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> o<

“inequalities” < “nonnegative variables”
“nonnegative variables” < “inequalities”

Another useful trick: Equality constraints. “equalities” «
“unrestricted variables.”
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Xg variable for e = (u, v).

Xe rhs
0 - 1
: 1
0o - 1
: 1
0 1
Py 1 1
0 1
: : : 1

Row equation: Ye_(, ) Xe = 1. Row (dual) variable: p,.
Column variable: xe. Column (dual) constraint: p, +p, > 1.
Exercise: objectives?
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max ) weXe
e
VWi ) Xe=1 Py
e=(u,v)
Xe >0
Dual:
minY., pv

Ve=(u,v): pu+py=>We

Complementary slackness:
Only match on tight edges.
Nonzero p, on matched u.
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Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u  rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
d | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.
Column variable: p. Column (dual) constraint: Yo d(e)c(e) =1.

Exercise: obiectives?
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Exponential size.

Multicommaodity flow. min u
Ve:uce— ) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint — poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?
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0 1
0 x>0
z>0 =1

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!
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y;i - facility i open?
xji - client j assigned to facility /.

min Zy,'f,'—i- Z X,jd,/
ieF ieF.jeD

vjeD ZXij21
ieF

Vi e FJED X,'ij,',

Xij,¥i > 0

Facility opening cost.

Client Connnection cost.
Must connect each client.
Only connect to open facility.
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min} yifi+ Y, X
ieF ieF.jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0

’ xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

il
acility Make it worse? Sure. Not as pretty!
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Round solution?

min Y yifi+ ), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,',
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!

Round x;; and open facilities?
Different clients force different facilities open.

Any ideas?
Use Dual!
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Savings is «; — dj.

Willing to pay Bj = a; — dj.
Total payment to facility / at most f; before opening.
Complementary slackness: x; > 0 if and only if o; > di.
only assign client to “paid to” facilities.
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1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

3. Removed assigned clients, goto 2.
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2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

\ Total connection cost:
at most 3), oy < 3 times Dual OPT.

Previous Slide: Facility cost:
< primal “facility” cost < Primal OPT.

Total Cost: 4 OPT.
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Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d;  Connection cost of primal for j.

Expected connection cost // o+ + D;.

In step 2: pick in increasing order of o; + D;.

— Expected cost is (20 +- Dy).  Connection cost: 2}, o+, D;.

20PT (D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 20PT + connection cost of prmal.
— at most 3OPT.
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maxZaj
J

jeD
VieF,jeD oj—B;<dj
aj,B; <0
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Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate  Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.
Connected facility not open

— exists client j/ paid i and connected to open facility.
Connect j to j”’s open facility.
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o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.

Cost: 1 +3.7=4.7.

A bit more than the LP cost.
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Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S; - directly connected clients to open facility /.
fi+ Yjes; dij < ¥ .

Proof:

fi = Yjes, Bj = Ljes; & — .
Since directly connected: f; = o; — dj.
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Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.
Fast! Cheap! Safe!



See you on Thursday.



