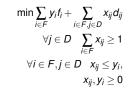
Today

Facility Location. Lagrangian Dual. Already. Convex Separator. Farkas Lemma.

Integer Solution?



 $x_{ij} = \frac{1}{2}$ edges.

facility

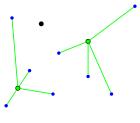
 $y_i = \frac{1}{2}$ edges. Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility: Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure. Not as pretty!

Facility location

Set of facilities: F, opening cost f_i for facility iSet of clients: D.

d_{ij} - distance between *i* and *j*. (notation abuse: clients/facility confusion.)

Triangle inequality: $d_{ij} \leq d_{ik} + d_{kj}$.



Round solution?

$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$
$\forall j \in D \sum_{i \in F} x_{ij} \geq 1$
$\forall i \in F, j \in D x_{ij} \leq y_i,$
$x_{ij}, y_i \ge 0$

Round independently? y_i and x_{ij} separately? Assign to closed facility! Round x_{ij} and open facilities? Different clients force different facilities open. Any ideas?

Use Dual!

Facility Location

Linear program relaxation:

"Decision Variables". y_i - facility i open? x_{ij} - client j assigned to facility i.

 $\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$ $\forall j \in D \sum_{i \in F} x_{ij} \ge 1$ $\forall i \in F, j \in D \quad x_{ij} \le y_i,$ $x_{ij}, y_i \ge 0$

Facility opening cost. Client Connnection cost. Must connect each client. Only connect to open facility.

The dual.

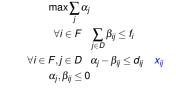
 $\min cx, Ax \geq b \leftrightarrow \max bx, y^T A \leq c.$

$$\begin{split} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ii} \leq y_i, \end{split}$$

$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$		$\max \sum_j lpha_j$	
$\forall j \in D \sum_{i \in F} x_{ij} \ge 1$; α j	$orall i \sum_{j \in \mathcal{D}} eta_{ij} \leq f_i \qquad ; \ oldsymbol{y}_i$	
$\forall i \in F, j \in D y_i - x_{ij} \ge 0$; β _{ij}	$orall i \in F, j \in D$ $lpha_i - eta_{ij} \leq d_{ij}$; $oldsymbol{x}_{ij}$	
$x_{ij}, y_i \ge 0$		$eta_{ij}, lpha_j \geq$ 0	

Interpretation of Dual?

$$\begin{split} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{split}$$



 $\alpha_{i'}$

$\begin{array}{c} \alpha_{j} \text{ charge to client.} \\ \text{maximize price paid by client to} \\ \text{connect!} \\ \text{Objective: } \sum_{j} \alpha_{j} \text{ total payment.} \\ \text{Client } j \text{ travels or pays to open facility } i. \\ \text{Costs client } d_{ij} \text{ to get to there.} \\ \text{Savings is } \alpha_{j} - d_{ij}. \\ \text{Willing to pay } \beta_{ij} = \alpha_{j} - d_{ij}. \\ \text{Total payment to facility } i \text{ at most } f_{i} \text{ before opening.} \\ \text{Complementary slackness: } x_{ij} \geq 0 \text{ if and only if } \alpha_{j} \geq d_{ij}. \\ \text{only assign client to "paid to" facilities.} \end{array}$

Connection Cost.

2. For smallest (remaining) α_j,
(a) Let N_j = {i : x_{ij} > 0}.
(b) Open cheapest facility *i* in N_j. Every client *j*' with N_{j'} ∩ N_j ≠ Ø assigned to *i*.
Client *j* is directly connected. Clients *j*' are indirectly connected.

 $\begin{array}{ll} \mbox{Connection Cost of } j: &\leq \alpha_j. \\ \mbox{Connection Cost of } j': & \\ &\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}. \\ & \mbox{since } \alpha_j \leq \alpha_{j'} \end{array}$

Total connection cost: at most $3\sum_{j'} \alpha_j \leq 3$ times Dual OPT.

Previous Slide: Facility cost: \leq primal "facility" cost \leq Primal OPT. Total Cost: 4 OPT.

Use Dual.

Find solution to primal, (*x*, *y*). and dual, (*α*, *β*).
 For smallest (remaining) *α_j*,

 (a) Let *N_j* = {*i* : *x_{ij}* > 0}.
 (b) Open cheapest facility *i* in *N_j*. Every client *j'* with *N_{j'}* ∩ *N_j* ≠ Ø assigned to *i*.

 Removed assigned clients, goto 2.

Twist on randomized rounding.

 $\begin{array}{l} \text{Client } j\colon \sum_i x_{ij} = 1, \ x_{ij} \geq 0. \\ \text{Probability distribution!} \to \text{Choose from distribution, } x_{ij}, \text{ in step 2.} \\ \text{Expected opening cost:} \\ \sum_{i \in N_j} x_{ij} f_i \leq \sum_{i \in N_j} y_i f_i. \\ \text{and separate balls implies total} \leq \sum_i y_i f_i. \\ D_j = \sum_i x_{ij} d_{ij} \quad \text{Connection cost of primal for } j. \\ \text{Expected connection cost } j' \quad \alpha_j + \alpha_{j'} + D_j. \\ \text{In step 2: pick in increasing order of } \alpha_i + D_i. \end{array}$

→ Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$.

2OPT(D) plus connection cost or primal.

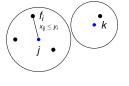
Total expected cost: Facility cost is at most facility cost of primal. Connection cost at most 2OPT + connection cost of prmal. \rightarrow at most 3OPT.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$. (b) Open cheapest facility *i* in N_j . Every client *j'* with $N_{j'} \cap N_j \neq \emptyset$ assigned to *i*.

Proof: Step 2 picks client *j*. f_{min} - min cost facility in N_i



 $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$

For *k* used in Step 2. $N_j \cap N_k = \emptyset$ for *j* and *k* in step 2. \rightarrow Any facility in ≤ 1 sum from step 2. \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

Primal dual algorithm.

1. Feasible integer solution.

2. Feasible dual solution.

3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual. Raise dual variables until tight constraint. Set corresponding primal variable to an integer.

Recall Dual:

 $\max \sum_{j} \alpha_{j}$ $\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_i$ $\forall i \in F, j \in D \quad \alpha_j - \beta_{ij} \leq d_{ij}$ $\alpha_i, \beta_{ii} < 0$

Facility location primal dual.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_i = d_{ij}$ for some *i* raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open *i*. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for. <u>Temporarily open *i*.</u> Connect all tight *ji* clients *j* to *i*.

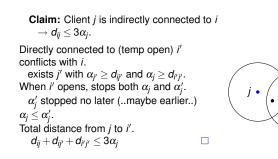
3. Continue until all clients connected.

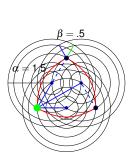
Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client *j*, connected facility *i* is opened. Good. Connected facility not open \rightarrow exists client *j'* paid *i* and connected to open facility. Connect *j* to *j'*'s open facility.

Analysis.





Constraints for dual. $\sum_{j} \beta_{ij} \leq f_{i}$ $\alpha_{i} - \beta_{ij} \leq d_{ij}.$ Grow $\alpha_{i}.$ $\alpha_{j} = d_{ij}!$ Tight constraint: $\alpha_{j} - \beta_{ij} \leq d_{ij}.$ Grow β_{ij} (and $\alpha_{j}).$ $\sum_{j} \beta_{ij} = f_{i}$ for all facilities. Tight: $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$

<u>Temporarily open all facilities.</u> Assign Clients to "paid to" open facility. Connect facilities with client that pays both. Open independent set. Connect to "killer" client's facility. Cost: 1 + 3.7 = 4.7. A bit more than the LP cost.

Putting it together!

Claim: Client only pays one facility. **Claim:** S_i - directly connected clients to open facility *i*. $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$. **Claim:** Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$. Total Cost: direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual. feasible dual upper bounds fractional (and integer) primal. 3 OPT.

Fast! Cheap! Safe!

Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility *i*. $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$.

Proof:

 $f_{i} = \sum_{j \in S_{i}} \beta_{ij} = \sum_{j \in S_{i}} \alpha_{j} - d_{ij}.$ Since directly connected: $\beta_{ii} = \alpha_{i} - d_{ii}.$

See you on Thursday.