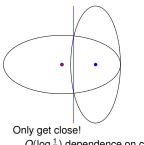
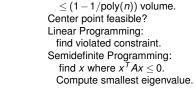
Today

Semidefinite Programming ...for Approximating MaxCut.

Semidefinite Programming:polynomial time.



Ellipsoid algorithm.

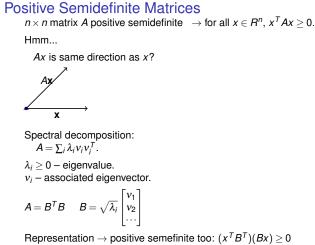


Enclosing Ellipse.

New Ellipsoid.

Center point not feasible.

 $O(\log \frac{1}{\varepsilon})$ dependence on closeness.



Possibly many such representations.

Semidefinite Programming: another view.

Semidefinite	Programming.
--------------	--------------

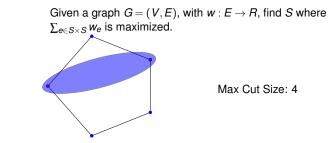
$$egin{array}{rcl} \max & A.C \ A.X_i & \geq & b_i \ A & \succeq & 0 \end{array}$$

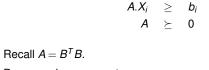
(1)

```
A.X is matrix inner product: \sum_{ij} a_{ij} x_{ij}.
view A and X as n^2 dimensional vector.
Linear Programming? A must be diagonal.
Constraint for each i \neq j,
X_{jk} is 1 at entry jk, 0 elsewhere. b_{jk} is 0.
Solvable?
Convex: Solution A and A'.
\mu A + (1 - \mu)A' is solution.
Linear constraints, objective.
x^T A x, x^T A' x \ge 0 \implies x^T (\mu A + (1 - \mu)A') x \ge 0.
Actully: psd is "cone" constraint.
```

Max Cut

(2)





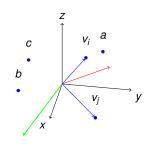
max A.C

Programming over vectors: $v_1, v_2, ..., v_n$. Linear Constraints over $v_i \cdot v_j$ quadratic..kind of!

Factor half approximation?

Random: choose a side at random. Each edge has probability $\frac{1}{2}$ of being cut. Expected value of solution is half total edge weight. Greedy: choose larger choice. When each node comes, cuts at least half previous edges. Can we do better?

Hyperplane rounding.



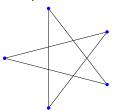
Normal to hyperplane: red does not separate! green does.

Embedding problem.

Assign variables x_1, \ldots, x_n to vertices. x_i are ± 1 . Maximize $\sum_{ij} w_{ij} \frac{1-x_i x_j}{2}$. Cost of cut indicated by ± 1 vector! Integer? Quadratic? Assign vectors v_1, v_2, \ldots, v_n to vertices. $|v_{i}| = 1$ Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$. Semidefinite Program. Can solve? (Basically.)

Assign vectors v_1, v_2, \ldots, v_n to vertices.

 $|v_{i}| = 1$ Maximize $\sum_{ij} w_{ij} \frac{1 - v_i \cdot v_j}{2}$. Example?



Solution Value: $5\frac{(1-cos(4\pi/5))}{2} \approx 4.52$ Higher than opt. Round and not lose too much?

Hyperplane rounding.

Take a random vector, w Let $S = \{ w \cdot v \ge 0 \}$ **Claim 1:** Expected weight of (S, V - S) is at least 0.878 SDPOPT.

SDP value for edge (i,j). Prob. of cutting: Expected value in rounding! See you on Thursday.

 $1 - \cos \theta$

Ratio is $\frac{2\theta}{\pi(1-\cos\theta)}$. Always bigger than .878!