Today

Semidefinite Programming

Today

Semidefinite Programmingfor Approximating MaxCut.

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$. Hmm...

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}.$$

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}.$$

 $\lambda_i \geq 0$ – eigenvalue.

 v_i – associated eigenvector.

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}.$$

 $\lambda_i \geq 0$ – eigenvalue.

 v_i – associated eigenvector.

$$A = B^T B$$

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}$$
.

$$\lambda_i \geq 0$$
 – eigenvalue.

 v_i – associated eigenvector.

$$A = B^T B$$
 $B = \sqrt{\lambda_i} \begin{bmatrix} v_1 \\ v_2 \\ \dots \end{bmatrix}$

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}$$
.

 $\lambda_i \geq 0$ – eigenvalue.

 v_i – associated eigenvector.

$$A = B^T B$$
 $B = \sqrt{\lambda_i} \begin{bmatrix} v_1 \\ v_2 \\ \dots \end{bmatrix}$

Representation \rightarrow positive semefinite too: $(x^TB^T)(Bx) \ge 0$

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}$$
.

$$\lambda_i \geq 0$$
 – eigenvalue.

 v_i – associated eigenvector.

$$A = B^T B$$
 $B = \sqrt{\lambda_i} \begin{bmatrix} v_1 \\ v_2 \\ \dots \end{bmatrix}$

Representation \rightarrow positive semefinite too: $(x^TB^T)(Bx) \ge 0$ Possibly many such representations.

 $n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^n$, $x^T A x \ge 0$.

Hmm...

Ax is same direction as x?

Spectral decomposition:

$$A = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}.$$

 $\lambda_i \ge 0$ – eigenvalue. v_i – associated eigenvector.

$$A = B^T B$$
 $B = \sqrt{\lambda_i} \begin{bmatrix} v_1 \\ v_2 \\ \dots \end{bmatrix}$

Representation \rightarrow positive semefinite too: $(x^TB^T)(Bx) \ge 0$ Possibly many such representations.

$$\begin{array}{cccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{1}$$

$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{1}$$

A.X is matrix inner product:

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector. Linear Programming?

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector. Linear Programming? A must be diagonal.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? *A* must be diagonal. Constraint for each $i \neq j$,

$$\begin{array}{cccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? *A* must be diagonal. Constraint for each $i \neq j$, X_{ik} is 1 at entry jk, 0 elsewhere.

$$\begin{array}{cccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal. Constraint for each $i \neq j$, X_{ik} is 1 at entry jk, 0 elsewhere. b_{ik} is 0.

$$\begin{array}{ccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal. Constraint for each $i \neq j$, X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

$$\begin{array}{ccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal. Constraint for each $i \neq j$,

 X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

Convex: Solution A and A'.

$$\begin{array}{ccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? *A* must be diagonal.

Constraint for each $i \neq j$,

 X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

Convex: Solution A and A'.

 $\mu A + (1 - \mu)A'$ is solution.

$$\begin{array}{ccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal. Constraint for each $i \neq j$, X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

Convex: Solution A and A'. $\mu A + (1 - \mu)A'$ is solution. Linear constraints, objective.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal.

Constraint for each $i \neq j$,

 X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

Convex: Solution A and A'.

 $\mu A + (1 - \mu)A'$ is solution.

Linear constraints, objective.

$$x^T A x, x^T A' x \geq 0 \implies x^T (\mu A + (1 - \mu) A') x \geq 0.$$

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{1}$$

A.X is matrix inner product: $\sum_{ij} a_{ij} x_{ij}$. view A and X as n^2 dimensional vector.

Linear Programming? A must be diagonal.

Constraint for each $i \neq j$,

 X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.

Solvable?

Convex: Solution A and A'.

 $\mu A + (1 - \mu)A'$ is solution.

Linear constraints, objective.

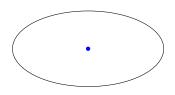
$$x^T A x, x^T A' x \ge 0 \implies x^T (\mu A + (1 - \mu) A') x \ge 0.$$

Actully: psd is "cone" constraint.

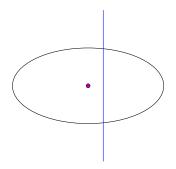
Ellipsoid algorithm.

Ellipsoid algorithm.

Enclosing Ellipse.

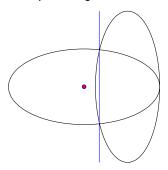


Ellipsoid algorithm.



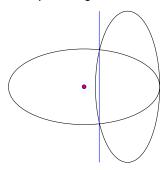
Enclosing Ellipse. Center point not feasible.

Ellipsoid algorithm.



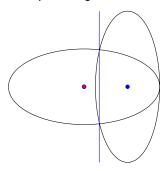
Enclosing Ellipse. Center point not feasible. New Ellipsoid.

Ellipsoid algorithm.



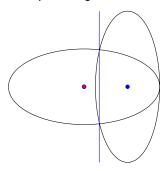
Enclosing Ellipse. Center point not feasible. New Ellipsoid. $\leq (1 - 1/\text{poly}(n))$ volume.

Ellipsoid algorithm.



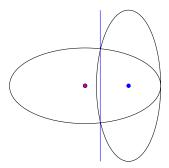
Enclosing Ellipse. Center point not feasible. New Ellipsoid. $\leq (1 - 1/\text{poly}(n))$ volume. Center point feasible?

Ellipsoid algorithm.



Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
≤ (1 − 1/poly(n)) volume.
Center point feasible?
Linear Programming:
find violated constraint.

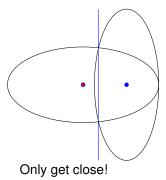
Ellipsoid algorithm.



Enclosing Ellipse.
Center point not feasible.
New Ellipsoid. $\leq (1 - 1/\text{poly}(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.
Semidefinite Programming:
find x where $x^T Ax \leq 0$.

Semidefinite Programming:polynomial time.

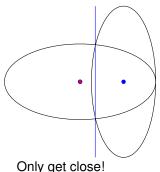
Ellipsoid algorithm.



Enclosing Ellipse.
Center point not feasible.
New Ellipsoid. $\leq (1-1/\text{poly}(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.
Semidefinite Programming:
find x where $x^T Ax \leq 0$.
Compute smallest eigenvalue.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.



 $O(\log \frac{1}{s})$ dependence on closeness.

Enclosing Ellipse. Center point not feasible. New Ellipsoid. $\leq (1-1/\text{poly}(n))$ volume. Center point feasible? Linear Programming: find violated constraint. Semidefinite Programming: find x where $x^T A x < 0$. Compute smallest eigenvalue.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{2}$$

$$\begin{array}{cccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$.

$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$.

Programming over vectors: $v_1, v_2, ..., v_n$.

$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$.

Programming over vectors: $v_1, v_2, ..., v_n$.

$$\begin{array}{cccc}
\text{max} & A.C \\
A.X_i & \geq & b_i \\
A & \succeq & 0
\end{array} \tag{2}$$

Recall $A = B^T B$.

Programming over vectors: v_1, v_2, \ldots, v_n .

Linear Constraints over $v_i \cdot v_j$

$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$. Programming over vectors: $v_1, v_2, ..., v_n$. Linear Constraints over $v_i \cdot v_i$

quadratic..kind of!

$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$. Programming over vectors: $v_1, v_2, ..., v_n$. Linear Constraints over $v_i \cdot v_i$

quadratic..kind of!

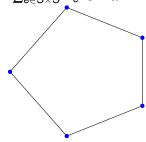
$$\begin{array}{ccc} \max & A.C \\ A.X_i & \geq & b_i \\ A & \succeq & 0 \end{array} \tag{2}$$

Recall $A = B^T B$. Programming over vectors: $v_1, v_2, ..., v_n$. Linear Constraints over $v_i \cdot v_i$

quadratic..kind of!

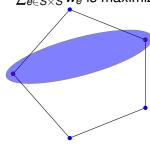
Max Cut

Given a graph G = (V, E), with $w : E \to R$, find S where $\sum_{e \in S \times S} w_e$ is maximized.



Max Cut

Given a graph G = (V, E), with $w : E \to R$, find S where $\sum_{e \in S \times S} w_e$ is maximized.



Max Cut Size: 4

Random: choose a side at random.

Random: choose a side at random.

Each edge has probability $\frac{1}{2}$ of being cut.

Random: choose a side at random.

Each edge has probability $\frac{1}{2}$ of being cut.

Expected value of solution is half total edge weight.

Random: choose a side at random.

Each edge has probability $\frac{1}{2}$ of being cut.

Expected value of solution is half total edge weight.

Greedy: choose larger choice.

Random: choose a side at random.

Each edge has probability $\frac{1}{2}$ of being cut.

Expected value of solution is half total edge weight.

Greedy: choose larger choice.

When each node comes, cuts at least half previous edges.

Random: choose a side at random.

Each edge has probability $\frac{1}{2}$ of being cut.

Expected value of solution is half total edge weight.

Greedy: choose larger choice.

When each node comes, cuts at least half previous edges.

Can we do better?

Assign variables x_1, \ldots, x_n to vertices.

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Cost of cut indicated by ± 1 vector!

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Cost of cut indicated by ± 1 vector!

Integer?

Assign variables x_1, \ldots, x_n to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

Assign variables $x_1, ..., x_n$ to vertices.

 x_i are ± 1 .

Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Assign variables $x_1, ..., x_n$ to vertices.

$$x_i$$
 are ± 1 .

Maximize
$$\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$$
.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$.

Assign variables $x_1, ..., x_n$ to vertices.

$$x_i$$
 are ± 1 .

Maximize
$$\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$$
.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize
$$\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$$
.

Semidefinite Program.

Assign variables $x_1, ..., x_n$ to vertices.

$$x_i$$
 are ± 1 .

Maximize
$$\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$$
.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize
$$\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$$
.

Semidefinite Program. Can solve?

Assign variables $x_1, ..., x_n$ to vertices.

$$x_i$$
 are ± 1 .

Maximize
$$\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$$
.

Cost of cut indicated by ± 1 vector!

Integer? Quadratic?

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize
$$\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$$
.

Semidefinite Program. Can solve? (Basically.)

 $|v_{i}| = 1$

$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$.

$$|v_{i}| = 1$$

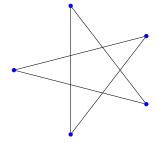
Maximize $\sum_{ij} w_{ij} \frac{1-v_i \cdot v_j}{2}$.

Example?

$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1-v_i \cdot v_j}{2}$.

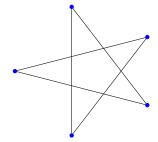
Example?



$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1-v_i \cdot v_j}{2}$.

Example?



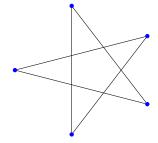
Solution Value:
$$5\frac{(1-cos(4\pi/5))}{2}\approx 4.52$$

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$.

Example?



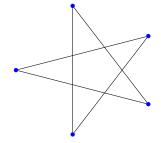
Solution Value: $5\frac{(1-cos(4\pi/5))}{2}\approx 4.52$ Higher than opt.

Assign vectors v_1, v_2, \dots, v_n to vertices.

$$|v_{i}| = 1$$

Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$.

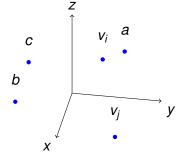
Example?

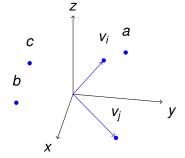


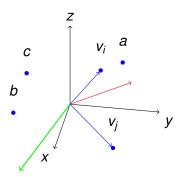
Solution Value: $5\frac{(1-\cos(4\pi/5))}{2}\approx 4.52$

Higher than opt.

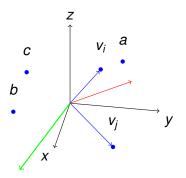
Round and not lose too much?



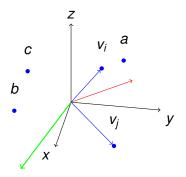




Normal to hyperplane:



Normal to hyperplane: red does not separate!



Normal to hyperplane: red does not separate! green does.

Take a random vector, w

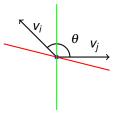
Take a random vector, wLet $S = \{w \cdot v \ge 0\}$

Take a random vector, wLet $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.

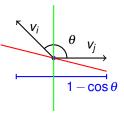
Take a random vector, wLet $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.



Take a random vector, wLet $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.

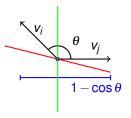


SDP value for edge (i,j). $\frac{(1-\cos\theta)}{2}$

Take a random vector,
$$w$$

Let $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.

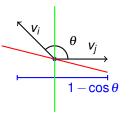


SDP value for edge (i,j). $\frac{(1-\cos\theta)}{2}$ Prob. of cutting:

Take a random vector,
$$w$$

Let $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.

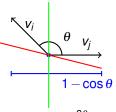


SDP value for edge (i,j). $\frac{(1-\cos\theta)}{2}$ Prob. of cutting: $\frac{\theta}{\pi}$ Expected value in rounding!

Take a random vector,
$$w$$

Let $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.



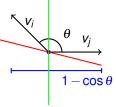
Ratio is $\frac{2\theta}{\pi(1-\cos\theta)}$

SDP value for edge (i,j). $\frac{(1-\cos\theta)}{2}$ Prob. of cutting: $\frac{\theta}{\pi}$ Expected value in rounding!

Take a random vector,
$$w$$

Let $S = \{w \cdot v \ge 0\}$

Claim 1: Expected weight of (S, V - S) is at least 0.878 SDPOPT.



Ratio is $\frac{2\theta}{\pi(1-\cos\theta)}$

Always bigger than .878!

SDP value for edge (i,j). $\frac{(1-\cos\theta)}{2}$ Prob. of cutting: $\frac{\theta}{\pi}$ Expected value in rounding!

