Today

Lagrangian Dual. Already saw example!
Convex Separator.

Farkas Lemma.

Linear Program.

mincx,Ax > b

min  ¢c-x
subject to bj—a;-x <0,

Lagrangian (Dual):

L(A,x) =cx+ Y Ai(bi — aix;).
or
L(A,x) = —(¥;X;(aiA — ;) +bA.
Best 1?

maxb-A where giA = ¢;.

maxbA,ATA=c,A>0
Duals!

Lagrangian Dual.

Find x, subjet to
fi(x)<0,i=1,...m.
Remember calculus (constrained optimization.)
Lagrangian: L(x,A) =Y Aifi(x)
Ai - Lagrangian multiplier for inequality /.
For feasible solution x, L(x,A) is
(A) non-negative in expectation
(B) positive for any A.
(C) non-positive for any valid A.

If 2, where L(x,A) is positive for all x

(A) there is no feasible x.
(B) thereis no x,A with L(x,4) <0.

Linear Equations.

Ax=b
Ais nx n matrix...
..has a solution.

If rows of A are linearly independent.
yTA+#0forany y

..or if b in subspace of A.

X3

Lagrangian:constrained optimization.

min  f(x)

subject to f;(x) <0, i=1,..

Lagragian function:
L(x,A) = f(x) + £ Aifi(x)
If (primal) x value v

Forall A > 0 with L(x,A) <v
Maximizing A only positive when f;(x) = 0.

If there is A with L(x,A) > o for all x

For optimum value of program is at least o
Primal problem:

x, that minimizes L(x,A) over all A > 0.

Dual problem:
A, that maximizes L(x,A) over all x.

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm.
Approximate: facility location primal dual.

Today: Geometry!



Convex Body and point.

For a convex body P and a point b, b € P or hyperplane
separates P from b.

v,a,wherev-x<oandv-b> a.

point p where (x —p)T(b—p) <0

P b

Generalization: exercise.

There is a separating hyperplane between any two convex
bodies.

Let closest pair of points in two bodies define direction.

Proof.

For a convex body P and a point b, b € A or hyperplane point p where
(x=p)T(b—p)<0

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0

-p)T(b—p)>0
\ (x=p)T(b=p) >
p \ — < 90° angle between x —p and b—p.

Must be closer point on line to from p to x.

y where yT(b—Ax) <0forallx — y"b<0and y’A>0.
Farkas A: Solution for exactly one of:

(1) Ax=b,x>0

(2 y"TA>0,y"b<0.

More formally.

Squared distance to b from p+ (x — p)u
point between p and x
(Ip— bl — w|x — plcos6)? + (u|x — plsin6)?
6 is the angle between x —p and b— p.

P {cosh lp— b| — £coso

Simplify:
|p—b[2 —2u[p— b|x — p|cosd + (u|x — p|)?.
Derivative with respect to u ...
~2|p—b||x - p|cos6 +2(u|x — pl).
which is negative for a small enough value of u (for positive cos6.)

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
2 yTA>0,y"b<0.

Farkas B: Solution for exactly one of:
(1) Ax<b
(2 yTA=0,y"b< 0,y >0.



Strong Duality

(From Goemans notes.)

Primal P z* =minc’x
Ax=Db
x>0
Weak Duality: x, y- feasible P, D: x"c > b7 y.

Dual D :w* =maxb”y
Aly<e

xTc—bTy=xTc—xTATy
=xT(c-ATy)
>0

Strong duality If P or D is feasible and bounded then z* = w*.

Primal feasible, bounded, value z*.
Claim: Exists a solution to dual of value at least z*.
y.yTA<cbTy>z"
Want y.
AT c
(%or)r=(3)

If none, then Farkas B says

Ix,A > 0. (CT 72*) X <0
(A —b)(¥) =0 A
A
Ix, A with Ax —bA =0 and ¢ix — z*A < 0
Case 1: 1 >0. A($) =b, c"(¥) < z*. Better Primalll
Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.
(a) X+ ux >0 since X, x,u > 0.
(b) A(X+ ux) = AX+ uAx = b+pu-0=b. Feasible
cT(X+ux)=xTx+pcTx — —oasu— o
Primal unbounded!

See you on Thursday.



