Facility Location.

Facility Location.

Lagrangian Dual.

Facility Location.

Lagrangian Dual. Already.

Facility Location.

Lagrangian Dual. Already.

Convex Separator.

Facility Location.

Lagrangian Dual. Already.

Convex Separator.

Farkas Lemma.

Set of facilities: F, opening cost f_i for facility i

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

 d_{ij} - distance between i and j.

```
Set of facilities: F, opening cost f<sub>i</sub> for facility i
Set of clients: D.

d_{ij} - distance between i and j.

(notation abuse: clients/facility confusion.)
```

Set of facilities: F, opening cost f_i for facility i Set of clients: D.

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)

```
Set of facilities: F, opening cost f_i for facility i Set of clients: D.

d_{ij} - distance between i and j.

(notation abuse: clients/facility confusion.)
```

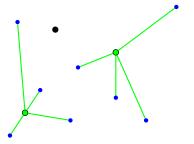
```
Set of facilities: F, opening cost f_i for facility i
Set of clients: D.
```

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)



Linear program relaxation:

Linear program relaxation:

"Decision Variables".

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

 x_{ij} - client j assigned to facility i.

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

 x_{ij} - client j assigned to facility i.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

Facility opening cost.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Facility opening cost.

Client Connnection cost.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

Facility opening cost.

Client Connnection cost.

Must connect each client.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

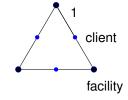
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

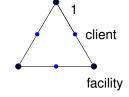
$$x_{ij}, y_i \ge 0$$

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \\ x_{ij} = \frac{1}{2} \text{ edges.} \\ y_i = \frac{1}{2} \text{ edges.} \end{aligned}$$



$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \\ \\ x_{ij} = \frac{1}{2} \text{ edges.} \\ y_i = \frac{1}{2} \text{ edges.} \\ Facility Cost: \frac{3}{2} \end{aligned}$$

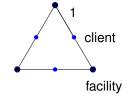


$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

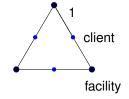


 $x_{ij} = \frac{1}{2}$ edges.

 $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$



 $x_{ij} = \frac{1}{2}$ edges. $v_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

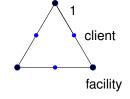
Facility Cost: 1 Client Cost: 3.7

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3

Any one Facility:

Facility Cost: 1 Client Cost: 3.7

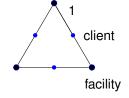
Make it worse?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

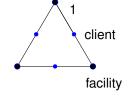
Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



 $x_{ij} = \frac{1}{2}$ edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure. Not as pretty!

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ii} separately? Assign to closed facility!

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately? Assign to closed facility! Round x_{ij} and open facilities?

Round solution?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately? Assign to closed facility! Round x_{ij} and open facilities? Different clients force different facilities open.

Round solution?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

 y_i and x_{ij} separately? Assign to closed facility!

Round x_{ij} and open facilities? Different clients force different facilities open.

Any ideas?

Round solution?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

 y_i and x_{ij} separately? Assign to closed facility!

Round x_{ij} and open facilities? Different clients force different facilities open.

Any ideas?

Use Dual!

 $\min cx, Ax \ge b$

 $\min \textit{cx}, \textit{Ax} \geq \textit{b} \leftrightarrow$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1 \quad ; \quad \alpha_j$$

$$\forall i \in F, j \in D \quad y_i - x_{ij} \ge 0 \quad ; \quad \beta_{ij}$$

$$x_{ij}, y_i \ge 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & ; \ \alpha_j & \forall i \ \sum_{j \in D} \beta_{ij} \leq f_i & ; \ y_i \\ \forall i \in F, j \in D \quad y_i - x_{ij} \geq 0 & ; \ \beta_{ij} & \forall i \in F, j \in D \quad \alpha_i - \beta_{ij} \leq d_{ij} & ; \ x_{ij} \\ x_{ij}, y_i \geq 0 & \beta_{ij}, \alpha_j \geq 0 \end{aligned}$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$
 $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{ij}$
 $lpha_{j}, eta_{ij} \leq 0$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

 α_j charge to client.

$$\max \sum_{j} \alpha_{j}$$

$$\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i}$$

$$\forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad x_{ij}$$

$$\alpha_{j}, \beta_{ij} \leq 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

 α_j charge to client. maximize price paid by client to connect!

$$\max \sum_{j} \alpha_{j}$$
 $\forall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$ $\forall i \in F, j \in D$ $\alpha_{j} - \beta_{ij} \leq d_{ij}$ x_{ij} $\alpha_{j}, \beta_{ij} \leq 0$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ji}, y_i \ge 0$$

 α_j charge to client. maximize price paid by client to connect! Objective: $\sum_i \alpha_i$ total payment.

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

 α_i charge to client.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & \forall i \in F & \sum_{j \in D} \beta_{ij} \leq f_i \\ \forall i \in F, j \in D & x_{ij} \leq y_i, & \forall i \in F, j \in D & \alpha_j - \beta_{ij} \leq d_{ij} & x_{ij} \\ x_{ij}, y_i \geq 0 & \alpha_j, \beta_{ij} \leq 0 \end{aligned}$$

maximize price paid by client to connect!

Objective: $\sum_{j} \alpha_{j}$ total payment.

Client j travels or pays to open facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & \forall i \in F & \sum_{j \in D} \beta_{ij} \leq f_i \\ \forall i \in F, j \in D & x_{ij} \leq y_i, & \forall i \in F, j \in D & \alpha_j - \beta_{ij} \leq d_{ij} & x_{ij} \\ x_{ij}, y_i \geq 0 & \alpha_j, \beta_{ij} \leq 0 \end{aligned}$$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_j \alpha_j$ total payment.

Client j travels or pays to open facility i.

Costs client d_{ij} to get to there.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
 $\forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1$
 $\forall i \in F, j \in D \quad x_{ij} \leq y_i,$
 $x_{ij}, y_i \geq 0$
 $\forall i \in F,$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_j \alpha_j$ total payment.

Client j travels or pays to open facility i.

Costs client d_{ij} to get to there.

Savings is $\alpha_i - d_{ii}$.

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

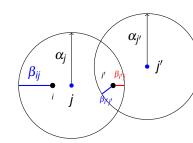
Client j travels or pays to open facility i.

Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$
 $orall i \in F, j \in D$ $\alpha_{j} - \beta_{ij} \leq d_{ij}$ x_{ij}
 $\alpha_{j}, \beta_{ij} \leq 0$

 α_{j} charge to client. maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

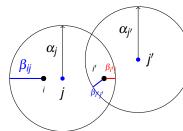
Client *j* travels or pays to open facility *i*.

Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

Total payment to facility i at most f_i before opening.



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i}$ $\forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad x_{ij}$ $\alpha_{j}, \beta_{ij} \leq 0$

 α_{j} charge to client. maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

Client j travels or pays to open facility i.

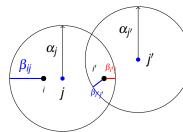
Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_i - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness:



$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{\textit{x}}_{ij} \\ \alpha_{j}, \beta_{ij} \leq 0 \end{aligned}$$

 α_j charge to client. maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

Client j travels or pays to open facility i.

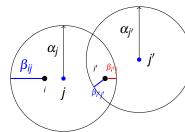
Costs client d_{ii} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_i - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness: $x_{ij} \ge 0$ if and only if $\alpha_j \ge d_{ij}$.



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$
 $\sum_{j \in D} \beta_{ij} \leq f_{i}$
 $orall i \in F, j \in D$
 $\alpha_{j} - \beta_{ij} \leq d_{ij}$
 $\alpha_{j}, \beta_{ij} \leq 0$

 α_j charge to client. maximize price paid by client to connect! Objective: $\sum_i \alpha_i$ total payment.

Client j travels or pays to open facility i.

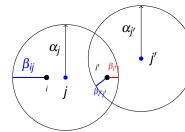
Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness: $x_{ij} \ge 0$ if and only if $\alpha_j \ge d_{ij}$. only assign client to "paid to" facilities.



1. Find solution to primal, (x, y). and dual, (α, β) .

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_i ,

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j .

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j .
 - Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j .
 - Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.
- 3. Removed assigned clients, goto 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_i ,

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j .

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

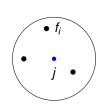
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Proof: Step 2 picks client *j*.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

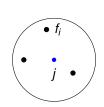
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j. f_{min} - min cost facility in N_j



Claim: Total facility cost is at most $\sum_i f_i y_i$.

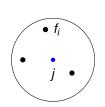
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j f_{min}

Claim: Total facility cost is at most $\sum_i f_i y_i$.

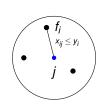
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij}$

Claim: Total facility cost is at most $\sum_i f_i y_i$.

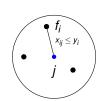
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i$

Claim: Total facility cost is at most $\sum_i f_i y_i$.

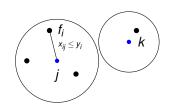
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

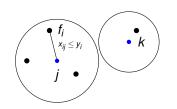


Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$.

For *k* used in Step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

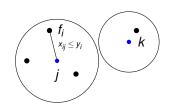


Proof: Step 2 picks client j. $f_{\min} - \min \text{ cost facility in } N_j$ $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$

For k used in Step 2. $N_j \cap N_k = \emptyset$ for j and k in step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$$

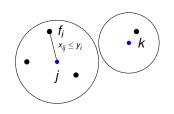
For k used in Step 2.

$$N_j \cap N_k = \emptyset$$
 for j and k in step 2.

 \rightarrow Any facility in \leq 1 sum from step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i.$$

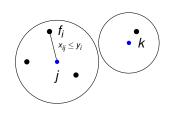
For k used in Step 2.

 $N_i \cap N_k = \emptyset$ for j and k in step 2.

- \rightarrow Any facility in \leq 1 sum from step 2.
 - \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

 $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i.$

For k used in Step 2.

 $N_i \cap N_k = \emptyset$ for j and k in step 2.

- \rightarrow Any facility in \leq 1 sum from step 2.
 - \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

2. For smallest (remaining) α_j ,

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j .

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

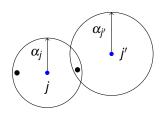
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

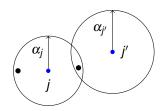
Client j is directly connected. Clients j' are indirectly connected.



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

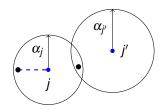
Connection Cost of *j*:



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

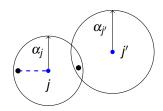
Connection Cost of *j*:



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

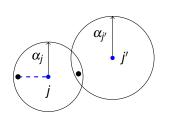
Client j is directly connected. Clients j' are indirectly connected.

Connection Cost of j: $\leq \alpha_j$.



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

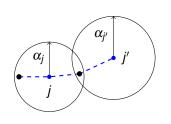
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

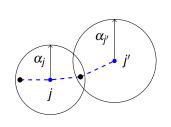
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

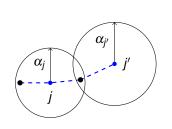
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j$

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

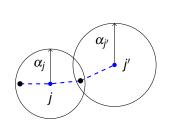
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

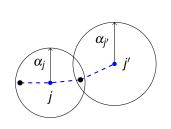
Client j is directly connected. Clients j' are indirectly connected.



 $\begin{array}{ll} \text{Connection Cost of } j\colon \leq \alpha_j.\\ \text{Connection Cost of } j'\colon \\ \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}.\\ \text{since } \alpha_j \leq \alpha_{j'} \end{array}$

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

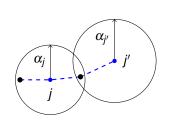


 $\begin{array}{ll} \text{Connection Cost of } j \colon \leq \alpha_j. \\ \text{Connection Cost of } j' \colon \\ \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}. \\ \text{since } \alpha_j \leq \alpha_{j'} \end{array}$

Total connection cost: at most $3\sum_{j'} \alpha_j \leq 3$ times Dual OPT.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



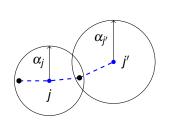
Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$. since $\alpha_i \leq \alpha_{i'}$

Total connection cost: at most $3\sum_{j'} \alpha_j \le 3$ times Dual OPT.

Previous Slide: Facility cost:

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

$$\leq lpha_{j'} + lpha_j + lpha_j \leq 3lpha_{j'}.$$
 since $lpha_j \leq lpha_{j'}$

Total connection cost:

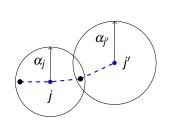
at most $3\sum_{j'} \alpha_j \le 3$ times Dual OPT.

Previous Slide: Facility cost:

 \leq primal "facility" cost \leq Primal OPT.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

 $\leq lpha_{j'} + lpha_j + lpha_j \leq 3lpha_{j'}.$ since $lpha_j \leq lpha_{j'}$

Total connection cost: at most $3\sum_{i'} \alpha_i \leq 3$ times Dual OPT.

Previous Slide: Facility cost:

 \leq primal "facility" cost \leq Primal OPT.

Total Cost: 4 OPT.

Client j:

Client j: $\sum_i x_{ij} = 1$,

Client j: $\sum_i x_{ij} = 1$, $x_{ij} \ge 0$.

Client j: $\sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution!

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i$$

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$$
 and separate balls implies total $\leq \sum_i y_i f_i.$

$$D_j = \sum_i x_{ij} d_{ij}$$

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$$
 and separate balls implies total $\leq \sum_i y_i f_i.$

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost j'

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' = \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost
$$j' \quad \alpha_j + \alpha_{j'} + D_j$$
.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost j' $\alpha_i + \alpha_{i'} + D_i$.

In step 2: pick in increasing order of $\alpha_i + D_i$.

 \rightarrow Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$. and separate balls implies total $\leq \sum_i y_i f_i$.

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of primal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.

 \rightarrow at most 3*OPT*.

1. Feasible integer solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

Phase 1:

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

Phase 1: 1. Initially α_i , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_i = d_{ij}$ for some i

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why?

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some i

 $u_{ij} = u_{ij} \text{ for some } i$

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some iraise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$.

```
Phase 1: 1. Initially \alpha_j, \beta_{ij} = 0.

2. Raise \alpha_j for every (unconnected) client.

When \alpha_j = d_{ij} for some i raise \beta_{ij} at same rate Why? Dual: \alpha_j - \beta_{ij} \leq d_{ij}.

Intution:Paying \beta_{ij} to open i.

Stop when \sum_i \beta_{ij} = f_i.

Why?
```

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some iraise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some iraise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$ Intution: facility paid for.

Phase 1: 1. Initially α_i , $\beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$. Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$

Intution: facility paid for.

Temporarily open i.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open *i*.

Connect all tight ji clients j to i.

3. Continue until all clients connected.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for. Temporarily open *i*.

 $\frac{\text{Connect}}{\text{Connect}} \text{ all tight } ji \text{ clients } j \text{ to } i.$

3. Continue until all clients connected.

Phase 2:

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some *i* raise β_{ii} at same rate Why? Dual: $\alpha_i - \beta_{ii} \le d_{ii}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ii} = f_i$. Why? Dual: $\sum_i \beta_{ii} \leq f_i$ Intution: facility paid for. Temporarily open i.

Connect all tight ji clients j to i.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some *i*

raise β_{ii} at same rate Why? Dual: $\alpha_i - \beta_{ii} \le d_{ii}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ii} = f_i$. Why? Dual: $\sum_i \beta_{ii} \leq f_i$ Intution: facility paid for. Temporarily open i.

Connect all tight *ji* clients *j* to *i*.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some *i*

raise β_{ii} at same rate Why? Dual: $\alpha_i - \beta_{ii} \le d_{ii}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ii} = f_i$. Why? Dual: $\sum_i \beta_{ii} \leq f_i$ Intution: facility paid for. Temporarily open i.

Connect all tight *ji* clients *j* to *i*.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution: Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$. Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$

Intution: facility paid for. Temporarily open *i*.

Temporarily open 1.

Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client *j*, connected facility *i* is opened.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good. Connected facility not open

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise $\hat{\beta}_{ij}$ at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight *ji* clients *j* to *i*.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.

Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Connected facility not open

 \rightarrow exists client j' paid i and connected to open facility.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ii} \le f_i$

Intution: facility paid for.

Temporarily open *i*.
Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Connected facility not open

 \rightarrow exists client j' paid i and connected to open facility.

Connect *j* to *j*''s open facility.

•

•

• •

$$\sum_{j} \beta_{ij} \leq f_i$$

•

•

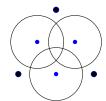
• •

$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

$$\sum_{j} eta_{ij} \leq f_i \ lpha_i - eta_{ij} \leq d_{ij}.$$
 Grow $lpha_j.$

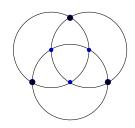
$$\sum_{j} eta_{ij} \leq f_i \ lpha_i - eta_{ij} \leq d_{ij}.$$
 Grow $lpha_j$.



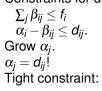
$$\sum_{j} \beta_{ij} \leq f_{i}$$

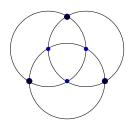
$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$
Grow α_{j} .
$$\alpha_{j} = d_{ij}!$$

arow
$$lpha_j$$
. $lpha_i = d_{ii}!$



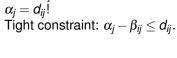
onstraints for dual
$$\nabla \cdot R_{ii} < f_i$$

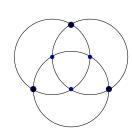




 $\sum_{j} \beta_{ij} \leq f_i$ $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .



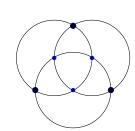


$\sum_{j} \beta_{ij} \leq f_i$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).

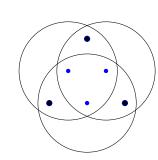


$\sum_{j} \beta_{ij} \leq f_i$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

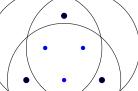
Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).



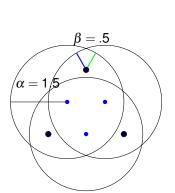
 $\sum_{j} \beta_{ij} \leq f_i$ $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

 $\alpha_i = d_{ij}!$



Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).



Constraints for dual.
$$\sum_i \beta_{ii} \leq f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow α_i .

Grow
$$\alpha_j$$
. $\alpha_j = d_{ij}!$

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$.

ignt constraint:
$$lpha_j$$
 –
Grow eta_{ij} (and $lpha_j$).

Grow
$$\beta_{ij}$$
 (and α_j). $\sum_j \beta_{ij} = f_i$ for all facilities.

 $\beta = .5$

lpha = 1.5

Constraints for dual.

$$\sum_{j} \beta_{ij} \leq f_{i}$$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_j . $\alpha_i = d_{ii}!$

 $\alpha_j = d_{ij}!$ Tight constrai

Tight constraint: $\alpha_j - \beta_{ij} \le d_{ij}$. Grow β_{ij} (and α_j). $\sum_i \beta_{ij} - f_i$ for all facilities

Grow β_{ij} (and α_j). $\sum_j \beta_{ij} = f_i$ for all facilities. Tight: $\sum_j \beta_{ij} \le f_i$

 $\beta = .5$

lpha = 1.5

Constraints for dual.

$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ii} \leq d_{ii}$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow
$$\alpha_j$$
. $\alpha_i = d_{ii}!$

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow β_{ij} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.
Tight: $\sum_{j} \beta_{ij} \le f_i$

$\beta = .5$ lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_{i} \beta_{ij} \leq f_{i}$$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

 $\alpha_i = d_{ii}!$

LP Cost: $\sum_{i} \alpha_{i}$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ij} (and α_i).

 $\sum_{j} \beta_{ij} = f_i$ for all facilities. Tight: $\sum_{j} \beta_{ij} \le f_i$

 $\beta = .5$

lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_i eta_{ij} \leq f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow α_i .

 $\alpha_i = d_{ii}!$

LP Cosť: $\sum_{i} \alpha_{i} = 4.5$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

 $\sum_i \beta_{ij} = f_i$ for all facilities.

$$\sum_{j} \beta_{ij} = f_{i}$$
 for all facilities.
Tight: $\sum_{j} \beta_{ij} \leq f_{i}$

$\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i). $\sum_i \beta_{ii} = f_i$ for all facilities. Tight: $\sum_{i} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$ Temporarily open all facilities.

lpha = 1.5

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

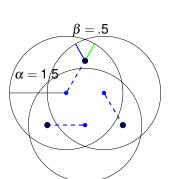
Constraints for dual. $\sum_{i} \beta_{ij} \leq f_i$ Grow α_i .

$\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i). $\sum_i \beta_{ii} = f_i$ for all facilities. Tight: $\sum_{i} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$ Temporarily open all facilities.

lpha = 1.5

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Constraints for dual. $\sum_{i} \beta_{ij} \leq f_i$ Grow α_i .



$$\sum_{j} \beta_{ij} \leq f_i$$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_j .

$$\alpha_j = d_{ij}!$$

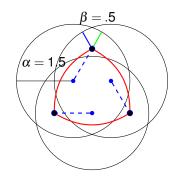
Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_j).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tight: $\sum_{j} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility.



$$\sum_{i} \sum_{j} \beta_{ij} \leq f_i$$

$$\alpha_i - \beta_{ij} \leq d_{ij}.$$

Grow α_j .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ii} (and α_i).

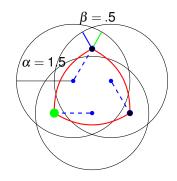
$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tight: $\sum_{j} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_i = 4.5$

LP Cost:
$$\sum_{j} \alpha_{j} = 4.5$$

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with client that pays both.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j . $\alpha_i = d_{ii}!$

Tight constraint:
$$\alpha_j - \beta_{ij} \le d_{ij}$$
.

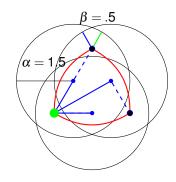
Grow β_{ij} (and α_j). $\sum_i \beta_{ii} = f_i$ for all facilities.

Tight:
$$\sum_{j} \beta_{ij} \leq f_i$$

LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with client that pays both. Open independent set.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_i .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

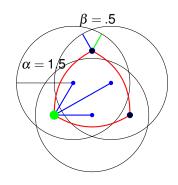
Tight: $\sum_i \beta_{ii} \leq f_i$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with client that pays both.

Open independent set.

Connect to "killer" client's facility.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_i .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tight: $\sum_i \beta_{ii} \leq f_i$ LP Cost: $\sum_i \alpha_i = 4.5$

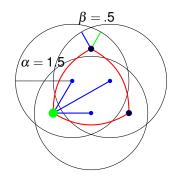
Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both.

Open independent set.

Connect to "killer" client's facility. Cost: 1 + 3.7



Constraints for dual.

$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_i .

 $\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow β_{ii} (and α_i). $\sum_i \beta_{ii} = f_i$ for all facilities.

Tight: $\sum_i \beta_{ii} \leq f_i$ LP Cost: $\sum_i \alpha_i = 4.5$

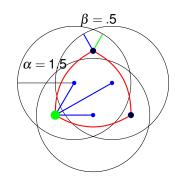
Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both.

Open independent set. Connect to "killer" client's facility.

Cost: 1 + 3.7 = 4.7.



Constraints for dual.

$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ii} (and α_i).

 $\sum_{j} \beta_{ij} = f_i$ for all facilities.

Tight: $\sum_{j} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both. Open independent set.

Connect to "killer" client's facility.

Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.

Claim: Client only pays one facility.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

$$f_i = \sum_{j \in S_i} \beta_{ij}$$

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

$$f_i = \sum_{j \in S_i} \beta_{ij} = \sum_{j \in S_i} \alpha_j - d_{ij}.$$

Since directly connected: $\beta_{ii} = \alpha_i - d_{ii}.$

Claim: Client j is indirectly connected to i

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i'

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i' conflicts with i.

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i' conflicts with i. exists j' with $\alpha_{j'} \geq d_{ij'}$ and $\alpha_j \geq d_{i'j'}$.

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{i'} \ge d_{ii'} and \alpha_i \ge d_{i'i'}.
```

When i' opens, stops both α_i and α'_i .

```
Claim: Client j is indirectly connected to i \rightarrow d_{ij} \leq 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \geq d_{ij'} and \alpha_j \geq d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier..)
```

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \ge d_{ij'} and \alpha_j \ge d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier..) \alpha_j \le \alpha'_j.
```

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \ge d_{ij'} and \alpha_j \ge d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier..) \alpha_j \le \alpha'_j. Total distance from j to i'.
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later} \ (..\text{maybe earlier..}) \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + \end{array}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to \ d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later (..maybe earlier..)} \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{jj'} + \\ \end{array}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to \ d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later (..maybe earlier..)} \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{ij'} + d_{i'j'} \end{aligned}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to \ d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later (..maybe earlier..)} \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{ij'} + d_{i'j'} \leq 3\alpha_j \\ \end{array}
```

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i' conflicts with i. exists j' with $\alpha_{i'} \ge d_{ii'}$ and $\alpha_i \ge d_{i'i'}$.

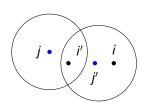
When i' opens, stops both α_j and α'_j .

 α'_j stopped no later (..maybe earlier..) $\alpha'_j < \alpha'_j$

 $\alpha_j \leq \alpha'_j$.

Total distance from j to i'.

$$d_{ij}+d_{ij'}+d_{i'j'}\leq 3\alpha_j$$



Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

 $\to \textit{d}_{\textit{ij}} \leq 3\alpha_{\textit{j}}.$

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

 $\rightarrow \textit{d}_{\textit{ij}} \leq 3\alpha_{\textit{j}}.$

Total Cost:

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client j is indirectly connected to i

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!

