Today

Lagrangian Dual. Already saw example!

Convex Separator.

Farkas Lemma.

Linear Program

```
min}cx,Ax\geq
            min c\cdotx
        subject to }\mp@subsup{b}{i}{}-\mp@subsup{a}{i}{}\cdotx\leq0,\quadi=1,\ldots.
Lagrangian (Dual)
    L(\lambda,x)=cx+\mp@subsup{\sum}{i}{}\mp@subsup{\lambda}{i}{}(\mp@subsup{b}{i}{}-\mp@subsup{a}{i}{}\mp@subsup{x}{i}{}).
or
L(\lambda,x)=-(\mp@subsup{\sum}{j}{}\mp@subsup{x}{j}{}(\mp@subsup{a}{j}{}\lambda-\mp@subsup{c}{j}{}))+b\lambda.
Best }\lambda\mathrm{ ?
    maxb}b\cdot\lambda\mathrm{ where }\mp@subsup{a}{j}{}\lambda=
    max}b\lambda,\mp@subsup{\lambda}{}{\top}A=c,\lambda\geq
Duals
```

Lagrangian Dual
Find x, subjet to

$$
f_{i}(x) \leq 0, i=1, \ldots m
$$

Remember calculus (constrained optimization.
Lagrangian: $\quad L(x, \lambda)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)$
λ_{i} - Lagrangian multiplier for inequality i.
For feasible solution $x, L(x, \lambda)$ is
(A) non-negative in expectation
(B) positive for any λ.
(C) non-positive for any valid λ.

If λ, where $L(x, \lambda)$ is positive for all x
(A) there is no feasible x.
(B) there is no x, λ with $L(x, \lambda)<0$.

Linear Equations.

$$
A x=b
$$

A is $n \times n$ matrix...
..has a solution.
If rows of A are linearly independent.
$y^{T} A \neq 0$ for any y
..or if b in subspace of A.

Lagrangian:constrained optimization.

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } f_{i}(x) \leq 0, & i=1, \ldots, m
\end{aligned}
$$

Lagragian function:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

If (primal) x value v
For all $\lambda \geq 0$ with $L(x, \lambda) \leq v$
Maximizing λ only positive when $f_{i}(x)=0$
If there is λ with $L(x, \lambda) \geq \alpha$ for all x
For optimum value of program is at least α
Primal problem:
x, that minimizes $L(x, \lambda)$ over all $\lambda>0$.
Dual problem:
λ, that maximizes $L(x, \lambda)$ over all x.

Strong Duality.

Later. Actually. No. Now ...ish
Special Cases:
min-max 2 person games and experts.
Max weight matching and algorithm
Approximate: facility location primal dual.
Today: Geometry!

Convex Body and point.

For a convex body P and a point $b, b \in P$ or hyperplane separates P from b.
v, α, where $v \cdot x \leq \alpha$ and $v \cdot b>\alpha$
point p where $(x-p)^{T}(b-p)<0$

Generalization: exercise.

There is a separating hyperplane between any two convex bodies.

Let closest pair of points in two bodies define direction.

Proof.

For a convex body P and a point $b, b \in A$ or hyperplane point p where $(x-p)^{T}(b-p)<0$

Proof: Choose p to be closest point to b in P.
Done or $\exists x \in P$ with $(x-p)^{T}(b-p) \geq 0$

$$
(x-p)^{T}(b-p) \geq 0
$$

$$
\rightarrow \leq 90^{\circ} \text { angle between } \overrightarrow{x-p} \text { and } \overrightarrow{b-p} .
$$

Must be closer point on line to from p to x.
$A x=b, x \geq 0$
$\left[\begin{array}{ccc}11 & 0 & 11 \\ 0 & 11 & 11\end{array}\right] x x \leq\left[\begin{array}{l}-11 \\ -11\end{array}\right]$

Coordinates $s=b-A x$.
$x \geq 0$ where $s=0$?
$x \geq 0$ where $s=0$?

y where $y^{\top}(b-A x)<0$ for all $x \rightarrow y^{\top} b<0$ and $y^{\top} A \geq 0$.
Farkas A: Solution for exactly one of
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$.

Farkas A: Solution for exactly one of
(1) $A x=b, x \geq 0$
(2) $y^{\top} A \geq 0, y^{\top} b<0$

Farkas B: Solution for exactly one of
(1) $A x<b$
(2) $y^{\top} A=0, y^{\top} b<0, y \geq 0$.

More formally.

Simplify:
$|p-b|^{2}-2 \mu|p-b||x-p| \cos \theta+(\mu|x-p|)^{2}$
Derivative with respect to μ...
$-2|p-b||x-p| \cos \theta+2(\mu|x-p|)$.
which is negative for a small enough value of μ (for positive $\cos \theta$.)
Farkas 2

Strong Duality

(From Goemans notes.)
Primal P $\quad z^{*}=\min c^{T} x$
$A x=b$
Dual D: $w^{*}=\max b^{T} y$ $A^{T} y \leq c$
$x \geq 0$

Weak Duality: x, y-feasible P, D: $x^{T} c \geq b^{T} y$.

$$
\begin{aligned}
x^{T} c-b^{T} y & =x^{T} c-x^{T} A^{T} y \\
& =x^{T}\left(c-A^{T} y\right) \\
& \geq 0
\end{aligned}
$$

Strong duality If P or D is feasible and bounded then $z^{*}=w^{*}$.
Primal feasible, bounded, value z^{*}.
Claim: Exists a solution to dual of value at least z^{*}.
$\exists y, y^{\top} A \leq c, b^{\top} y \geq z^{*}$.

$$
\begin{aligned}
& \text { Want } y \text {. } \\
& \qquad\binom{A^{T}}{-b^{T}} y \leq\binom{ c}{-z^{*}} .
\end{aligned}
$$

If none, then Farkas B says
$\exists x, \lambda \geq 0$.
$\left(\begin{array}{ll}A & -b\end{array}\right)\binom{x}{\lambda}=0$
$\left(\begin{array}{ll}c^{T} & -z^{*}\end{array}\right)\binom{x}{\lambda}<0$
$\exists x, \lambda$ with $A x-b \lambda=0$ and $c^{t} x-z^{*} \lambda<0$
Case 1: $\lambda>0$. $A\left(\frac{x}{\lambda}\right)=b, c^{T}\left(\frac{x}{\lambda}\right)<z^{*}$. Better Primal!!
Case 2: $\lambda=0$. $A x=0, c^{T} x<0$
Feasible \tilde{x} for Primal.
(a) $\tilde{x}+\mu x \geq 0$ since $\tilde{x}, x, \mu \geq 0$.
(b) $A(\tilde{x}+\mu x)=A \tilde{x}+\mu A x=b+\mu \cdot 0=b$. Feasible
$c^{T}(\tilde{x}+\mu x)=x^{T} \tilde{x}+\mu c^{T} x \rightarrow-\infty$ as $\mu \rightarrow \infty$
Primal unbounded!

See you on Thursday

