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Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”
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Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .

Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.

Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.
Variable for each constraint.

pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv

unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable.

Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side.

min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality?

Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.

∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality?

Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions.

Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm

!!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?
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Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.
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Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .

Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0
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Take the dual.
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Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0.

Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?
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Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?
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Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .
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Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.
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Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!
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Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!
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The dual.

mincx ,Ax ≥ b

↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0
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Interpretation of Dual?
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αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.
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Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.
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Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .
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Connection Cost.

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.
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Twist on randomized rounding.

Client j :

∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .
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Primal dual algorithm.
1. Feasible integer solution.

2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0
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Facility location primal dual.
Phase 1:

1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.
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β = .5

α = 1.5

Constraints for dual.

∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.
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Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!
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See you on Thursday.


