Today

Quickly: Matrix View, Taking Dual.

Today

Quickly: Matrix View, Taking Dual.
Matching, algebra, geometry.

Today

Quickly: Matrix View, Taking Dual.
Matching, algebra, geometry.
Facility Location.

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c

x>0 y>0

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0

Standard:

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0

Standard:

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0

Standard:
Ax < b,maxcx,x >0« yTA>c,minby,y > 0.

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0

Standard:
Ax < b,maxcx,x >0« yTA>c,minby,y > 0.

min < max

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0

Standard:
Ax < b,maxcx,x >0« yTA>c,minby,y > 0.
min < max

>e<

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y=>0
Standard:
Ax < b,maxcx,x >0« yTA> c,minby,y > 0.
min < max
> o<

“inequalities” < “nonnegative variables”

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0
Standard:
Ax < b,maxcx,x >0« yTA> c,minby,y > 0.
min < max
> o<

“inequalities” < “nonnegative variables”

“nonnegative variables” < “inequalities”

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y>0
Standard:
Ax < b,maxcx,x >0« yTA> c,minby,y > 0.
min < max
> o<

“inequalities” < “nonnegative variables”
“nonnegative variables” < “inequalities”

Another useful trick: Equality constraints.

Rules for School...
or...”Rules for taking duals”
Canonical Form.

Primal LP Dual LP
max ¢ - X min yb
Ax<b yTA>c
x>0 y=>0
Standard:
Ax < b,maxcx,x >0« yTA> c,minby,y > 0.
min < max
> o<

“inequalities” < “nonnegative variables”
“nonnegative variables” < “inequalities”

Another useful trick: Equality constraints. “equalities” «
“unrestricted variables.”

Maximum Weight Matching.
Bipartite Graph G=(V,E), w: E — Z.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) WeXe

Vi) Xe=1

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) WeXe

Vi) Xe=1

Dual.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) WeXe

Vi) Xe=1

Dual.
Variable for each constraint.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) WeXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p,

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality?

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.
Yecm WeXe < Ze:(u,v)eMpu +pv <Xy Pu-

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.
Yecm WeXe < Ze:(u,v)eMpu +pv <Xy Pu-
Strong Duality?

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vv Z Xe =1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.
ZeeM WeXe < Ze:(u,v)eMpu +pv < XyPu-
Strong Duality? Same value solutions.

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.
YecM WeXe < Xe—(u,v)eMPu+Pv < Ly Pu-
Strong Duality? Same value solutions. Hungarian algorithm

Maximum Weight Matching.

Bipartite Graph G= (V,E), w: E — Z.
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max) weXe
e
Vi) Xe=1 Py
e=(u,v)
Xe >0

Dual.
Variable for each constraint. p, unrestricted.
Constraint for each variable. Edge e, p,+py > we
Objective function from right hand side. min}, p,

miny, pv
Ve=(u,v): pu+py>We

Weak duality? Price function upper bounds matching.
YecM WeXe < Xe—(u,v)eMPu+Pv < Ly Pu-
Strong Duality? Same value solutions. Hungarian algorithm !!!

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 1
: 1
Pu 1 1
0 1
: 1
0 1
o 1 1
0 1
: 1
obj We

Matrix View.

Xg variable for e = (u, v).

Xe rhs

0 .- 1

: : 1

o - 1

: 1

0 1

o 1 1
0 1

Co : 1

Row equation: Ye_(y vy Xe = 1.

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 - 1
: : 1
0o - 1
: 1
0 1
Py 1 1
0 1
Co : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable:

Matrix View.

Xg variable for e = (u, v).

Xe rhs

0 - 1

: : 1

0o - 1

: 1

0 1

Py 1 1
0 1

Co : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable: p,.

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 - 1
: 1
0o - 1
: 1
0 1
o 1 1
0 1
: : : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable: p,.

Column variable: xe.

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 - 1
: 1
0o - 1
: 1
0 1
Py 1 1
0 1
: : : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable: p,.
Column variable: x.. Column (dual) constraint:

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 - 1
: 1
0o - 1
: 1
0 1
Py 1 1
0 1
: : : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable: p,.
Column variable: xe. Column (dual) constraint: p, +p, > 1.

Matrix View.

Xg variable for e = (u, v).

Xe rhs
0 - 1
: 1
0o - 1
: 1
0 1
Py 1 1
0 1
: : : 1

Row equation: Ye_(,) Xe = 1. Row (dual) variable: p,.
Column variable: xe. Column (dual) constraint: p, +p, > 1.
Exercise: objectives?

Complementary Slackness.

max) weXe
e

Wi) Xe=1 Py

Dual:

minY., py
Ve=(u,v): pu+py=>We

Complementary Slackness.

max) weXe
e
VWi) Xe=1 Py
e=(u,v)
Xe >0
Dual:
minY., pv

Ve=(u,v): pu+py=>We
Complementary slackness:

Complementary Slackness.

max) weXe
e
VWi) Xe=1 Py
e=(u,v)
Xe >0
Dual:
minY., pv

Ve=(u,v): pu+py=>We

Complementary slackness:
Only match on tight edges.
Nonzero p, on matched u.

Multicommodity Flow.

Given G = (V, E), and capacity function c: E — Z, and pairs
(81,t1),.-.,(8k, t) with demands dy, ..., d.

Multicommodity Flow.

Given G = (V, E), and capacity function c: E — Z, and pairs
(81,t1),.-.,(8k, t) with demands dy, ..., d.

Route D; flow for each s;, t; pair, so every edge has < uc(e) flow with
minimum .

Multicommodity Flow.

Given G = (V, E), and capacity function c: E — Z, and pairs
(81,t1),.-.,(8k, t) with demands dy, ..., d.

Route D; flow for each s;, t; pair, so every edge has < uc(e) flow with
minimum .

Multicommodity Flow.

Given G = (V, E), and capacity function c: E — Z, and pairs
(81,t1),.-.,(8k, t) with demands dy, ..., d.

Route D; flow for each s;, t; pair, so every edge has < uc(e) flow with
minimum .

variables: f, flow on path p.
P; -set of paths with endpoints s;, f;.

Multicommodity Flow.

Given G = (V, E), and capacity function c: E — Z, and pairs
(81,t1),.-.,(8k, t) with demands dy, ..., d.

Route D; flow for each s;, t; pair, so every edge has < uc(e) flow with
minimum .

variables: f, flow on path p.
P; -set of paths with endpoints s;, f;.

min u
p>e

vi: Y f,=D;
PpeP;

f,>0

Take the dual.

minu

p>e

Vi Z fo=D;
PEP;

f,>0

Modify to make it >, which “go with min.

Take the dual.

minu

pae

Vi: Y f,=D;
PEP;
f,>0

Modify to make it >, which “go with min.
And only constants on right hand side.

Take the dual.

minu

p>e

Vi Z fo=D;
PEP;
fp>0

Modify to make it >, which “go with min.
And only constants on right hand side.

min

pse
vi:Y t=D
peP;
f,>0

Dual. m|n'u
Ve:uce—) £,>0

p>e
Vi: Z fo=D;
PEP;
fo>0

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:

u

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:
u — Ze Cede =1.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y f,=D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:
u — ZeCede =1. fp

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y f,=D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:
u — ZeCede =1. fp — Vpe Pi dj—zeepde < 0.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.
Introduce constraint for each var:
u — ZeCede =1. fp — Vpe Pi dj—zeepde < 0.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe Pi dj—zeepde < 0.
Objective: right hand sides.

Dual. m|n'u

Ve:ce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe Pi dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
e

ecp

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
e

ecp

d; - shortest s;, t; path length.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
e

ecp

d; - shortest s;, t; path length. Toll problem!

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
e

ecp

d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
7
VpePi:di< Y de) Y cede =1
ecp e

d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
7
VpePi:di< Y de) Y cede =1
ecp e

d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede =1. fp — Vpe P,' dj—zeepde S 0.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
7
VpePi:di< Y de) Y cede =1
ecp e

d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede: 1. fp — Vpe P,' dj—zeepdeﬁo.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
7
VpePi:di< Y de) Y cede =1
ecp e

d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede: 1. fp — Vpe P,' dj—zeepdeﬁo.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
eep e
d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness:

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede: 1. fp — Vpe P,' dj—zeepdeﬁo.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
eep e
d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

Dual. m|n'u

Ve:uce—) £,>0 de
p>e
vi: Y =D dj
PEP;
fb>0

Introduce variable for each constraint.

Introduce constraint for each var:

u — ZeCede: 1. fp — Vpe P,' dj—zeepdeﬁo.
Objective: right hand sides. max Y ; D;d;

maxZD,-d,-
i

VpePi:di< Y de) Y cede =1
eep e
d; - shortest s;, t; path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y p5efp > 0.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fo = D;.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].
Column variable: fp.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].
Column variable: f,. Column (dual) constraint:

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
a | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].
Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

Co : 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
de, -1 Ce, O

: 0
a | - . 1 . D,
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.
Column variable: u.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

Co : 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
de, -1 Ce, O

: 0
a | - . 1 . D,
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.
Column variable: u. Column (dual) constraint:

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

Co : 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
de, -1 Ce, O

: 0
a | - . 1 . D,
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.
Column variable: p. Column (dual) constraint: Yo d(e)c(e) =1.

Matrix View
fp variable for path eq, ey, ..., €. p connects s;, f;.

fo u rhs

0o .- . 0

: 0
de1 ‘1 Ce1 O

: : 0
de, -1 C, O

: 0
e, -1 Ce, O

: 0
d | - . 1 . D;
obj | 1 1 1 1

Row constraint: Cept — Y. p5¢ fo > 0. Row (dual) variable: d.
Row constraint: ¥ ,cp, fp = D;. Row (dual) variable: d].

Column variable: f,. Column (dual) constraint: d; — Y.ecpde < 0.
Column variable: p. Column (dual) constraint: Yo d(e)c(e) =1.

Exercise: obiectives?

Exponential size.
Multicommaodity flow. min u

Ve:uce—) £,>0

p>e
VI Z fp == di
peP;
fo>0

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

Vpe Pi:di < Z d(e)

ecp

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)

ecp

Exponential sized programs?

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)

ecp

Exponential sized programs?
Answer 1:

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)

ecp

Exponential sized programs?
Answer 1: We solved anyway!

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!
Answer 2:

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm.

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint — poly time algorithm.

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint — poly time algorithm.

Answer 3: there is polynomial sized formulation.

Exponential size.

Multicommaodity flow. min u
Ve:uce—) £,>0
p>e
VI Z fp == di
PEP;
fo>0
Dual is.
maxZD,-d,-
i

VpePi:di< Y d(e)
ecp
Exponential sized programs?
Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint — poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?

Maximum matching and simplex.

Z

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<A1
4 <1
X +y <

y <A1
Z x>0
y=>0

y
z>0

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<A1
z+y <A1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<A1
z+y <A1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<A1
z+y <A1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<1
z+y <1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<1
z+y <1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<1
z+y <1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
xX+z<A1
z+y <A1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<1
z+y <1

y <1

Z x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+z
x <A1
X+z<1
z+y <At

y <At

Z x>0
y y=>0
z>0

Blue constraints redundant.

Maximum matching and simplex.

maxx—+y+z
X+z<A1

<1

X zZ+y<
ZE x>0
y y>0

Maximum matching and simplex.

maxx—+y+z
X+z<A1

<1

X zZ+y<
ZE x>0
y y>0

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <At
% x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <At
% x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y—+z
V4
X+z<A1
0 z+y <At
.32 x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
.% x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
g x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
g x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
g x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
g x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
0 z+y <1
g x>0
0 y>0
z>0 y

Blue constraints tight.

Maximum matching and simplex.

maxx+y+z
V4

X+z<A1

3 z+y<1

3 y>0

z>0 y
X
Blue constraints tight.
1 -1 41

o—0O0—C0O—20

Augmenting Path.

Maximum matching and simplex.

maxx—+y+z
z
X+z<A1
K z+y <A1
.32 x>0
7 y=0
z>0 y

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx—+y—+z
z

X+z<A1

] z+y <A1

% x>0

1 y=0

z>0

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx—+y—+z
z

X+z<A1

] z+y <A1

% x>0

1 y=0

z>0

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx—+y—+z
z

X+z<A1

] z+y <A1

% x>0

1 y=0

z>0

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx +y+2z
V4
x+z<1 a
1 z+y<1 b
02 x>0
1 y=0
z>0

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx—+y—+z
z
xX+z<1 a=1
1 z+y<1 b=1
0 1
0 x>0
z>0 =1

Blue constraints tight.

Sum: x+2z+y.
11+
o—0O0—C0O—20

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+z

xX+z<1 a=1

1 z+y<1 b=1
0 1
0 x>0
z>0 =1

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+z

xX+z<1 a=1

1 z+y<1 b=1
0 1
0 x>0
z>0 =1

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+z

xX+z<1 a=1

1 z+y<1 b=1
0 1
0 x>0
z>0 =1

Blue constraints tight.

ST

Augmenting Path. Via Gaussian Elimination!

Facility location

Set of facilities: F, opening cost f; for facility /

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.
dj - distance between j and j.

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

dj - distance between j and j.
(notation abuse: clients/facility confusion.)

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

dj - distance between j and j.
(notation abuse: clients/facility confusion.)

Triangle inequality: dj < dj + d;.

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

dj - distance between j and j.
(notation abuse: clients/facility confusion.)

Triangle inequality: dj < dj + d;.

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

dj - distance between j and j.
(notation abuse: clients/facility confusion.)

Triangle inequality: dj < dj + d;.

Facility location

Set of facilities: F, opening cost f; for facility /
Set of clients: D.

dj - distance between j and j.
(notation abuse: clients/facility confusion.)

Triangle inequality: dj < dj + d;.

Facility Location

Linear program relaxation:

Facility Location

Linear program relaxation:

“Decision Variables”.

Facility Location

Linear program relaxation:

“Decision Variables”.
y;i - facility i open?

Facility Location

Linear program relaxation:
“Decision Variables”.

y;i - facility i open?

xji - client j assigned to facility /.

Facility Location

Linear program relaxation:
“Decision Variables”.

y;i - facility i open?

xji - client j assigned to facility /.

Facility Location

Linear program relaxation:

“Decision Variables”.
y;i - facility i open?
xji - client j assigned to facility /.

min Zy,'f,'—i- Z X,jd,/

icF ieF jeD
vje D Z Xjj > 1
ieF

Vie F,jED X,'ij,',
Xij,¥i > 0

Facility Location

Linear program relaxation:
“Decision Variables”.

y;i - facility i open?

xji - client j assigned to facility /.

min) yifi+). xjdj
icF ieF jeD

vjeD ZXij21

ieF
ViEF,jED X,'ij,',
Xj,¥i >0

Facility opening cost.

Facility Location

Linear program relaxation:

“Decision Variables”.
y;i - facility i open?
xji - client j assigned to facility /.

min Zy,'f,'—i- Z X,jd,/
icF ieF jeD

VjED ZXij21
ieF

Vie F,jED X,'ij,',

Xij,¥i > 0

Facility opening cost.
Client Connnection cost.

Facility Location

Linear program relaxation:

“Decision Variables”.
y;i - facility i open?
xji - client j assigned to facility /.

min Zy,'f,'—i- Z X,jd,/
ieF ieF.jeD

vjeD Z Xjj > 1
ieF
Vie F,jED X,'ij,',
Xj,¥i >0
Facility opening cost.

Client Connnection cost.
Must connect each client.

Facility Location

Linear program relaxation:

“Decision Variables”.
y;i - facility i open?
xji - client j assigned to facility /.

min Zy,'f,'—i- Z X,jd,/
ieF ieF.jeD

vjeD ZXij21
ieF

Vi e FJED X,'ij,',

Xij,¥i > 0

Facility opening cost.

Client Connnection cost.
Must connect each client.
Only connect to open facility.

Integer Solution?

minZy,-f,-—i— Z X,'/'d,'j

icF ieF jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0
’ xj = 3 edges.
yi = % edges.

client

facility

Integer Solution?

minZy,-f,-—i— Z X,'/'d,'j

icF ieF jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0
’ xj = 3 edges.
yi = % edges.

client
Facility Cost: 3

facility

Integer Solution?

min} yifi+ Y, X
ieF ieF.jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0

’ xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

facility

Integer Solution?

minY) yifi+ Y x;dj
icF ieF jeD
ieF
VieF,jeD x; <y
Xij; Yi >0

1 Xj = & edges.

yi = % edges.
client .
Facility Cost: % Connection Cost: 3

Any one Facility:

facility Facility Cost: 1

Integer Solution?

min) yifi+ Y. x;0j
icF ieF jeD
ieF
VieF,jeD x; <y
Xjj, ¥i > 0

1 xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

Any one Facility:

facility Facility Cost: 1 Client Cost: 3.7

Integer Solution?

min} yifi+ Y, X
ieF ieF.jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0

’ xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

facili
acility Make it worse?

Integer Solution?

min} yifi+ Y, X
ieF ieF.jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0

’ xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

facili
acility Make it worse? Sure.

Integer Solution?

min} yifi+ Y, X
ieF ieF.jeD
ieF
Vie F,jED x,-l-gy,-,
Xj,¥i >0

’ xj = 3 edges.

yi = % edges.
client
Facility Cost: % Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

il
acility Make it worse? Sure. Not as pretty!

Round solution?

min) yifi+ Y x;dj

ieF ieF jeD
vjeD Y x;>1
ieF

ViGF,jED X,'jS}/,',
Xiji,¥i > 0

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViGF,jED X,'ij,'7
Xiji,¥i > 0

Round independently?

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViGF,jED X,'jgy,'7
Xiji,¥i > 0

Round independently?

yi and x; separately?

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,'7
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!

Round solution?

minZy,-f,-+ Z X;jdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,'7
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!
Round x;; and open facilities?

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,',
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!

Round x;; and open facilities?
Different clients force different facilities open.

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,',
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!

Round x;; and open facilities?
Different clients force different facilities open.

Any ideas?

Round solution?

min Y yifi+), xjdj

ieF ieF.jeD
Vj eD Z Xij >1
ieF

ViEF,jED X,'jgy,',
Xiji,¥i > 0

Round independently?
yi and x; separately? Assign to closed facility!

Round x;; and open facilities?
Different clients force different facilities open.

Any ideas?
Use Dual!

The dual.

mincx,Ax > b

The dual.

mincx,Ax > b <

The dual.

mincx, Ax > b — maxbx,yTA< c.

The dual.

mincx, Ax > b — maxbx,yTA< c.

minZy,-f,-—i- Z X,/d,j
ieF ieF.jeD

icF
ViEF,jED X,-l-gy,-,

The dual.

mincx, Ax > b — maxbx,yTA< c.

minZy,-f,-—i- Z X,/d,j

ieF ieF.jeD
ieF

ViEF,jED X,-l-gy,-,

min) yifi+ Y xdj

ieF ieF jeD
vieD Y x>1 o
ieF

vieF,jeD y,'—X,'jZO ,ﬁ,/
Xjj, i >0

The dual.

mincx, Ax > b — maxbx,yTA< c.

minZy,-f,-—i- Z X,/d,j

ieF ieF.jeD
ieF

ViEF,jED X,-l-gy,-,

min) yifi+ Y xdj max) o;
ieF ieF,jeD i
ieF jeD
VieF,jeD yi—x;>0 ;B vieF,jeD (X,‘—ﬁ,'jgd,'j

Xij, i =0 Bij,a; >0

s Yi

3 Xij

Interpretation of Dual?

. max) o;
minY yifi+ Y xdy ;/
ieF ieF.jeD .
vVieF Bii < f;
veD Y x;>1 j&u ,
ieF .
Vie F D —B: < d; "
VieF,jeD x;<y, ieF.jeD o-PBj=d; X

Xij, ¥i > 0

Interpretation of Dual?

: max } o;
mnY yifi+ Y xd; ; j
ieF ieF jeD .
: Vie F i < fi
vjeD) xj>1 j&ﬁ’l—l
ieF . .
VieFjeD xj<yi V/GF,/egoa,-—ﬁ,-,-gd,-,- Xi
Xj,yi = 0 %, By <

a;j charge to client.

Interpretation of Dual?

. max) o;
minY yifi+ Y xdy ;/
ieF ieF.jeD .
vVieF Bii < f;
veD Y x;>1 j&u ,
ieF .
Vie F D —B: < d; y
VieF,jeD x;<y, ieF.jeD o-PBj=d; X
Xij, ¥i > 0

a;j charge to client.
maximize price paid by client to
connect!

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.

maximize price paid by client to
connect!
Objective: ¥, o; total payment.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to
connect!
Objective: ¥, o; total payment.
Client j travels or pays to open facility /.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to
connect!
Objective: ¥, o; total payment.
Client j travels or pays to open facility /.
Costs client dj to get to there.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Willing to pay Bj = a; — dj.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Willing to pay Bj = a; — dj.
Total payment to facility / at most f; before opening.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Willing to pay Bj = a; — dj.
Total payment to facility / at most f; before opening.
Complementary slackness:

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Willing to pay Bj = a; — dj.
Total payment to facility / at most f; before opening.
Complementary slackness: x; > 0 if and only if o; > di.

Interpretation of Dual?

. max o
minY yifi+ Y xdy ;/
ieF ieF.jeD .
VieF i < f;
vieD Y x;>1 j&ﬁu_,
ieF . .
B < ds .
vieFjeD x;<yi vieFjeD a—pj<d; x
. @, B; <0
XI/?,yIZO

a;j charge to client.
maximize price paid by client to

connect!

Objective: ¥, o; total payment.

Client j travels or pays to open facility /.
Costs client dj to get to there.
Savings is «; — dj.

Willing to pay Bj = a; — dj.
Total payment to facility / at most f; before opening.
Complementary slackness: x; > 0 if and only if o; > di.
only assign client to “paid to” facilities.

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Use Dual.

1. Find solution to primal, (x,y). and dual, (¢, B).

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

3. Removed assigned clients, goto 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,

(a) Let N; = {i: x; > 0}.

(b) Open cheapest facility 7 in N;.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Proof: Step 2 picks client .

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Proof: Step 2 picks client .
fmin - min cost facility in N;

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;

fmin

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;

fmin < fmin '):ieNj Xij

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;

fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.
2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;

fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj yifi-

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;
fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj yifi-

For k used in Step 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client .
fmin - min cost facility in N;

fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj yifi-

For k used in Step 2.
N; " Ng =0 for j and k in step 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.

Proof: Step 2 picks client .
fmin - min cost facility in N;
fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj }/ifi-

For k used in Step 2.
N; " Ng =0 for j and k in step 2.
— Any facility in < 1 sum from step 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client j.
fmin - min cost facility in N;
fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj yifi-
For k used in Step 2.
N; " Ng =0 for j and k in step 2.
— Any facility in < 1 sum from step 2.
— total step 2 facility costis Y, y;fi.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most Y, f;y;.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to /.
Proof: Step 2 picks client j.
fmin - min cost facility in N;
fmin < fmin 'Ziel\lj Xij < fmin ZieNj Yi< Ziel\lj yifi-
For k used in Step 2.
N; " Ng =0 for j and k in step 2.
— Any facility in < 1 sum from step 2.
— total step 2 facility costis Y, y;fi.

Connection Cost.

2. For smallest (remaining) o,

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j:

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j:

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.
Connection Cost of j: < a;.

Connection Cost of '
< oy + o + o

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.
Connection Cost of j: < a;.

Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

\ Total connection cost:
at most 3), oy < 3 times Dual OPT.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

\ Total connection cost:
at most 3), oy < 3 times Dual OPT.

Previous Slide: Facility cost:

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

\ Total connection cost:
at most 3), oy < 3 times Dual OPT.

Previous Slide: Facility cost:
< primal “facility” cost < Primal OPT.

Connection Cost.

2. For smallest (remaining) o,
(a) Let N; = {i: x; > 0}.
(b) Open cheapest facility 7 in N;.
Every client j/ with Ny N N; # 0 assigned to i.

Client j is directly connected. Clients j are indirectly connected.

Connection Cost of j: < a;.
Connection Cost of '
< (X/'/ + (X/+ aj < 3(X/'/.
since a; < ay

\ Total connection cost:
at most 3), oy < 3 times Dual OPT.

Previous Slide: Facility cost:
< primal “facility” cost < Primal OPT.

Total Cost: 4 OPT.

Twist on randomized rounding.

Client j:

Twist on randomized rounding.

Clientj: ¥ x; =1,

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution!

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien; Xiff;

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien; Xiffi < Xien, Yifi-

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.

Probability distribution! — Choose from distribution, x;, in step 2.
Expected opening cost:

Lien, Xiffi < Lien, Yif;.

and separate balls implies total <Y, y;f;.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.

Probability distribution! — Choose from distribution, x;, in step 2.
Expected opening cost:

Lien, Xiffi < Lien, Yif;.

and separate balls implies total <Y, y;f;.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.

Probability distribution! — Choose from distribution, x;, in step 2.
Expected opening cost:

Lien, Xiffi < Lien, Yif;.

and separate balls implies total <Y, y;f;.
Dj =Y, X,'jd,'j

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost j/

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.
In step 2: pick in increasing order of o; + D;.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.
In step 2: pick in increasing order of o; + D;.

— Expected cost is (20 +- Dy). Connection cost: 2}, o+, D;.
20PT (D) plus connection cost or primal.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.
In step 2: pick in increasing order of o; + D;.

— Expected cost is (20 +- Dy). Connection cost: 2}, o+, D;.
20PT (D) plus connection cost or primal.

Total expected cost:

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.
In step 2: pick in increasing order of o; + D;.
— Expected cost is (20 +- Dy). Connection cost: 2}, o+, D;.
20PT (D) plus connection cost or primal.

Total expected cost:
Facility cost is at most facility cost of primal.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.
Expected connection cost // o+ + D;.
In step 2: pick in increasing order of o; + D;.

— Expected cost is (20 +- Dy). Connection cost: 2}, o+, D;.
20PT (D) plus connection cost or primal.
Total expected cost:

Facility cost is at most facility cost of primal.
Connection cost at most 20PT + connection cost of prmal.

Twist on randomized rounding.

Clientj: ¥ x; =1, x; > 0.
Probability distribution! — Choose from distribution, x;, in step 2.

Expected opening cost:
Lien, Xiffi < Lien, Yif;.
and separate balls implies total <Y, y;f;.

D;j=Y,x;d; Connection cost of primal for j.

Expected connection cost // o+ + D;.

In step 2: pick in increasing order of o; + D;.

— Expected cost is (20 +- Dy). Connection cost: 2}, o+, D;.

20PT (D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 20PT + connection cost of prmal.
— at most 3OPT.

Primal dual algorithm.
1. Feasible integer solution.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution < « times dual value.

Just did it. Used linear program. Faster?

Typically.
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

maxZaj
J

jeD
VieF,jeD oj—B;<dj
aj,B; <0

Facility location primal dual.
Phase 1:

Facility location primal dual.
Phase 1: 1. Initially o;, B; = 0.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i

raise B at same rate

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i

raise B at same rate Why?

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why?

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.
Phase 2:

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.
Connected facility not open

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.
Connected facility not open
— exists client j/ paid i and connected to open facility.

Facility location primal dual.

Phase 1: 1. Initially o;, B; = 0.
2. Raise a; for every (unconnected) client.
When «; = dj; for some i
raise B at same rate Why? Dual: «; — B < dj.
Intution:Paying B to open /.
Stop when Y, B;; = f;.
Why? Dual: Y B < f;
Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to .

3. Continue until all clients connected.

Phase 2:
Connect facilities that were paid by same client.
Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.
Connected facility not open

— exists client j/ paid i and connected to open facility.
Connect j to j”’s open facility.

Constraints for dual.

Constraints for dual.

YiBi<f

Constraints for dual.

YiBi<f

Ol,'—ﬁ,'j < d,/

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow Q.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow Q.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow Q.
Otj = d’f'

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint:

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/

Grow o;.

Otj = d’f'

Tight constraint: a; — B < dj.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/

Grow o;.

Otj = d’f'

Tight constraint: a; — B < dj.

Grow B; (and o).

Y, Bjj = f; for all facilities.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥, B; < f

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥, B; < f

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ¥ g

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ;o = 4.5

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ;o = 4.5

Temporarily open all facilities.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ;o = 4.5

Temporarily open all facilities.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ;o = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: ¥ B; < f
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.

Cost: 1 +3.7

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.

Cost: 1 +3.7=4.7.

Constraints for dual.
YiBi<f
o — ﬁ,/ < d,/
Grow o;.
Otj = d’f'
Tight constraint: a; — B < dj.
Grow B; (and o).
Y, Bjj = f; for all facilities.
Tight: Y Bj < f;
LP Cost: ;o = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with client that pays both.
Open independent set.

Connect to “killer” client’s facility.

Cost: 1 +3.7=4.7.

A bit more than the LP cost.

Analysis

Claim: Client only pays one facility.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S; - directly connected clients to open facility /.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.

Claim: S; - directly connected clients to open facility /.
fi+ Yjes; dij < ¥ .

Analysis

Claim: Client only pays one facility.
Independent set of facilities.

Claim: S; - directly connected clients to open facility /.
fi+ Yjes; dij < ¥ .
Proof:

Analysis

Claim: Client only pays one facility.
Independent set of facilities.

Claim: S; - directly connected clients to open facility /.
fi+ Yjes; dij < ¥ .

Proof:

fi=Yjes, Bij

Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S; - directly connected clients to open facility /.
fi+ Yjes; dij < ¥ .

Proof:

fi = Yjes, Bj = Ljes; & — .
Since directly connected: f; = o; — dj.

Analysis.

Claim: Client j is indirectly connected to i

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //
conflicts with .

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //
conflicts with .
exists j/ with oy > d,j/ and (o7 > d,'/j/.

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //
conflicts with i.

exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.

Directly connected to (temp open) //
conflicts with i.
exists j/ with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.
d,'j +

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.
dj+djy +

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.
djj+ djy + djyjr

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.
dj+djy + dpy <30

Analysis.

Claim: Client j is indirectly connected to i
— d,'j < 306j.
Directly connected to (temp open) //
conflicts with i.
exists j' with oy > d,’j/ and o > d,'/j/.
When /" opens, stops both ; and ocjf.
a/f stopped no later (..maybe earlier..)
oy < (Xj{.
Total distance from j to i'.
dj+djy + dpy <30 O

Putting it together!

Claim: Client only pays one facility.
Claim: S; - directly connected clients to open facility .

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes, dj < ¥, 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes, dj < ¥, 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:
direct clients dual (o;) pays for facility and own connections.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:
direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.
Fast! Cheap!

Putting it together!

Claim: Client only pays one facility.

Claim: S; - directly connected clients to open facility .
fi+Yjes dj < X 0.

Claim: Client j is indirectly connected to i
— d,/ < 3(Xj.

Total Cost:

direct clients dual (o;) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.
Fast! Cheap! Safe!

See you on Thursday.

