Today

Perceptron.

Today

Perceptron.
Support Vector Machine.

Labelled points with x_{1}, \ldots, x_{n}.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.

Labelled points with x_{1}, \ldots, x_{n}. Hyperplane separator.
Margins.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.

Labelled points with x_{1}, \ldots, x_{n}.

Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.
$w \cdot x=\cos \theta$

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.
$w \cdot x=\cos \theta$ Will assume
positive labels!

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.
$w \cdot x=\cos \theta$ Will assume
positive labels!
negate the negative.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.
$w \cdot x=\cos \theta$ Will assume
positive labels!
negate the negative.

Labelled points with x_{1}, \ldots, x_{n}.
Hyperplane separator.
Margins.
Inside unit ball.
Margin γ
Hyperplane:
$w \cdot x \geq \gamma$ for + points.
$w \cdot x \leq-\gamma$ for - points.
Put points on unit ball.
$w \cdot x=\cos \theta$ Will assume
positive labels!
negate the negative.

Perceptron Algorithm

An aside: a hyperplane is a perceptron.

Perceptron Algorithm

An aside: a hyperplane is a perceptron. (single layer neural network.)

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.

Perceptron Algorithm

An aside: a hyperplane is a perceptron. (single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
w_{t+1}=w_{t}+x_{i}
$$

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)
$w_{t+1}=w_{t}+x_{i}$
$t=t+1$

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1 .
$$

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)

Alg: Given x_{1}, \ldots, x_{n}.

Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1 .
$$

A step in the right direction!

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1 .
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
A γ in the right direction!

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)
Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1 .
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
A γ in the right direction!
Mistake on positive x_{i};

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)

Alg: Given x_{1}, \ldots, x_{n}.

Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
A γ in the right direction!
Mistake on positive x_{i};

$$
w_{t+1} \cdot w=\left(w_{t}+x_{i}\right) \cdot w=w_{t} \cdot w+x_{i} \cdot w
$$

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)

Alg: Given x_{1}, \ldots, x_{n}.

Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
A γ in the right direction!
Mistake on positive x_{i};

$$
\begin{aligned}
& w_{t+1} \cdot w=\left(w_{t}+x_{i}\right) \cdot w=w_{t} \cdot w+x_{i} \cdot w \\
& \quad \geq w_{t} \cdot w+\gamma .
\end{aligned}
$$

Perceptron Algorithm

An aside: a hyperplane is a perceptron.
(single layer neural network.)

Alg: Given x_{1}, \ldots, x_{n}.

Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Theorem: Algorithm only makes $\frac{1}{\gamma}^{2}$ mistakes.
Idea: Mistake on positive x_{i} :

$$
w_{t+1} \cdot x_{i}=\left(w_{t}+x_{i}\right) \cdot x_{i}=w_{t} x_{i}+1
$$

A step in the right direction!
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
A γ in the right direction!
Mistake on positive x_{i};

$$
\begin{aligned}
& w_{t+1} \cdot w=\left(w_{t}+x_{i}\right) \cdot w=w_{t} \cdot w+x_{i} \cdot w \\
& \quad \geq w_{t} \cdot w+\gamma .
\end{aligned}
$$

Alg: Given x_{1}, \ldots, x_{n}.

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
w_{t+1}=w_{t}+x_{i}
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)
$w_{t+1}=w_{t}+x_{i}$
$t=t+1$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)
$w_{t+1}=w_{t}+x_{i}$
$t=t+1$
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)
$w_{t+1}=w_{t}+x_{i}$
$t=t+1$
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& \text { Less than a right angle! }
\end{aligned}
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Less than a right angle!

$$
\rightarrow\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2} \leq\left|w_{t}\right|^{2}+1
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Less than a right angle!

$$
\rightarrow\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2} \leq\left|w_{t}\right|^{2}+1
$$

Algebraically.
Positive $x_{i}, w_{t} x_{i} \leq 0$.

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Less than a right angle!

$$
\rightarrow\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2} \leq\left|w_{t}\right|^{2}+1
$$

Algebraically.
Positive $x_{i}, w_{t} x_{i} \leq 0$.

$$
\left(w_{t}+x_{i}\right)^{2}=\left|w_{t}\right|^{2}+2 w_{t} \cdot x_{i}+\left|x_{i}\right|^{2}
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Less than a right angle!

$$
\rightarrow\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2} \leq\left|w_{t}\right|^{2}+1
$$

Algebraically.
Positive $x_{i}, w_{t} x_{i} \leq 0$.

$$
\begin{aligned}
& \left(w_{t}+x_{i}\right)^{2}=\left|w_{t}\right|^{2}+2 w_{t} \cdot x_{i}+\left|x_{i}\right|^{2} \\
& \quad \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2}=\left|w_{t}\right|^{2}+1
\end{aligned}
$$

Alg: Given x_{1}, \ldots, x_{n}.
Let $w_{1}=x_{1}$.
For each $x_{i}, w_{t} \cdot x_{i}$ is wrong sign (negative)

$$
\begin{aligned}
& w_{t+1}=w_{t}+x_{i} \\
& t=t+1
\end{aligned}
$$

Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

$$
w_{t+1}=w_{t}+x_{i}
$$

Less than a right angle!

$$
\rightarrow\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2} \leq\left|w_{t}\right|^{2}+1
$$

Algebraically.
Positive $x_{i}, w_{t} x_{i} \leq 0$.

$$
\begin{aligned}
& \left(w_{t}+x_{i}\right)^{2}=\left|w_{t}\right|^{2}+2 w_{t} \cdot x_{i}+\left|x_{i}\right|^{2} \\
& \quad \leq\left|w_{t}\right|^{2}+\left|x_{i}\right|^{2}=\left|w_{t}\right|^{2}+1
\end{aligned}
$$

Claim 2 holds even if no separating hyperplane!

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.
γM

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.
$\gamma M \leq w_{t+1} \cdot w$

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.
$\gamma M \leq w_{t+1} \cdot w$
$\leq\left\|w_{t}\right\|$

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.
$\gamma M \leq w_{t+1} \cdot w$
$\leq\left\|w_{t}\right\| \leq \sqrt{M}$.

Putting it together...

Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Claim 2: $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$
M-number of mistakes in algorithm.
$\gamma M \leq w_{t+1} \cdot w$
$\leq\left\|w_{t}\right\| \leq \sqrt{M}$.
$\rightarrow M \leq \frac{1}{\gamma^{2}}$

Hinge Loss.

Most of data has good separator.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way. How much bad tilting?

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}$

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. \rightarrow

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.
Uh...

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.
Uh...
One implication: $M \leq \frac{1}{\gamma^{2}}+\frac{2}{\gamma} T D_{\gamma}$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.
Uh...
One implication: $M \leq \frac{1}{\gamma^{2}}+\frac{2}{\gamma} T D_{\gamma}$.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.
Uh...
One implication: $M \leq \frac{1}{\gamma^{2}}+\frac{2}{\gamma} T D_{\gamma}$.
The extra is (twice) the amount of rotation in units of γ.

Hinge Loss.

Most of data has good separator.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma$.
Don't make progress or tilt the wrong way.
How much bad tilting?
Rotate points to have γ-margin.
Total rotation: $T D_{\gamma}$.
Anaylsis: subtract bad tilting part.
Claim 1: $w_{t+1} \cdot w \geq w_{t} \cdot w+\gamma-$ rotation for $x_{i_{t}}$.
$w_{M} \geq \gamma M-T D_{\gamma}+$ Claim 2. $\rightarrow \gamma M-T D_{\gamma} \leq \sqrt{M}$
Quadratic equation: $\gamma^{2} M^{2}-\left(2 \gamma T D_{\gamma}+1\right) M+T D_{\gamma}^{2} \leq 0$.
Uh...
One implication: $M \leq \frac{1}{\gamma^{2}}+\frac{2}{\gamma} T D_{\gamma}$.
The extra is (twice) the amount of rotation in units of γ.
Hinge loss: $\frac{1}{\gamma} T D_{\gamma}$.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it!

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}$,

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}, t=t+1$

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}, t=t+1$
Claim 1: $w_{t+1} \cdot w \geq w_{t} w+\frac{\gamma}{2}$.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}, t=t+1$
Claim 1: $w_{t+1} \cdot w \geq w_{t} w+\frac{\gamma}{2}$.
Same

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.
Find it! (Kind of.)
Any point within $\gamma / 2$ is still a mistake.
Let $w_{1}=x_{1}$,
For each $x_{2}, \ldots x_{n}$,
if $w_{t} \cdot x_{i}<\gamma / 2, w_{t+1}=w_{t}+x_{i}, t=t+1$
Claim 1: $w_{t+1} \cdot w \geq w_{t} w+\frac{\gamma}{2}$.
Same (ish) as before.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$??
Adding x_{i} to w_{t} even if in correct direction.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$??
Adding x_{i} to w_{t} even if in correct direction.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1$??
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.
Claim 1:

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.
Claim 1: Implies $\left|w_{M}\right| \geq \gamma M / 2$.

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.
Claim 1: Implies $\left|w_{M}\right| \geq \gamma M / 2$.
$\gamma M / 2 \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$

Margin Approximation: Claim 2

Claim 2(?): $\left|w_{t+1}\right|^{2} \leq\left|w_{t}\right|^{2}+1 ? ?$
Adding x_{i} to w_{t} even if in correct direction.

Obtuse triangle.
$|v|^{2} \leq\left|w_{t}\right|^{2}+1$
$\rightarrow|v| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}$
(square right hand side.)
Red bit is at most $\gamma / 2$.
Together: $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{1}{2\left|w_{t}\right|}+\frac{\gamma}{2}$
If $\left|w_{t}\right| \geq \frac{2}{\gamma}$, then $\left|w_{t+1}\right| \leq\left|w_{t}\right|+\frac{3}{4} \gamma$.
M updates $\left|w_{M}\right| \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M$.
Claim 1: Implies $\left|w_{M}\right| \geq \gamma M / 2$.
$\gamma M / 2 \leq \frac{2}{\gamma}+\frac{3}{4} \gamma M \rightarrow M \leq \frac{8}{\gamma^{2}}$

Other fat separators?

Other fat separators?

No hyperplane separator.

Other fat separators?

No hyperplane separator.
Circle separator!

Other fat separators?

No hyperplane separator.
Circle separator! Map points to three dimensions.

Other fat separators?

No hyperplane separator.
Circle separator!
Map points to three dimensions.
map point (x, y) to point $\left(x, y, x^{2}+y^{2}\right)$.

Other fat separators?

No hyperplane separator.
Circle separator!
Map points to three dimensions.
map point (x, y) to point $\left(x, y, x^{2}+y^{2}\right)$.
Hyperplane separator in three dimensions.

Other fat separators?

No hyperplane separator.
Circle separator!
Map points to three dimensions.
map point (x, y) to point $\left(x, y, x^{2}+y^{2}\right)$.
Hyperplane separator in three dimensions.

Kernel Functions.

Map x to $\phi(x)$.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!
Test: $w_{t} \cdot x_{i}>\gamma$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!
Test: $w_{t} \cdot x_{i}>\gamma$
$w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \cdots$
Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot)$:

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
K(x, y)=(1+x \cdot y)^{d}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right]
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] . \text { Polynomial. }
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
\begin{aligned}
& K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] . \text { Polynomial. } \\
& K(x, y)=\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right)
\end{aligned}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
\begin{aligned}
& K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] . \text { Polynomial. } \\
& K(x, y)=\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right) \\
& \quad \phi(x) \text { - product of all subsets. }
\end{aligned}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
\begin{aligned}
K(x, y) & =(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] . \text { Polynomial. } \\
K(x, y) & =\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right) \\
\phi(x) & \text { - product of all subsets. } \\
K(x, y) & =\exp \left(C|x-y|^{2}\right)
\end{aligned}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
\begin{aligned}
& K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] . \text { Polynomial. } \\
& K(x, y)=\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right) \\
& \quad \phi(x)-\text { product of all subsets. } \\
& K(x, y)=\exp \left(C|x-y|^{2}\right) \text { Infinite dimensional space. }
\end{aligned}
$$

Kernel Functions.

Map x to $\phi(x)$.
Good separator for points under $\phi(\cdot)$.
Problem: complexity of computing in higher dimension.
Recall perceptron. Only compute dot products!

$$
\begin{aligned}
& \text { Test: } w_{t} \cdot x_{i}>\gamma \\
& w_{t}=x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \ldots
\end{aligned}
$$

Support Vectors: $x_{i_{1}}, x_{i_{2}}, \ldots$
\rightarrow Support Vector Machine.
Kernel trick: compute dot products in original space.
Kernel function for mapping $\phi(\cdot): K(x, y)=\phi(x) \cdot \phi(y)$

$$
\begin{aligned}
& K(x, y)=(1+x \cdot y)^{d} \phi(x)=\left[1, \ldots, x_{i}, \ldots, x_{i} x_{j} \ldots\right] \text {. Polynomial. } \\
& K(x, y)=\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right) \\
& \phi(x)-\text { product of all subsets. }
\end{aligned}
$$

$K(x, y)=\exp \left(C|x-y|^{2}\right)$ Infinite dimensional space.
Gaussian Kernel.

Video

"http://www.youtube.com/watch?v=3liCbRZPrZA"

Support Vector Machine

Pick Kernel.

Support Vector Machine

Pick Kernel.
Run algorithm that:

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Algorithms output:

Support Vector Machine

Pick Kernel.
Run algorithm that:
(1) Uses dot products.
(2) Outputs hyperplane that is linear combination of points.

Perceptron.
Max Margin Problem as Convex optimization:
$\min |w|^{2}$ where $\forall i w \cdot x_{i} \geq 1$.

Algorithms output: tight hyperplanes!

See you on Tuesday.

