Today

Semidefinite Programming

Today

Semidefinite Programming
...for Approximating MaxCut.

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$.

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{\top} A x \geq 0$. Hmm...

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:

$$
A=\sum_{i} \lambda_{i} v_{i} v_{i}^{\top} .
$$

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:
$A=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}$.
$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:
$A=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}$.
$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.
$A=B^{\top} B$

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:

$$
A=\sum_{i} \lambda_{i} v_{i} v_{i}^{\top} .
$$

$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.
$A=B^{T} B \quad B=\sqrt{\lambda_{i}}\left[\begin{array}{l}v_{1} \\ v_{2} \\ \cdots\end{array}\right]$

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:

$$
A=\sum_{i} \lambda_{i} v_{i} v_{i}^{\top} .
$$

$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.
$A=B^{T} B \quad B=\sqrt{\lambda_{i}}\left[\begin{array}{l}v_{1} \\ v_{2} \\ \cdots\end{array}\right]$
Representation \rightarrow positive semefinite too: $\left(x^{T} B^{T}\right)(B x) \geq 0$

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{T} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:

$$
A=\sum_{i} \lambda_{i} v_{i} v_{i}^{T^{\prime}}
$$

$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.
$A=B^{T} B \quad B=\sqrt{\lambda_{i}}\left[\begin{array}{l}v_{1} \\ v_{2} \\ \cdots\end{array}\right]$
Representation \rightarrow positive semefinite too: $\left(x^{\top} B^{T}\right)(B x) \geq 0$
Possibly many such representations.

Positive Semidefinite Matrices

$n \times n$ matrix A positive semidefinite \rightarrow for all $x \in R^{n}, x^{\top} A x \geq 0$. Hmm...
$A x$ is same direction as x ?

Spectral decomposition:

$$
A=\sum_{i} \lambda_{i} v_{i} v_{i}^{T^{\prime}}
$$

$\lambda_{i} \geq 0$ - eigenvalue.
v_{i} - associated eigenvector.
$A=B^{T} B \quad B=\sqrt{\lambda_{i}}\left[\begin{array}{l}v_{1} \\ v_{2} \\ \cdots\end{array}\right]$
Representation \rightarrow positive semefinite too: $\left(x^{\top} B^{T}\right)(B x) \geq 0$
Possibly many such representations.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

Semidefinite Programming.

$$
\begin{align*}
\max & \text { A.C } \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product:

Semidefinite Programming.

$$
\begin{align*}
\max & \text { A.C } \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

A. X is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A . X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.

Linear Programming?

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.

Linear Programming? A must be diagonal.

Semidefinite Programming.

$$
\begin{align*}
\max & \text { A.C } \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.

Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0 .

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?
Convex: Solution A and A^{\prime}.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?
Convex: Solution A and A^{\prime}.
$\mu A+(1-\mu) A^{\prime}$ is solution.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.

Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?
Convex: Solution A and A^{\prime}.
$\mu A+(1-\mu) A^{\prime}$ is solution.
Linear constraints, objective.

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?
Convex: Solution A and A^{\prime}.
$\mu A+(1-\mu) A^{\prime}$ is solution.
Linear constraints, objective.

$$
x^{\top} A x, x^{\top} A^{\prime} x \geq 0 \Longrightarrow x^{\top}\left(\mu A+(1-\mu) A^{\prime}\right) x \geq 0
$$

Semidefinite Programming.

$$
\begin{align*}
\max & A . C \\
A \cdot X_{i} & \geq b_{i} \\
A & \succeq \tag{1}
\end{align*}
$$

$A . X$ is matrix inner product: $\sum_{i j} a_{i j} x_{i j}$. view A and X as n^{2} dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each $i \neq j$,
$X_{j k}$ is 1 at entry $j k, 0$ elsewhere. $b_{j k}$ is 0.
Solvable?
Convex: Solution A and A^{\prime}.

$$
\mu A+(1-\mu) A^{\prime} \text { is solution. }
$$

Linear constraints, objective.

$$
x^{\top} A x, x^{\top} A^{\prime} x \geq 0 \Longrightarrow x^{\top}\left(\mu A+(1-\mu) A^{\prime}\right) x \geq 0
$$

Actully: psd is "cone" constraint.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse. Center point not feasible. New Ellipsoid.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 / \operatorname{poly}(n))$ volume.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 / \operatorname{poly}(n))$ volume.
Center point feasible?

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 / \operatorname{poly}(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 /$ poly $(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.
Semidefinite Programming:
find x where $x^{T} A x \leq 0$.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Only get close!

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 / \operatorname{poly}(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.
Semidefinite Programming:
find x where $x^{T} A x \leq 0$.
Compute smallest eigenvalue.

Semidefinite Programming:polynomial time.

Ellipsoid algorithm.

Enclosing Ellipse.
Center point not feasible.
New Ellipsoid.
$\leq(1-1 /$ poly $(n))$ volume.
Center point feasible?
Linear Programming:
find violated constraint.
Semidefinite Programming:
find x where $x^{T} A x \leq 0$.
Compute smallest eigenvalue.
Only get close!
$O\left(\log \frac{1}{\varepsilon}\right)$ dependence on closeness.

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
A . X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{\top} B$.

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.
Linear Constraints over $v_{i} \cdot v_{j}$

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.
Linear Constraints over $v_{i} \cdot v_{j}$ quadratic..kind of!

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.
Linear Constraints over $v_{i} \cdot v_{j}$ quadratic..kind of!

Semidefinite Programming: another view.

$$
\begin{align*}
\max & \text { A.C } \\
\text { A. } X_{i} & \geq b_{i} \\
A & \succeq 0 \tag{2}
\end{align*}
$$

Recall $A=B^{T} B$.
Programming over vectors: $v_{1}, v_{2}, \ldots, v_{n}$.
Linear Constraints over $v_{i} \cdot v_{j}$ quadratic..kind of!

Max Cut

Given a graph $G=(V, E)$, with $w: E \rightarrow R$, find S where $\sum_{e \in S \times S} W_{e}$ is maximized.

Max Cut

Given a graph $G=(V, E)$, with $w: E \rightarrow R$, find S where $\sum_{e \in S \times S} W_{e}$ is maximized.

Max Cut Size: 4

Factor half approximation?

Random: choose a side at random.

Factor half approximation?

Random: choose a side at random.
Each edge has probability $\frac{1}{2}$ of being cut.

Factor half approximation?

Random: choose a side at random.
Each edge has probability $\frac{1}{2}$ of being cut.
Expected value of solution is half total edge weight.

Factor half approximation?

Random: choose a side at random.
Each edge has probability $\frac{1}{2}$ of being cut.
Expected value of solution is half total edge weight.
Greedy: choose larger choice.

Factor half approximation?

Random: choose a side at random.
Each edge has probability $\frac{1}{2}$ of being cut.
Expected value of solution is half total edge weight.
Greedy: choose larger choice.
When each node comes, cuts at least half previous edges.

Factor half approximation?

Random: choose a side at random.
Each edge has probability $\frac{1}{2}$ of being cut.
Expected value of solution is half total edge weight.
Greedy: choose larger choice.
When each node comes, cuts at least half previous edges.
Can we do better?

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector!

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer?

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.
Semidefinite Program.

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector! Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.
Semidefinite Program. Can solve?

Embedding problem.

Assign variables x_{1}, \ldots, x_{n} to vertices.
x_{i} are ± 1.
Maximize $\sum_{i j} w_{i j} \frac{1-x_{i} x_{j}}{2}$.
Cost of cut indicated by ± 1 vector!
Integer? Quadratic?
Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.
Semidefinite Program. Can solve? (Basically.)

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.
$\left|v_{i}\right|=1$
Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Example?

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Example?

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Example?

Solution Value: $5 \frac{(1-\cos (4 \pi / 5))}{2} \approx 4.52$

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Example?

Solution Value: $5 \frac{(1-\cos (4 \pi / 5))}{2} \approx 4.52$
Higher than opt.

Assign vectors $v_{1}, v_{2}, \ldots, v_{n}$ to vertices.

$$
\left|v_{i}\right|=1
$$

Maximize $\sum_{i j} w_{i j} \frac{1-v_{i} \cdot v_{j}}{2}$.

Example?

Solution Value: $5 \frac{(1-\cos (4 \pi / 5))}{2} \approx 4.52$
Higher than opt.
Round and not lose too much?

Hyperplane rounding.

Hyperplane rounding.

Hyperplane rounding.

Normal to hyperplane:

Hyperplane rounding.

Normal to hyperplane: red does not separate!

Hyperplane rounding.

Normal to hyperplane: red does not separate! green does.

Hyperplane rounding.

Take a random vector, w

Hyperplane rounding.

Take a random vector, w
Let $S=\{w \cdot v \geq 0\}$

Hyperplane rounding.

Take a random vector, w
Let $S=\{w \cdot v \geq 0\}$
Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

Hyperplane rounding.

Take a random vector, w
Let $S=\{w \cdot v \geq 0\}$
Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

Hyperplane rounding.

Take a random vector, w

$$
\text { Let } S=\{w \cdot v \geq 0\}
$$

Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

SDP value for edge (i, j). $\frac{(1-\cos \theta)}{2}$

Hyperplane rounding.

Take a random vector, w

$$
\text { Let } S=\{w \cdot v \geq 0\}
$$

Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

SDP value for edge (i, j).
$\frac{(1-\cos \theta)}{2}$
Prob. of cutting:

Hyperplane rounding.

Take a random vector, w

$$
\text { Let } S=\{w \cdot v \geq 0\}
$$

Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

SDP value for edge (i, j). $\frac{(1-\cos \theta)}{2}$
Prob. of cutting:
$\frac{\theta}{\pi}$
Expected value in rounding!

Hyperplane rounding.

Take a random vector, w

$$
\text { Let } S=\{w \cdot v \geq 0\}
$$

Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

SDP value for edge (i, j). $\frac{(1-\cos \theta)}{2}$
Prob. of cutting:
$\frac{\theta}{\pi}$
Expected value in rounding!
Ratio is $\frac{2 \theta}{\pi(1-\cos \theta)}$.

Hyperplane rounding.

Take a random vector, w

$$
\text { Let } S=\{w \cdot v \geq 0\}
$$

Claim 1: Expected weight of $(S, V-S)$ is at least 0.878 SDPOPT.

SDP value for edge (i, j). $\frac{(1-\cos \theta)}{2}$
Prob. of cutting:
$\frac{\theta}{\pi}$
Expected value in rounding!
Ratio is $\frac{2 \theta}{\pi(1-\cos \theta)}$.
Always bigger than .878!

See you on Thursday.

