2}\right]=F_{2}$.
$\operatorname{Var}\left(Z^{2}\right)=E\left[Z^{4}\right]-E\left[Z^{2}\right]^{2}=2 \sum m_{i}^{2} m_{j}^{2} \leq 2 F_{2}^{2}$
Close to expectation? $\left|Z^{2}-\mu\right| \leq \varepsilon F_{2}$?
Chebyshev: $\operatorname{Pr}[|X-\mu|>\Delta] \leq \frac{\operatorname{Var}(X)}{\Delta^{2}}$
For $Z^{2}, \operatorname{Pr}\left[\left|Z^{2}-\mu\right|>\varepsilon F_{2}\right] \leq \frac{2 F_{2}^{2}}{\varepsilon^{2} F_{2}^{2}}=\frac{2}{\varepsilon^{2}}$
Uh oh. Bigger than one for $\varepsilon \leq 2$!

It gets better.

Simpl. Chernoff: Number of heads \hat{b} in $k=O\left(\frac{\log (1 / \delta)}{\varepsilon^{2}}\right)$ flips of bias b coin satisfies $b k(1-\varepsilon) \leq \widehat{b} \leq b k(1+\varepsilon)$ with probability $1-\delta$.

Alg:

"yes" with probability at most $1 / 4$ when $N<k$.
"yes" with probability at least $3 / 8$ when $N>2 k$.
Run $\Theta\left(\log \frac{1}{\delta}\right)$ independent copies of Alg.
Output "yes" if more than $\frac{5}{16}$ yes's.
Use claim with $\varepsilon=\frac{1}{3}$.
\rightarrow Correct with probability $\geq 1-\delta$.
Run $\log n$ times to get within factor of two.
Factor of $(1+\varepsilon)$? Choose $|B|=\theta\left(\frac{k}{\varepsilon}\right)$ in Alg.
"yes" with probability at most τ when $N<k$.
"yes" with probability at least $(1+\varepsilon) \tau$ when $N>(1+\varepsilon) k$.
Run $\frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ times to pump up the probability.
Run $\log _{1+\varepsilon}^{\varepsilon^{2}} n$ times to get within factor of $1+\varepsilon$.
$O\left(\log n \log _{1+\varepsilon} n \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}\right)$ space, $(1 \pm \varepsilon)$ estimate, w/prob $1-\delta$.
Independent trials.

Run Core Alg k times. Z_{1}, \ldots, Z_{k}

$\left(E\left[Z_{i}^{2}\right]=F_{2} \operatorname{Var}\left(Z_{i}^{2}\right) \leq 2 F_{2}^{2}.\right)$
Output average. $Y=\frac{1}{k} \sum_{i} Z_{i}^{2}$
$E[Y]=\frac{1}{k} \sum E\left[Z_{i}^{2}\right]=F_{2}$
$\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$; independent X and Y
$\operatorname{Var}(Y)=\frac{1}{k^{2}} \sum_{i} \operatorname{Var}\left(Z_{i}^{2}\right)=\frac{2 F_{2}^{2}}{k}$
$k=\frac{2}{\delta \varepsilon^{2}}$ and Chebyshev
$\operatorname{Pr}\left[|Y-\mu|>\varepsilon F_{2}\right]<\delta$
Space: $O\left(\frac{\log n}{\varepsilon^{2} \delta}\right)$.
Could get $O\left(\frac{\log n \log \frac{1}{\delta}}{\varepsilon^{2}}\right)$ using a Central Limit Theorem.

Estimating F_{2}

Second Moment: $F_{2}=\sum_{j} m_{j}^{2}$.

Core Alg:
(1) Random h from 4 -wise ind. family $\mathscr{H}:[n] \rightarrow \pm 1$.
(2) Output $Z^{2}=\left(\sum_{i} h\left(x_{i}\right)\right)^{2}$

Show $E\left[Z^{2}\right]=F_{2}$.

$$
h(j)=Y_{j}
$$

$$
Z=\sum_{i \in[m]} h\left(x_{i}\right)=\sum_{j \in S} Y_{j} m_{j}
$$

$E\left[Z^{2}\right]=\Sigma_{j} E\left[Y_{j}^{2}\right] m_{j}^{2}+\sum_{i, j} E\left[Y_{i}\right] E\left[Y_{j}\right] m_{i} m_{j}=\sum_{i} m_{i}^{2}=F_{2}$
Show good probability of success? Calculate variance.
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
$E\left[Z^{4}\right]=\sum_{i} E\left[Y_{i}^{4} m_{i}^{4}\right]+3 \sum_{i, j} E\left[Y_{i}^{2} Y_{j}^{2} m_{i}^{2} m_{j}^{2}\right]=\sum_{i} m_{i}^{4}+6 \sum_{i, j} m_{i}^{2} m_{j}^{2}$
$\operatorname{Var}\left(Z^{2}\right)=E\left[Z^{4}\right]-E\left[Z^{2}\right]^{2}=2 \sum m_{i}^{2} m_{j}^{2} \leq 2 F_{2}^{2}$

See you on Tuesday.

