Today

Lagrangian Dual.

Today

Lagrangian Dual. Already saw example!

Today

Lagrangian Dual. Already saw example!
Convex Separator.

Today

Lagrangian Dual. Already saw example!
Convex Separator.
Farkas Lemma.

Lagrangian Dual.

Find x, subjet to

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian:

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If λ, where $L(x, \lambda)$ is positive for all x

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If λ, where $L(x, \lambda)$ is positive for all x

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If λ, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x.

Lagrangian Dual.

Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.)
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If λ, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x.
(B) there is no x, λ with $L(x, \lambda)<0$.

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.

Lagrangian:constrained optimization.

$$
\begin{array}{cc}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.

Lagrangian:constrained optimization.

$$
\begin{gathered}
\min \\
\text { subject to } f_{i}(x) \leq 0, \\
i=1, \ldots, m
\end{gathered}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.
If there is λ with $L(x, \lambda) \geq \alpha$ for all x

Lagrangian:constrained optimization.

$$
\begin{gathered}
\min \\
\text { subject to } f_{i}(x) \leq 0, \\
i=1, \ldots, m
\end{gathered}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
For optimum value of program is at least α

Lagrangian:constrained optimization.

$$
\begin{gathered}
\min \\
\text { subject to } f_{i}(x) \leq 0, \\
i=1, \ldots, m
\end{gathered}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
For optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda>0$.

Lagrangian:constrained optimization.

$$
\begin{gathered}
\min \\
\text { subject to } f_{i}(x) \leq 0, \\
i=1, \ldots, m
\end{gathered}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$.
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
For optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda>0$.
Dual problem:
λ, that maximizes $L(x, \lambda)$ over all x.

Linear Program.

$\min c x, A x \geq b$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{r}
\min \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, \\
i=1, \ldots, m
\end{array}
$$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):
$L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right)$.
or

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or

$$
L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda .
$$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or

$$
L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda .
$$

Best λ ?
$\max b \cdot \lambda$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda$,

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{\top} A=c$,

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{T} A=c, \lambda \geq 0$

Linear Program.

$\min c x, A x \geq b$

$$
\begin{array}{rr}
\min & c \cdot x \\
\text { subject to } b_{i}-a_{i} \cdot x \leq 0, & i=1, \ldots, m
\end{array}
$$

Lagrangian (Dual):

$$
L(\lambda, x)=c x+\sum_{i} \lambda_{i}\left(b_{i}-a_{i} x_{i}\right) .
$$

or
$L(\lambda, x)=-\left(\sum_{j} x_{j}\left(a_{j} \lambda-c_{j}\right)\right)+b \lambda$.
Best λ ?
$\max b \cdot \lambda$ where $a_{j} \lambda=c_{j}$.
$\max b \lambda, \lambda^{T} A=c, \lambda \geq 0$
Duals!

Linear Equations.

$$
A x=b
$$

Linear Equations.

$A x=b$
A is $n \times n$ matrix...

Linear Equations.

$A x=b$
A is $n \times n$ matrix...
..has a solution.

Linear Equations.

$A x=b$
A is $n \times n$ matrix...
..has a solution.
If rows of A are linearly independent.

Linear Equations.

$A x=b$
A is $n \times n$ matrix...
..has a solution.
If rows of A are linearly independent.
$y^{\top} A \neq 0$ for any y

Linear Equations.

$A x=b$
A is $n \times n$ matrix...
..has a solution.
If rows of A are linearly independent.
$y^{\top} A \neq 0$ for any y
..or if b in subspace of A.

Linear Equations.

$A x=b$
A is $n \times n$ matrix...
..has a solution.
If rows of A are linearly independent.
$y^{\top} A \neq 0$ for any y
..or if b in subspace of A.

Strong Duality.

Strong Duality.

Later.

Strong Duality.

Later. Actually. No.

Strong Duality.

Later. Actually. No. Now

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm.

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm.
Approximate: facility location primal dual.

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm.
Approximate: facility location primal dual.
Today: Geometry!

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.
v, α, where $v \cdot x \leq \alpha$ and $v \cdot b>\alpha$.

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.
v, α, where $v \cdot x \leq \alpha$ and $v \cdot b>\alpha$.

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.
v, α, where $v \cdot x \leq \alpha$ and $v \cdot b>\alpha$.
point p where $(x-p)^{T}(b-p)<0$

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

$$
(x-p)^{T}(b-p) \geq 0
$$

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

$$
\begin{aligned}
& (x-p)^{T}(b-p) \geq 0 \\
& \quad \rightarrow \leq 90^{\circ} \text { angle between } \overrightarrow{x-p} \text { and } \overrightarrow{b-p} .
\end{aligned}
$$

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

$$
\begin{aligned}
& (x-p)^{T}(b-p) \geq 0 \\
& \quad \rightarrow \leq 90^{\circ} \text { angle between } \overrightarrow{x-p} \text { and } \overrightarrow{b-p} .
\end{aligned}
$$

Must be closer point on line to from p to x.

More formally.

Squared distance to b from $p+(x-p) \mu$

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x

$$
(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}
$$

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x

$$
(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}
$$

θ is the angle between $x-p$ and $b-p$.

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

$$
|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2} .
$$

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

$$
|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}
$$

Derivative with respect to μ...

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

$$
|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}
$$

Derivative with respect to μ...

$$
-2|p-b||x-p| \cos \theta+2(\mu|x-p|) .
$$

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

$$
|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}
$$

Derivative with respect to μ...

$$
-2|p-b||x-p| \cos \theta+2(\mu|x-p|) .
$$

which is negative for a small enough value of μ

More formally.

Squared distance to b from $p+(x-p) \mu$ point between p and x
$(|p-b|-\mu|x-p| \cos \theta)^{2}+(\mu|x-p| \sin \theta)^{2}$
θ is the angle between $x-p$ and $b-p$.

Simplify:

$$
|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}
$$

Derivative with respect to μ...

$$
-2|p-b||x-p| \cos \theta+2(\mu|x-p|) .
$$

which is negative for a small enough value of μ (for positive $\cos \theta$.)

Generalization: exercise.

There is a separating hyperplane between any two convex bodies.

Generalization: exercise.

There is a separating hyperplane between any two convex bodies.

Let closest pair of points in two bodies define direction.

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
A x=b, x \geq 0
$$

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?
y where $y^{\top}(b-A x)<0$ for all x

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \times \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?
y where $y^{\top}(b-A x)<0$ for all $x \rightarrow y^{T} b<0$ and $y^{\top} A \geq 0$.

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
x_{3}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?
y where $y^{\top}(b-A x)<0$ for all $x \rightarrow y^{\top} b<0$ and $y^{\top} A \geq 0$.
Farkas A: Solution for exactly one of:

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?
y where $y^{\top}(b-A x)<0$ for all $x \rightarrow y^{\top} b<0$ and $y^{\top} A \geq 0$.
Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$

$$
\begin{gathered}
A x=b, x \geq 0 \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x \leq\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]}
\end{gathered}
$$

Coordinates $s=b-A x$. $x \geq 0$ where $s=0$?
y where $y^{\top}(b-A x)<0$ for all $x \rightarrow y^{\top} b<0$ and $y^{\top} A \geq 0$.
Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas 2

Farkas A: Solution for exactly one of:

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas B: Solution for exactly one of:

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas B: Solution for exactly one of:
(1) $A x \leq b$

Farkas 2

Farkas A: Solution for exactly one of:
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas B: Solution for exactly one of:
(1) $A x \leq b$
(2) $y^{\top} A=0, y^{\top} b<0, y \geq 0$.

Strong Duality

(From Goemans notes.)

Primal P $\quad z^{*}=\min c^{\top} x$

$$
\begin{gathered}
A x=b \\
x \geq 0
\end{gathered}
$$

Dual D: $w^{*}=\max b^{\top} y$
$A^{T} y \leq c$

Strong Duality

(From Goemans notes.)
Primal P $\quad z^{*}=\min c^{T} x$
Dual D: $w^{*}=\max b^{T} y$

$$
\begin{gathered}
A x=b \\
x \geq 0
\end{gathered}
$$

$$
A^{T} y \leq c
$$

Weak Duality: x, y-feasible P, D: $x^{\top} c \geq b^{\top} y$.

Strong Duality

(From Goemans notes.)
Primal P $\quad z^{*}=\min c^{\top} x$
Dual D: $w^{*}=\max b^{T} y$

$$
\begin{gathered}
A x=b \\
x \geq 0
\end{gathered}
$$

$$
A^{T} y \leq c
$$

Weak Duality: x, y-feasible P, D: $x^{\top} c \geq b^{\top} y$.

$$
\begin{aligned}
x^{T} c-b^{T} y & =x^{T} c-x^{T} A^{T} y \\
& =x^{T}\left(c-A^{T} y\right) \\
& \geq 0
\end{aligned}
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{\top} y \geq z^{*}$.
Want y.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says

$$
\exists x, \lambda \geq 0
$$

$$
\left(\begin{array}{ll}
A & -b
\end{array}\right)\binom{x}{\lambda}=0
$$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}}
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$$
\exists x, \lambda \text { with } A x-b \lambda=0 \text { and } c^{t} x-z^{*} \lambda<0
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{\top}\left(\frac{x}{\lambda}\right)<z^{*}$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{\top} x<0$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says $\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$.

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says
$\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$. Feasible

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{T} A \leq c, b^{T} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says
$\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$. Feasible
$c^{\top}(\tilde{x}+\mu x)=x^{\top} \tilde{x}+\mu c^{\top} x \rightarrow-\infty$ as $\mu \rightarrow \infty$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{\top} y \geq z^{*}$.
Want y.

$$
\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
$$

If none, then Farkas B says
$\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$

$$
\left(\begin{array}{ll}
c^{T} & -z^{*}
\end{array}\right)\binom{x}{\lambda}<0
$$

$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0 . A x=0, c^{T} x<0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$. Feasible
$c^{T}(\tilde{x}+\mu x)=x^{\top} \tilde{x}+\mu c^{T} x \rightarrow-\infty$ as $\mu \rightarrow \infty$
Primal unbounded!

See you on Thursday.

