
Today

Quickly: Matrix View, Taking Dual.

Matching, algebra, geometry.

Facility Location.



Today

Quickly: Matrix View, Taking Dual.

Matching, algebra, geometry.

Facility Location.



Today

Quickly: Matrix View, Taking Dual.

Matching, algebra, geometry.

Facility Location.



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤

“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints.

“equalities”↔
“unrestricted variables.”



Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

Another useful trick: Equality constraints. “equalities”↔
“unrestricted variables.”



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .

Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.

Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.
Variable for each constraint.

pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv

unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable.

Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side.

min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality?

Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.

∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality?

Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions.

Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm

!!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1.

Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable:

pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe.

Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint:

pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Matrix View.

xe variable for e = (u,v).
xe rhs

· · · · 0 · · · 1
...

...
...

... 1
pu · · · · 1 · · · 1

· · · · 0 · · · 1
...

...
...

... 1
· · · · 0 · · · 1

pv · · · · 1 · · · 1
· · · · 0 · · · 1
...

...
...

... 1
obj · · we ·

Row equation: ∑e=(u,v) xe = 1. Row (dual) variable: pu.

Column variable: xe. Column (dual) constraint: pu +pv ≥ 1.

Exercise: objectives?



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:

Only match on tight edges.
Nonzero pu on matched u.



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .

Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “go with min.

And only constants on right hand side.

min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “go with min.
And only constants on right hand side.

min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “go with min.
And only constants on right hand side.

min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0

de

∀i : ∑
p∈Pi

fp = Di

di

fp ≥ 0

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.

Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:

µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ

→ ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1.

fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp

→ ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.

Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.

Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides.

max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length.

Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!

Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.

Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality.

Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound.

First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture.

Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness:

only route on shortest paths
only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

fp ≥ 0
Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e) ∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0.

Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di .

Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp.

Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint:

di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ.

Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint:

∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Matrix View
fp variable for path e1,e2, . . . ,ek . p connects si , ti .

fp µ rhs
· · · · 0 · · · · 0
...

...
...

...
... 0

de1 · · · · -1 · · · ce1 0
...

...
...

...
... 0

de2 · · · · -1 · · · ce2 0
...

...
...

...
... 0

dek · · · · -1 · · · cek 0
...

...
...

...
... 0

di · · 1 · · · · Di
obj 1 1 1 1

Row constraint: ceµ−∑p3e fp ≥ 0. Row (dual) variable: de.

Row constraint: ∑p∈Pi
fp = Di . Row (dual) variable: di .

Column variable: fp. Column (dual) constraint: di −∑e∈p de ≤ 0.

Column variable: µ. Column (dual) constraint: ∑e d(e)c(e) = 1.

Exercise: objectives?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1:

We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2:

Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.

Question: what is it?



Exponential size.
Multicommodity flow. min µ

∀e :µce−∑
p3e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint→ poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X

X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X

X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X

X

X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X

X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path.

Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a

= 1

z +y ≤ 1 b

= 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c

= 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +2z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .

(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.

yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?

xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.

Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.

Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.

Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2

Connection Cost: 3
Any one Facility:

Facility Cost: 1 Client Cost: 3.7
Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1

Client Cost: 3.7
Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse?

Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure.

Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij = 1
2 edges.

yi = 1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately?

Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?

Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



The dual.

mincx ,Ax ≥ b

↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔

maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αi −βij ≤ dij ; xij

βij ,αj ≥ 0



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.

maximize price paid by client to
connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.

Client j travels or pays to open facility i .
Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.

Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .

Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.

Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness:

xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≤ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .

fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin

≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij

≤ fmin ∑i∈Nj
yi ≤ ∑i∈Nj

yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi

≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.

Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.

→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ∑i yi fi .



Connection Cost.

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .

Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj

≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .

since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:

≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j ′ αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Twist on randomized rounding.

Client j :

∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1,

xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.

Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution!

→ Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:

∑i∈Nj
xi jfi ≤ ∑i∈Nj

yi fi .
and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi

≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij

Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′

αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xi jfi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is (2αj ′ +Dj ′). Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Primal dual algorithm.
1. Feasible integer solution.

2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.

3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it.

Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program.

Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.

Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Facility location primal dual.
Phase 1:

1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.

2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.

When αj = dij for some i
raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intution:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate

Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why?

Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intution:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why?

Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.

Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .

Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.

Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened.

Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.

Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open

→ exists client j ′ paid i and connected to open facility.
Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i .
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



β = .5

α = 1.5

Constraints for dual.

∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi

αi −βij ≤ dij .
Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !

Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint:

αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .

Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.

Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj

= 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.

Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.

Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.

Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7

= 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:

fi = ∑j∈Si
βij = ∑j∈Si

αj −dij .
Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij

= ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis.

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

α ′j stopped no later (..maybe earlier..)
αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .

α ′j stopped no later (..maybe earlier..)
αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later

(..maybe earlier..)
αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .

Total distance from j to i ′.
dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +

dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +

di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′

≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Directly connected to (temp open) i ′

conflicts with i .
exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
α ′j stopped no later (..maybe earlier..)

αj ≤ α ′j .
Total distance from j to i ′.

dij +dij ′ +di ′ j ′ ≤ 3αj

j i ′ i

j ′



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:

direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.

plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



See you on Thursday.


