Today

Lagrangian Dual. Already saw example! Convex Separator. Farkas Lemma.

Linear Program.

$\min cx, Ax \geq b$

 $\label{eq:constraint} \begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$

Lagrangian (Dual):

 $L(\lambda, x) = cx + \sum_{i} \lambda_{i}(b_{i} - a_{i}x_{i}).$ or $L(\lambda, x) = -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda.$ Best λ ? max $b \cdot \lambda$ where $a_{j}\lambda = c_{j}.$ max $b\lambda, \lambda^{T}A = c, \lambda \ge 0$

Duals!

Lagrangian Dual.

Find *x*, subjet to $f_i(x) \le 0, i = 1, ..., m.$ Remember calculus (constrained optimization.) Lagrangian: $L(x, \lambda) = \sum_{i=1}^m \lambda_i f_i(x)$ λ_i - Lagrangian multiplier for inequality *i*. For feasible solution *x*, $L(x, \lambda)$ is (A) non-negative in expectation (B) positive for any λ . (C) non-positive for any valid λ . If λ , where $L(x, \lambda)$ is positive for all *x* (A) there is no feasible *x*.

(B) there is no x, λ with $L(x, \lambda) < 0$.

Linear Equations.

X1

Ax = bA is $n \times n$ matrix... ...has a solution. If rows of A are linearly independent. $y^T A \neq 0$ for any y ...or if b in subspace of A. x_3 bad b bad b

 X_2

Lagrangian:constrained optimization.

 $\begin{array}{ll} \mbox{min} & f(x) \\ \mbox{subject to } f_i(x) \leq 0, & i = 1,...,m \end{array}$

Lagragian function:
$$\begin{split} L(x,\lambda) &= f(x) + \sum_{i=1}^m \lambda_i f_i(x) \\ \text{If (primal) } x \text{ value } v \\ \text{ For all } \lambda \geq 0 \text{ with } L(x,\lambda) \leq v \\ \text{ Maximizing } \lambda \text{ only positive when } f_i(x) = 0. \end{split}$$

If there is λ with $L(x,\lambda) \ge \alpha$ for all xFor optimum value of program is at least α Primal problem:

x, that minimizes $L(x, \lambda)$ over all $\lambda > 0$.

Dual problem: λ , that maximizes $L(x,\lambda)$ over all x.

Strong Duality.

Later. Actually. No. Now ...ish. Special Cases: min-max 2 person games and experts. Max weight matching and algorithm. Approximate: facility location primal dual. Today: Geometry!

Convex Body and point.

For a convex body *P* and a point *b*, $b \in P$ or hyperplane separates P from b.

 v, α , where $v \cdot x < \alpha$ and $v \cdot b > \alpha$.

point p where $(x-p)^T(b-p) < 0$

Generalization: exercise.

There is a separating hyperplane between any two convex bodies.

Let closest pair of points in two bodies define direction.

Proof.

For a convex body *P* and a point *b*, $b \in A$ or hyperplane point *p* where $(x-p)^{T}(b-p) < 0$

Proof: Choose *p* to be closest point to *b* in *P*. Done or $\exists x \in P$ with $(x-p)^T (b-p) \ge 0$

More formally.

Farkas 2

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$ Farkas B: Solution for exactly one of: (1) Ax < b(2) $y^T A = 0, y^T b < 0, y > 0.$

 $(x-p)^{T}(b-p) > 0$

Must be closer point on line to from *p* to *x*.

Strong Duality

(From Goemans notes.)

Primal P $z^* = \min c^T x$ Ax = b $x \ge 0$ Dual D: $w^* = \max b^T y$ $A^T y \le c$

Weak Duality: x, y- feasible P, D: $x^T c \ge b^T y$.

$$x^{T}c - b^{T}y = x^{T}c - x^{T}A^{T}y$$
$$= x^{T}(c - A^{T}y)$$
$$\geq 0$$

Strong duality If P or D is feasible and bounded then $z^* = w^*$. Primal feasible, bounded, value z^* . **Claim:** Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$

Want y.
$$\begin{pmatrix} A^T \\ -b^T \end{pmatrix}$$
 y $\leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$.

If none, then Farkas B says $\exists x, \lambda \ge 0.$

$$(A \quad -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$$

 $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{2}) = b$, $c^T(\frac{x}{2}) < z^*$. Better Primal!!

Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \rightarrow -\infty$ as $\mu \rightarrow \infty$ Primal unbounded! See you on Thursday.