
Today

Lagrangian Dual. Already saw example!

Convex Separator.

Farkas Lemma.

Lagrangian Dual.
Find x , subjet to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.

Lagrangian:constrained optimization.

min f (x)
subject to fi(x)≤ 0, i = 1, ...,m

Lagragian function:

L(x ,λ ) = f (x)+∑m
i=1 λi fi(x)

If (primal) x value v
For all λ ≥ 0 with L(x ,λ )≤ v
Maximizing λ only positive when fi(x) = 0.

If there is λ with L(x ,λ )≥ α for all x
For optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ ) over all λ > 0.

Dual problem:
λ , that maximizes L(x ,λ ) over all x .

Linear Program.

mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx +∑i λi(bi −aixi).

or

L(λ ,x) =−(∑j xj(ajλ −cj))+bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Duals!

Linear Equations.

Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A 6= 0 for any y

..or if b in subspace of A.

x1

x2

x3

ok b

bad b

Strong Duality.

Later. Actually. No. Now ...ish.
Special Cases:

min-max 2 person games and experts.
Max weight matching and algorithm.
Approximate: facility location primal dual.

Today: Geometry!



Convex Body and point.

For a convex body P and a point b, b ∈ P or hyperplane
separates P from b.

v ,α, where v ·x ≤ α and v ·b > α.

point p where (x−p)T (b−p)< 0

bp
x

Proof.

For a convex body P and a point b, b ∈ A or hyperplane point p where
(x−p)T (b−p)< 0

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x−p)T (b−p)≥ 0

bp

xx

P

(x−p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x−p and

−−−→
b−p.

Must be closer point on line to from p to x .

More formally.
bp

xx
P

Squared distance to b from p+(x−p)µ
point between p and x
(|p−b|−µ|x−p|cosθ)2 +(µ|x−p|sinθ)2

θ is the angle between x−p and b−p.

b
|p−b|− `cosθ

Distance to new point.

p

θ

p+µ(x−p)

`= µ|x−p| `sinθ

`cosθ

x
Simplify:
|p−b|2−2µ|p−b||x−p|cosθ +(µ|x−p|)2.

Derivative with respect to µ ...
−2|p−b||x−p|cosθ +2(µ|x−p|).

which is negative for a small enough value of µ (for positive cosθ .)

Generalization: exercise.

There is a separating hyperplane between any two convex
bodies.

Let closest pair of points in two bodies define direction.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x ≤

[
1
1

][
1 0 1
0 1 1

]
x ≤

[
−1
−1

]

x1

x2

x3
Coordinates s = b−Ax .

x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< 0 for all x → yT b < 0 and yT A≥ 0.
Farkas A: Solution for exactly one of:

(1) Ax = b,x ≥ 0
(2) yT A≥ 0,yT b < 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.



Strong Duality

(From Goemans notes.)

Primal P z∗ = mincT x
Ax = b
x ≥ 0

Dual D :w∗ = maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A≤ c,bT y ≥ z∗.

Want y .(
AT

−bT

)
y ≤

(
c
−z∗

)
.

If none, then Farkas B says
∃x ,λ ≥ 0.
(
A −b

)(x
λ

)
= 0

(
cT −z∗

)(x
λ

)
< 0

∃x ,λ with Ax−bλ = 0 and ctx−z∗λ < 0

Case 1: λ > 0. A( x
λ ) = b, cT ( x

λ )< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞
Primal unbounded!

See you on Thursday.


