Today

Quickly: Matrix View, Taking Dual.

Today

Quickly: Matrix View, Taking Dual. Matching, algebra, geometry.

Today

Quickly: Matrix View, Taking Dual. Matching, algebra, geometry. Facility Location.

or..."Rules for taking duals" Canonical Form.

<u>Primal LP</u>	<u>Dual LP</u>
max <i>c</i> ⋅ <i>x</i>	$min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

or..."Rules for taking duals" Canonical Form.

<u>Dual LP</u>
$\min y^T b$
$y^T A \ge c$
$y \ge 0$

or..."Rules for taking duals" Canonical Form.

<u>Dual LP</u>
$\min y^T b$
$y^T A \ge c$
$y \ge 0$

or..."Rules for taking duals" Canonical Form.

<u>Primal LP</u>	<u>Dual LP</u>
$\max c \cdot x$	$\min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

or..."Rules for taking duals" Canonical Form.

Primal LP	<u>Dual LP</u>
$\max c \cdot x$	$\min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $\min \leftrightarrow \max$

or..."Rules for taking duals" Canonical Form.

Primal LP	<u>Dual LP</u>
$\max c \cdot x$	$\min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $min \leftrightarrow max$

$$\geq \leftrightarrow \leq$$

or..."Rules for taking duals" Canonical Form.

<u>Primal LP</u>	<u>Dual LP</u>
$\max c \cdot x$	$\min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $min \leftrightarrow max$

$$\geq \leftrightarrow \leq$$

"inequalities" ↔ "nonnegative variables"

or..."Rules for taking duals" Canonical Form.

Primal LP	<u>Dual LP</u>
$\max c \cdot x$	$min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $min \leftrightarrow max$

$$\geq \leftrightarrow \leq$$

"inequalities" \leftrightarrow "nonnegative variables"

"nonnegative variables" ↔ "inequalities"

or..."Rules for taking duals" Canonical Form.

Primal LP	<u>Dual LP</u>
max <i>c</i> ⋅ <i>x</i>	$min y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $min \leftrightarrow max$

$$\geq \leftrightarrow \leq$$

"inequalities" ↔ "nonnegative variables"

"nonnegative variables" \leftrightarrow "inequalities"

Another useful trick: Equality constraints.

or..."Rules for taking duals" Canonical Form.

Primal LP	<u>Dual LP</u>
$\max c \cdot x$	min $y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

$$Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$$

 $min \leftrightarrow max$

$$> \leftrightarrow <$$

"nonnegative variables" \leftrightarrow "inequalities"

Another useful trick: Equality constraints. "equalities" ↔ "unrestricted variables."

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$ $x_e \ge 0$

Dual.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual.

Variable for each constraint.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_{ν}

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual.

Variable for each constraint. p_{ν} unrestricted.

Constraint for each variable.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching.

Colution: v. indicatos whether adas a in-

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual.

Variable for each constraint. p_{ν} unrestricted. Constraint for each variable. Edge e, $p_{u}+p_{\nu}\geq w_{e}$ Objective function from right hand side. $\min \sum_{\nu} p_{\nu}$

$$\min \sum_{v} p_{v}$$

 $\forall e = (u, v): p_{u} + p_{v} \geq w_{e}$

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{v} p_{v}$$

$$\forall e = (u, v): p_{u} + p_{v} \geq w_{e}$$

Weak duality?

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_e w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{v} p_{v}$$

$$\forall e = (u, v): \quad p_{u} + p_{v} \geq w_{e}$$

Weak duality? Price function upper bounds matching.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$
 p_v
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{u} + p_{V} \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e \in M} w_e x_e \leq \sum_{e = (u,v) \in M} p_u + p_v \leq \sum_{v} p_u.$$

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_e w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{u} + p_{V} \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_{v} p_u$$
.

Strong Duality?

Bipartite Graph G = (V, E), $w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{U} + p_{V} \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_{v} p_u$$
.

Strong Duality? Same value solutions.

Bipartite Graph $G = (V, E), w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_e w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{u} + p_{V} \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_{v} p_u$$
.

Strong Duality? Same value solutions. Hungarian algorithm

Bipartite Graph $G = (V, E), w : E \rightarrow Z$.

Find maximum weight perfect matching.

Solution: x_e indicates whether edge e is in matching.

$$\max \sum_e w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. $\min \sum_{v} p_v$

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{u} + p_{V} \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_{v} p_u$$
.

Strong Duality? Same value solutions. Hungarian algorithm !!!

 x_e variable for e = (u, v).

,,e . .			٠ (~,·,.	
			Xe	•	rhs
			0	• • •	1
	:	:	:	÷	1
p_u			1		1
			0		1
	:	:	:	÷	1
			0		1
p_{v}			1		1
			0		1
	:	:	:	÷	1
obj		•	We	•	

 x_e variable for e = (u, v).

			- (, - <i>)</i> -	
			x_e		rhs
			0		1
	:	÷	:	÷	1
p_u			1		1
			0		1
	:	:	:	:	1
			0		1
p_{v}			1		1
			0		1
	:	:	:	:	1
obj		•	We	•	

Row equation: $\sum_{e=(u,v)} x_e = 1$.

 x_e variable for e = (u, v).

0		(/ /				
			x_e		rhs	
			0		1	
	:	:	:	:	1	
p_u			1		1	
			0		1	
	:	:	:	:	1	
			0		1	
p_{v}			1		1	
		• • •	0		1	
	:	:	÷	:	1	
obj		•	We			

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable:

 x_e variable for e = (u, v).

	(5., 1)					
			x_e		rhs	
			0		1	
	:	:	:	:	1	
p _u			1		1	
			0		1	
	:	:	:	:	1	
			0		1	
p_{v}			1		1	
		• • •	0	• • •	1	
	:	:	:	:	1	
obj		•	We			

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u .

 x_e variable for e = (u, v).

•	l		` `	rhs	
			x_e		1115
		• • •	0		1
	:	:	:	:	1
p_u			1		1
-		• • •	0	• • •	1
	:	:	:	:	1
			0		1
p_{v}			1		1
		• • • •	0	• • •	1
	:	:	:	:	1
obj		•	We	•	

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u .

Column variable: x_e .

Matrix View.

 x_e variable for e = (u, v).

			Х _е `	. ,	rhs
			0		1
	:	:	:	:	1
p_u			1		1
			0		1
	:	÷	:	:	1
			0		1
p_{v}			1		1
-			0		1
	:	:	:	:	1
obj			We	•	

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u .

Column variable: x_e . Column (dual) constraint:

Matrix View.

 x_e variable for e = (u, v).

•					
			x_e		rhs
		• • •	0		1
	:	:	:	:	1
p_u			1		1
			0		1
	:	:	:	:	1
			0		1
p_{v}			1		1
			0	• • •	1
	:	:	:	:	1
obj		•	We		

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u .

Column variable: x_e . Column (dual) constraint: $p_u + p_v \ge 1$.

Matrix View.

 x_e variable for e = (u, v).

•	l		` `	rhs	
			x_e		1115
		• • •	0		1
	:	:	:	:	1
p_u			1		1
		• • •	0	• • •	1
	:	:	:	:	1
			0		1
p_{v}			1		1
		• • • •	0	• • •	1
	:	:	:	:	1
obj		•	We	•	

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u .

Column variable: x_e . Column (dual) constraint: $p_u + p_v \ge 1$.

Exercise: objectives?

Complementary Slackness.

$$\max \sum_{e} w_e x_e$$
 $\forall v : \sum_{e=(u,v)} x_e = 1$
 p_v
 $x_e \ge 0$

Dual:

$$\min \sum_{v} p_{v}$$

$$\forall e = (u, v): p_{u} + p_{v} \geq w_{e}$$

Complementary Slackness.

$$\max \sum_{e} w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual:

$$\min \sum_{v} p_{v}$$

$$\forall e = (u, v): p_{u} + p_{v} \geq w_{e}$$

Complementary slackness:

Complementary Slackness.

$$\max \sum_{e} w_e x_e$$
 $orall v: \sum_{e=(u,v)} x_e = 1$
 $x_e \ge 0$

Dual:

$$\min \sum_{v} p_{v}$$

$$\forall e = (u, v): p_{u} + p_{v} \geq w_{e}$$

Complementary slackness: Only match on tight edges. Nonzero p_u on matched u.

Given G=(V,E), and capacity function $c:E\to Z$, and pairs $(s_1,t_1),\ldots,(s_k,t_k)$ with demands d_1,\ldots,d_k .

Given G=(V,E), and capacity function $c:E\to Z$, and pairs $(s_1,t_1),\ldots,(s_k,t_k)$ with demands d_1,\ldots,d_k . Route D_i flow for each s_i,t_i pair, so every edge has $\leq \mu c(e)$ flow with minimum μ .

Given G=(V,E), and capacity function $c:E\to Z$, and pairs $(s_1,t_1),\ldots,(s_k,t_k)$ with demands d_1,\ldots,d_k . Route D_i flow for each s_i,t_i pair, so every edge has $\leq \mu c(e)$ flow with minimum μ .

Given G = (V, E), and capacity function $c : E \to Z$, and pairs $(s_1, t_1), \ldots, (s_k, t_k)$ with demands d_1, \ldots, d_k . Route D_i flow for each s_i, t_i pair, so every edge has $\leq \mu c(e)$ flow with minimum μ .

variables: f_p flow on path p. P_i -set of paths with endpoints s_i , t_i .

Given G = (V, E), and capacity function $c : E \to Z$, and pairs $(s_1, t_1), \ldots, (s_k, t_k)$ with demands d_1, \ldots, d_k . Route D_i flow for each s_i, t_i pair, so every edge has $\leq \mu c(e)$ flow with minimum μ .

variables: f_p flow on path p. P_i -set of paths with endpoints s_i, t_i .

$$\min \mu$$

$$\forall e : \sum_{p \ni e} f_p \le \mu c_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Take the dual.

$$\min \mu$$

$$\forall e : \sum_{p \ni e} f_p \le \mu c_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Modify to make it \geq , which "go with min.

Take the dual.

$$\min \mu$$
 $\forall e : \sum_{p \ni e} f_p \le \mu c_e$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p \ge 0$

Modify to make it \geq , which "go with min. And only constants on right hand side.

Take the dual.

$$\min \mu$$

$$\forall e : \sum_{p \ni e} f_p \le \mu c_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Modify to make it \geq , which "go with min. And only constants on right hand side.

$$\min \mu$$
 $\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p \ge 0$

$$\min \mu$$
 $\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p \ge 0$

$\min \mu$

$$\forall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$d_e$$

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint.

$\min \mu$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var:

$\min \mu$

$$\forall e: \mu c_e - \sum_{p\ni e} f_p \ge 0$$

$$d_e$$

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var:

μ

$\min \mu$

$$\forall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$d_e$$

$$\forall i: \sum_{p\in P_i} f_p = D_i$$

$$d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var:

$$\mu \rightarrow \sum_e c_e d_e = 1$$
.

$\min \mu$

$$\forall e : \!\! \mu c_e \! - \! \sum_{p \ni e} \! f_p \! \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var:

$$\mu \rightarrow \sum_e c_e d_e =$$
 1. f_p

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e

 $\forall i : \sum_{p \in P_i} f_p = D_i$ d_i

$$f_p \geq 0$$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \ \rightarrow \textstyle \sum_e c_e d_e = 1. \ f_p \ \rightarrow \forall p \in P_i \ d_i - \textstyle \sum_{e \in p} d_e \leq 0.$$

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_D \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \ \rightarrow \textstyle \sum_e c_e d_e = 1. \ f_p \ \rightarrow \forall p \in P_i \ d_i - \textstyle \sum_{e \in p} d_e \leq 0.$$

 $\min \mu$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$f_p > 0$$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides.

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $\forall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p > 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides, $\max_e \sum_e D_e d_e$.

Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p > 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i, t_i path length.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p > 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i, t_i path length. Toll problem!

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $\forall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p > 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i, t_i path length. Toll problem! Weak duality: toll lower bounds routing.

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $orall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i, t_i path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality.

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $orall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i , t_i path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $\forall i : \sum_{p \in P_i} f_p = D_i$
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$. Objective: right hand sides. $\max_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i, t_i path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound. First lecture.

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $orall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$.

Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i , t_i path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound. First lecture. Or Experts.

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $orall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$.

Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i , t_i path length. Toll problem!

Weak duality: toll lower bounds routing.

Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness:

$$\min \mu$$

$$egin{aligned} orall e: & \mu c_e - \sum_{p \ni e} f_p \geq 0 \ & \forall i: \sum_{p \in P_i} f_p = D_i \ & f_p \geq 0 \end{aligned}$$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$.

Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i , t_i path length. Toll problem!

Weak duality: toll lower bounds routing.

Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths

$$\min \mu$$

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
 d_e
 $orall i: \sum_{p \in P_i} f_p = D_i$ d_i
 $f_p \ge 0$

Introduce variable for each constraint.

Introduce constraint for each var:

$$\mu \to \sum_e c_e d_e = 1$$
. $f_p \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \le 0$.

Objective: right hand sides. $\max \sum_i D_i d_i$

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$ $\sum_e c_e d_e = 1$

 d_i - shortest s_i , t_i path length. Toll problem!

Weak duality: toll lower bounds routing.

Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths only have toll on congested edges.

Matrix View

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

1-				— .		•
			f_p		μ	rhs
		• • •	0	• • •	•	0
	:	÷	:	:	:	0
d_{e_1}			-1		c_{e_1}	0
	:	÷	:	:	:	0
d_{e_2}			-1	• • •	c_{e_2}	0
	:	:	:	:	:	0
d_{e_k}			-1	• • •	c_{e_k}	0
	:	:	÷	:	:	0
d_i		•	1	•		Di
ohi	1	1	1	1		

Matrix View

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

			f_p		μ	rhs
		• • •	0		•	0
	:	÷	:	:	:	0
d_{e_1}			-1	• • •	c_{e_1}	0
	:	:	:	:	:	0
d_{e_2}			-1	• • •	c_{e_2}	0
	:	÷	:	÷	:	0
d_{e_k}			-1	• • •	c_{e_k}	0
	:	÷	÷	:	:	0
d_i			1	•	• • • •	Di
obi	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

~				., _,	, ,,	,
			f_p		μ	rhs
			0	• • •	•	0
	:	:	:	:	÷	0
d_{e_1}		• • •	-1	• • •	c_{e_1}	0
	:	:	:	:	÷	0
d_{e_2}			-1	• • •	c_{e_2}	0
	:	:	:	:	÷	0
d_{e_k}			-1	• • •	c_{e_k}	0
	:	:	÷	:	÷	0
$-d_i$		•	1	•	• • •	D_i
obi	1	1	1	1		

Row constraint: $c_e\mu - \sum_{p\ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$.

 f_p variable for path $e_1, e_2, ..., e_k$. p connects s_i, t_i .

•			f_p		μ	rhs
		• • •	0		•	0
	:	÷	:	:	:	0
d_{e_1}			-1		c_{e_1}	0
	:	E	:	÷	÷	0
d_{e_2}		• • •	-1	• • •	c_{e_2}	0
	:	E	:	÷	÷	0
d_{e_k}		• • •	-1	• • •	c_{e_k}	0
	:	÷	÷	÷	÷	0
d_i			1	•		Di
obi	1	1	1	1		

Row constraint: $c_e\mu - \sum_{p\ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

P				1/ 2/	, ,	
			f_p		μ	rhs
		•••	0			0
	:	:	:	:	:	0
d_{e_1}			-1	• • • •	c_{e_1}	0
	:	:	:	:	÷	0
d_{e_2}			-1	• • • •	c_{e_2}	0
	:	:	:	:	÷	0
d_{e_k}			-1	• • •	c_{e_k}	0
	:	÷	÷	:	:	0
d_i		•	1	•	• • •	D_i
obj	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p .

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

~				.,/	, ,	•
			f_p		μ	rhs
	•		0		•	0
	:	:	:	:	:	0
d_{e_1}			-1	• • • •	c_{e_1}	0
	:	:	÷	:	÷	0
d_{e_2}			-1		c_{e_2}	0
	:	:	:	:	÷	0
d_{e_k}			-1	• • • •	c_{e_k}	0
	:	:	:	:	:	0
d _i		•	1	•		Di
obj	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p . Column (dual) constraint:

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

			f_p		μ	rhs
		• • •	0	• • •	•	0
	:	:	÷	:	:	0
d_{e_1}		• • •	-1		c_{e_1}	0
	:	E	:	:	÷	0
d_{e_2}		• • •	-1	• • •	c_{e_2}	0
	:	÷	÷	:	:	0
d_{e_k}		• • •	-1	• • •	c_{e_k}	0
	:	÷	÷	:	:	0
d_i			1	•		D_i
obj	1	1	1	1		

Row constraint: $c_e\mu - \sum_{p\ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$.

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

~				.,/	, ,,	
			f_p		μ	rhs
			0		•	0
	:	:	:	:	÷	0
d_{e_1}			-1		c_{e_1}	0
	:	:	:	:	÷	0
d_{e_2}			-1	• • •	c_{e_2}	0
	:	:	:	•	:	0
d_{e_k}			-1	• • •	c_{e_k}	0
	:	÷	:	÷	:	0
d_i		•	1	•		D_i
obj	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$.

Column variable: μ .

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

Ρ		- 1-		1) - 2)) - N	I
			f_p		μ	rhs
			0		•	0
	:	:	:	:	:	0
d_{e_1}		• • •	-1	• • •	c_{e_1}	0
	:	:	:	÷	:	0
d_{e_2}		• • •	-1	• • •	c_{e_2}	0
	:	:	:	:	÷	0
d_{e_k}		• • •	-1	• • •	c_{e_k}	0
	:	:	:	÷	÷	0
d_i		•	1			Di
obj	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$.

Column variable: μ . Column (dual) constraint:

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

P				1/ 2/	, ,	. ,
			f_p		μ	rhs
		• • •	0	•••	•	0
	:	:	:	:	:	0
d_{e_1}			-1	• • •	c_{e_1}	0
	:	:	÷	:	÷	0
d_{e_2}			-1	• • • •	c_{e_2}	0
	:	:	:	:	:	0
d_{e_k}			-1	• • • •	c_{e_k}	0
	:	÷	:	÷	:	0
d_i		•	1	•		Di
obi	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i .

Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$.

Column variable: μ . Column (dual) constraint: $\sum_{e} d(e)c(e) = 1$.

 f_p variable for path e_1, e_2, \dots, e_k . p connects s_i, t_i .

Ρ				1/ 2/	, ,	. ,
			f_p		μ	rhs
		•••	0	•••	•	0
	:	÷	:	:	÷	0
d_{e_1}			-1	• • •	c_{e_1}	0
	:	÷	:	:	÷	0
d_{e_2}		• • •	-1	• • •	c_{e_2}	0
	:	÷	÷	:	:	0
d_{e_k}		• • •	-1	• • •	c_{e_k}	0
	:	÷	:	÷	:	0
di			1			Di
obj	1	1	1	1		

Row constraint: $c_e \mu - \sum_{p \ni e} f_p \ge 0$. Row (dual) variable: d_e .

Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i . Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$.

Column variable: μ . Column (dual) constraint: $\sum_{e} d(e)c(e) = 1$.

Exercise: objectives?

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Multicommodity flow.

 $\min \mu$

$$\forall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_{i} D_{i} d_{i}$$
$$: d_{i} < \sum_{i} d(e)$$

$$\forall p \in P_i : d_i \leq \sum_{e \in p} d(e)$$

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_{i} D_{i} d_{i}$$

$$\forall p \in P_i : d_i \leq \sum_{e \in p} d(e)$$

Exponential sized programs?

Multicommodity flow.

$$\min \mu$$

$$\forall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_{i} D_{i} d_{i}$$

$$\forall p \in P_i : d_i \leq \sum_{e \in p} d(e)$$

Exponential sized programs?

Answer 1:

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2:

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm. Find violated constraint \rightarrow poly time algorithm.

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i: \sum_{p \in P_i} f_p = d_i$$
$$f_p \ge 0$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.

Multicommodity flow.

$$\min \mu$$

$$\forall e : \mu C_e - \sum_{p \ni e} f_p \ge 0$$

 $\forall i : \sum_{p \in P_i} f_p = d_i$

 $f_p > 0$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i : d_i \leq \sum_{e \in p} d(e)$

Exponential sized programs?

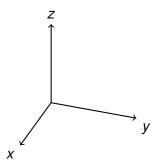
Answer 1: We solved anyway!

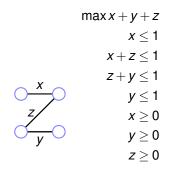
Answer 2: Ellipsoid algorithm.

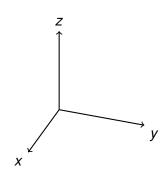
Find violated constraint \rightarrow poly time algorithm.

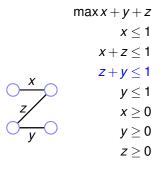
Answer 3: there is polynomial sized formulation.

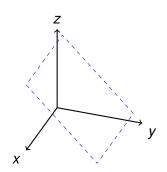
Question: what is it?

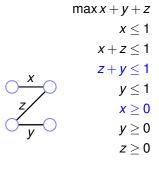


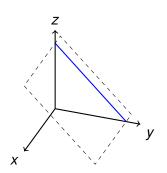


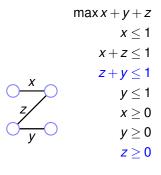


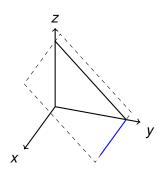


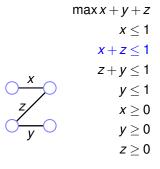


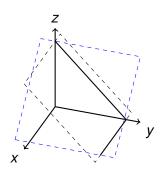


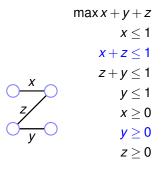


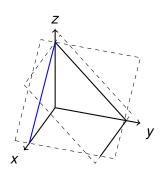


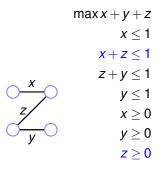


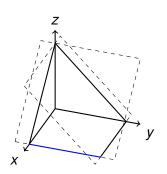


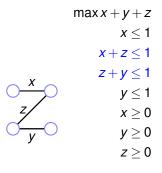


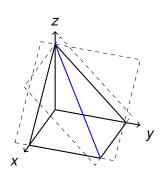


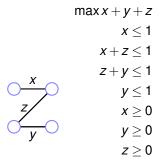


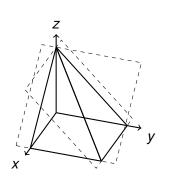


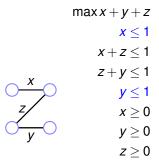


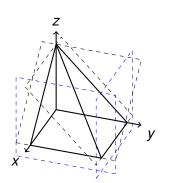






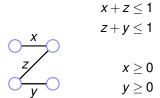


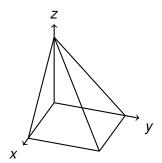




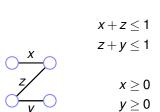
Blue constraints redundant.

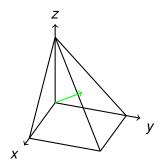
 $z \ge 0$





 $z \ge 0$



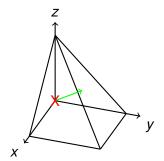


$$x+z\leq 1$$
$$z+y\leq 1$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$



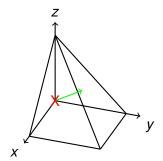
$$\max x + y + z$$

$$x + z \le 1$$
$$z + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$



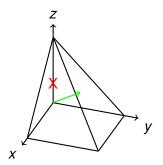
$$\max x + y + z$$

$$x + z \le 1$$
$$z + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$



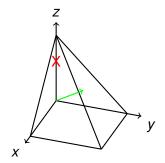
$$\max x + y + z$$

$$x + z \le 1$$
$$z + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$



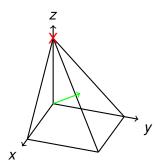
$$\max x + y + z$$

$$x+z \le 1$$
$$z+y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

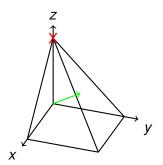
$$z \ge 0$$



$$\max x + y + z$$

$$x+z \le 1$$
$$z+y \le 1$$

$$x \ge 0$$
$$y \ge 0$$
$$z \ge 0$$

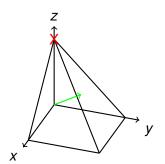


$$x + z \le 1$$
$$z + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$

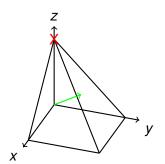


$$x + z \le 1$$
$$z + y \le 1$$

$$x \ge 0$$

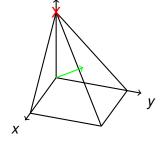
$$y \ge 0$$

$$z \ge 0$$

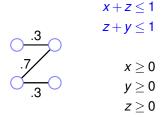


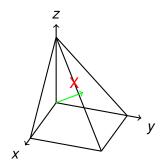
$$x+z \le 1$$
$$z+y \le 1$$
$$x \ge 0$$

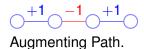
$$y \ge 0$$
 $z \ge 0$



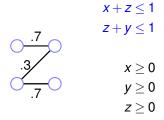
$$\max x + y + z$$

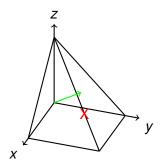




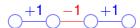


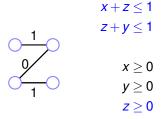
$$\max x + y + z$$

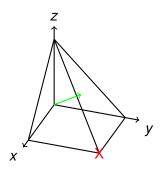




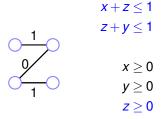
Blue constraints tight.

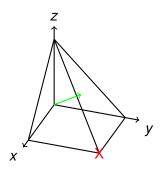




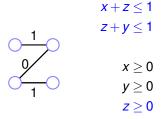


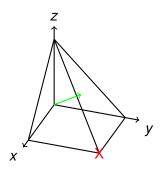
Blue constraints tight.



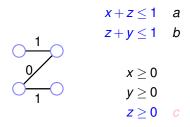


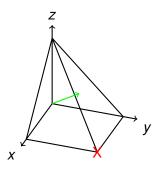
Blue constraints tight.





Blue constraints tight.





Blue constraints tight.

$$\max x + y + z$$

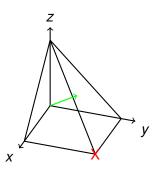
$$x + z \le 1 \quad a = 1$$

$$z + y \le 1 \quad b = 1$$

$$1 \quad 0 \quad x \ge 0$$

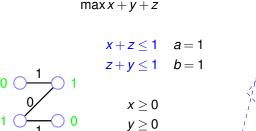
$$y \ge 0$$

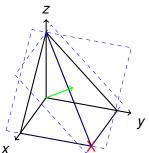
$$z \ge 0 \quad c = 1$$



Blue constraints tight.

Sum:
$$x+2z+y$$
.

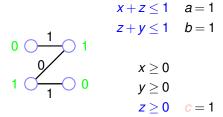


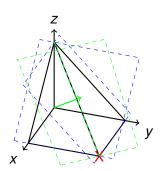


Blue constraints tight.

Augmenting Path. Via Gaussian Elimination!

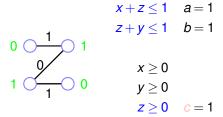
 $z \ge 0$ c = 1

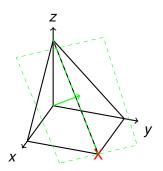




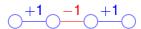
Blue constraints tight.

$$\bigcirc +1$$
 $\bigcirc -1$ $\bigcirc +1$ \bigcirc





Blue constraints tight.



Set of facilities: F, opening cost f_i for facility i

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

 d_{ij} - distance between i and j.

```
Set of facilities: F, opening cost f<sub>i</sub> for facility i
Set of clients: D.

d_{ij} - distance between i and j.

(notation abuse: clients/facility confusion.)
```

Set of facilities: F, opening cost f_i for facility i Set of clients: D.

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)

```
Set of facilities: F, opening cost f_i for facility i Set of clients: D.

d_{ij} - distance between i and j.

(notation abuse: clients/facility confusion.)
```

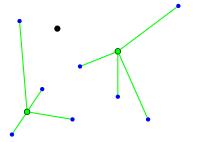
```
Set of facilities: F, opening cost f_i for facility i
Set of clients: D.
```

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)

Set of facilities: F, opening cost f_i for facility i

Set of clients: D.

 d_{ij} - distance between i and j. (notation abuse: clients/facility confusion.)



Linear program relaxation:

Linear program relaxation:

"Decision Variables".

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

 x_{ij} - client j assigned to facility i.

Linear program relaxation:

"Decision Variables".

y_i - facility i open?

 x_{ij} - client j assigned to facility i.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

Facility opening cost.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\begin{aligned} \min & \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ & \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ & \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ & x_{ij}, y_i \geq 0 \end{aligned}$$

Facility opening cost.

Client Connnection cost.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1 \\ \forall i \in F, j \in D \quad x_{ij} \le y_i, \\ x_{ij}, y_i \ge 0 \end{aligned}$$

Facility opening cost.

Client Connnection cost.

Must connect each client.

Linear program relaxation:

"Decision Variables".

 y_i - facility i open?

 x_{ij} - client j assigned to facility i.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

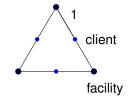
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.

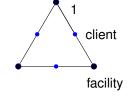
Integer Solution?

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \\ x_{ij} = \frac{1}{2} \text{ edges.} \\ y_i = \frac{1}{2} \text{ edges.} \end{aligned}$$



Integer Solution?

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \\ \\ x_{ij} = \frac{1}{2} \text{ edges.} \\ y_i = \frac{1}{2} \text{ edges.} \\ Facility Cost: \frac{3}{2} \end{aligned}$$



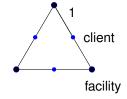
Integer Solution?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



 $x_{ij} = \frac{1}{2}$ edges.

 $y_i = \frac{1}{2}$ edges.

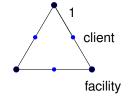
Facility Cost: $\frac{3}{2}$ Connection Cost: 3

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



 $x_{ii} = \frac{1}{2}$ edges. $v_i = \frac{1}{2}$ edges.

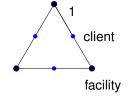
Facility Cost: 3 Connection Cost: 3 Any one Facility: Facility Cost: 1

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

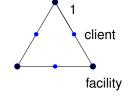


$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$



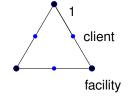
 $x_{ij} = \frac{1}{2}$ edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7

Make it worse?

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$



$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7

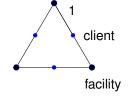
Make it worse? Sure.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$



$$x_{ij} = \frac{1}{2}$$
 edges. $y_i = \frac{1}{2}$ edges.

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure. Not as pretty!

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

 y_i and x_{ij} separately? Assign to closed facility!

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately? Assign to closed facility! Round x_{ij} and open facilities?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently? y_i and x_{ij} separately? Assign to closed facility! Round x_{ij} and open facilities? Different clients force different facilities open.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

 y_i and x_{ij} separately? Assign to closed facility!

Round x_{ij} and open facilities? Different clients force different facilities open.

Any ideas?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

Round independently?

 y_i and x_{ij} separately? Assign to closed facility!

Round x_{ij} and open facilities? Different clients force different facilities open.

Any ideas?

Use Dual!

 $\min cx, Ax \ge b$

 $\min \textit{cx}, \textit{Ax} \geq \textit{b} \leftrightarrow$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1 \quad ; \quad \alpha_j$$

$$\forall i \in F, j \in D \quad y_i - x_{ij} \ge 0 \quad ; \quad \beta_{ij}$$

$$x_{ij}, y_i \ge 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & ; \ \alpha_j & \forall i \ \sum_{j \in D} \beta_{ij} \leq f_i & ; \ y_i \\ \forall i \in F, j \in D & y_i - x_{ij} \geq 0 & ; \ \beta_{ij} & \forall i \in F, j \in D \ \alpha_i - \beta_{ij} \leq d_{ij} & ; \ x_{ij} \\ x_{ij}, y_i \geq 0 & \beta_{ij}, \alpha_j \geq 0 \end{aligned}$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F \quad \sum_{j \in D} eta_{ij} \leq f_{i}$
 $orall i \in F, j \in D \quad lpha_{j} - eta_{ij} \leq d_{ij} \quad oldsymbol{x}_{ij}$
 $lpha_{j}, eta_{ij} \leq 0$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

 α_j charge to client.

$$\max \sum_{j} \alpha_{j}$$

$$\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i}$$

$$\forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad x_{ij}$$

$$\alpha_{j}, \beta_{ij} \leq 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

 α_j charge to client. maximize price paid by client to connect!

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ji}, y_i \ge 0$$

 α_j charge to client. maximize price paid by client to connect! Objective: $\sum_i \alpha_i$ total payment.

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

 α_i charge to client.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & \forall i \in F & \sum_{j \in D} \beta_{ij} \leq f_i \\ \forall i \in F, j \in D & x_{ij} \leq y_i, & \forall i \in F, j \in D & \alpha_j - \beta_{ij} \leq d_{ij} & x_{ij} \\ x_{ij}, y_i \geq 0 & \alpha_j, \beta_{ij} \leq 0 \end{aligned}$$

maximize price paid by client to connect!

Objective: $\sum_{j} \alpha_{j}$ total payment.

Client j travels or pays to open facility i.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} & \max \sum_j \alpha_j \\ \forall j \in D & \sum_{i \in F} x_{ij} \geq 1 & \forall i \in F & \sum_{j \in D} \beta_{ij} \leq f_i \\ \forall i \in F, j \in D & x_{ij} \leq y_i, & \forall i \in F, j \in D & \alpha_j - \beta_{ij} \leq d_{ij} & x_{ij} \\ x_{ij}, y_i \geq 0 & \alpha_j, \beta_{ij} \leq 0 \end{aligned}$$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_j \alpha_j$ total payment.

Client j travels or pays to open facility i.

Costs client d_{ii} to get to there.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}
\forall j \in D \sum_{i \in F} x_{ij} \ge 1
\forall i \in F, j \in D \quad x_{ij} \le y_i,
x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_j
\forall i \in F \quad \sum_{j \in D} \beta_{ij} \le f_i
\forall i \in F, j \in D \quad \alpha_j - \beta_{ij} \le d_{ij} \quad x_{ij}
\alpha_j, \beta_{ij} \le 0$$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_j \alpha_j$ total payment.

Client j travels or pays to open facility i.

Costs client d_{ij} to get to there.

Savings is $\alpha_i - d_{ii}$.

$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

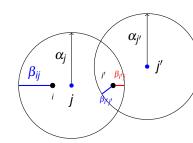
Client j travels or pays to open facility i.

Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$
 $orall i \in F, j \in D$ $\alpha_{j} - \beta_{ij} \leq d_{ij}$ x_{ij}
 $\alpha_{j}, \beta_{ij} \leq 0$

 α_{j} charge to client. maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

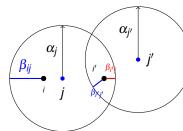
Client *j* travels or pays to open facility *i*.

Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

Total payment to facility i at most f_i before opening.



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$ $\forall i \in F, j \in D$ $\alpha_{j} - \beta_{ij} \leq d_{ij}$ x_{ij} $\alpha_{j}, \beta_{ij} \leq 0$

 α_{j} charge to client. maximize price paid by client to connect!

Objective: $\sum_{i} \alpha_{i}$ total payment.

Client j travels or pays to open facility i.

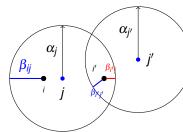
Costs client d_{ii} to get to there.

Savings is $\alpha_i - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_i - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness:



$$\begin{aligned} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{aligned}$$

$$\max \sum_{j} \alpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} \beta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $\alpha_{j} - \beta_{ij} \leq d_{ij}$ x_{ij} $\alpha_{j}, \beta_{ij} \leq 0$

 α_j charge to client.

maximize price paid by client to connect!

Objective: $\sum_{j} \alpha_{j}$ total payment.

Client *j* travels or pays to open facility *i*.

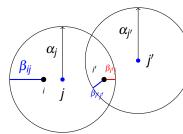
Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_i - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness: $x_{ij} \ge 0$ if and only if $\alpha_j \ge d_{ij}$.



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$

$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$

$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$

$$x_{ij}, y_i \ge 0$$

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$
 $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

 α_j charge to client. maximize price paid by client to connect! Objective: $\sum_i \alpha_i$ total payment.

Client j travels or pays to open facility i.

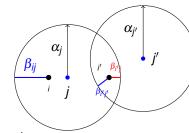
Costs client d_{ij} to get to there.

Savings is $\alpha_j - d_{ij}$.

Willing to pay $\beta_{ij} = \alpha_j - d_{ij}$.

Total payment to facility i at most f_i before opening.

Complementary slackness: $x_{ij} \ge 0$ if and only if $\alpha_j \ge d_{ij}$. only assign client to "paid to" facilities.



1. Find solution to primal, (x, y). and dual, (α, β) .

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j .

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j .
 - Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Use Dual.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j .
 - Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Use Dual.

- 1. Find solution to primal, (x, y). and dual, (α, β) .
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.
- 3. Removed assigned clients, goto 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_i ,

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j .

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

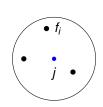
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Proof: Step 2 picks client *j*.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

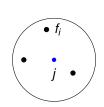
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j. f_{min} - min cost facility in N_j



Claim: Total facility cost is at most $\sum_i f_i y_i$.

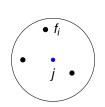
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j f_{min}

Claim: Total facility cost is at most $\sum_i f_i y_i$.

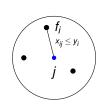
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij}$

Claim: Total facility cost is at most $\sum_i f_i y_i$.

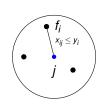
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i$

Claim: Total facility cost is at most $\sum_i f_i y_i$.

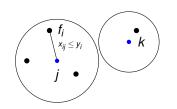
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

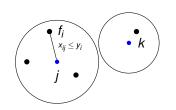


Proof: Step 2 picks client j. f_{\min} - min cost facility in N_j $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$.

For *k* used in Step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.



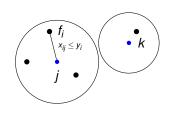
Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

 $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$

For k used in Step 2. $N_j \cap N_k = \emptyset$ for j and k in step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$$

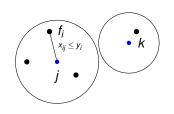
For k used in Step 2.

$$N_j \cap N_k = \emptyset$$
 for j and k in step 2.

 \rightarrow Any facility in \leq 1 sum from step 2.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i.$$

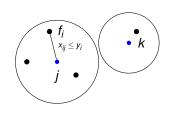
For k used in Step 2.

 $N_i \cap N_k = \emptyset$ for j and k in step 2.

- \rightarrow Any facility in \leq 1 sum from step 2.
 - \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_j \neq \emptyset$ assigned to i.



Proof: Step 2 picks client j. f_{min} - min cost facility in N_j

 $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i.$

For k used in Step 2.

 $N_i \cap N_k = \emptyset$ for j and k in step 2.

- \rightarrow Any facility in \leq 1 sum from step 2.
 - \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

2. For smallest (remaining) α_i ,

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j .

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

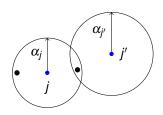
- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ii} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

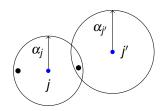
Client j is directly connected. Clients j' are indirectly connected.



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

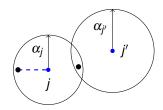
Connection Cost of *j*:



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

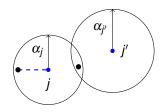
Connection Cost of *j*:



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

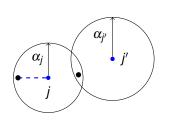
Client j is directly connected. Clients j' are indirectly connected.

Connection Cost of j: $\leq \alpha_j$.



- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

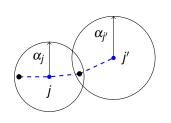
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

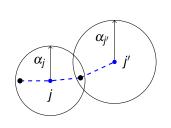
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

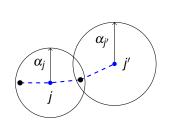
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j$

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

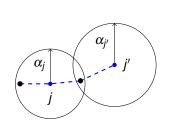
Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_i = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

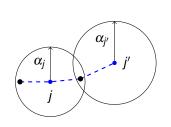
Client j is directly connected. Clients j' are indirectly connected.



 $\begin{array}{ll} \text{Connection Cost of } j\colon \leq \alpha_j.\\ \text{Connection Cost of } j'\colon \\ \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}.\\ \text{since } \alpha_j \leq \alpha_{j'} \end{array}$

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.

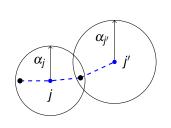


 $\begin{array}{ll} \text{Connection Cost of } j\colon \leq \alpha_j.\\ \text{Connection Cost of } j'\colon \\ \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}.\\ \text{since } \alpha_j \leq \alpha_{j'} \end{array}$

Total connection cost: at most $3\sum_{j'} \alpha_j \le 3$ times Dual OPT.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}$.
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



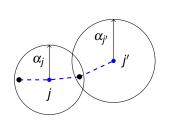
Connection Cost of j: $\leq \alpha_j$. Connection Cost of j': $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$. since $\alpha_i \leq \alpha_{i'}$

Total connection cost: at most $3\sum_{j'} \alpha_j \le 3$ times Dual OPT.

Previous Slide: Facility cost:

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

$$\leq lpha_{j'} + lpha_j + lpha_j \leq 3lpha_{j'}.$$
 since $lpha_j \leq lpha_{j'}$

Total connection cost:

at most $3\sum_{j'} \alpha_j \le 3$ times Dual OPT.

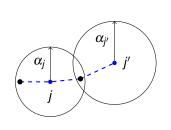
Previous Slide: Facility cost:

 \leq primal "facility" cost \leq Primal OPT.

Connection Cost.

- 2. For smallest (remaining) α_j ,
 - (a) Let $N_j = \{i : x_{ij} > 0\}.$
 - (b) Open cheapest facility i in N_j . Every client j' with $N_{j'} \cap N_j \neq \emptyset$ assigned to i.

Client j is directly connected. Clients j' are indirectly connected.



Connection Cost of j: $\leq \alpha_j$. Connection Cost of j':

 $\leq lpha_{j'} + lpha_j + lpha_j \leq 3lpha_{j'}.$ since $lpha_j \leq lpha_{j'}$

Total connection cost: at most $3\sum_{i'} \alpha_i \leq 3$ times Dual OPT.

Previous Slide: Facility cost:

 \leq primal "facility" cost \leq Primal OPT.

Total Cost: 4 OPT.

Client j:

Client j: $\sum_{i} x_{ij} = 1$,

Client j: $\sum_i x_{ij} = 1$, $x_{ij} \ge 0$.

Client j: $\sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution!

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

$$\sum_{i\in N_j} x_i j f_i$$

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Client $j: \sum_{i} x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

$$\sum_{i\in N_j} x_i j f_i \leq \sum_{i\in N_j} y_i f_i.$$

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$$
 and separate balls implies total $\leq \sum_i y_i f_i.$

$$D_j = \sum_i x_{ij} d_{ij}$$

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$$
 and separate balls implies total $\leq \sum_i y_i f_i.$

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost j'

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' = \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost
$$j' \quad \alpha_j + \alpha_{j'} + D_j$$
.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost
$$j' \quad \alpha_j + \alpha_{j'} + D_j$$
.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Client $j: \sum_i x_{ij} = 1, x_{ij} \ge 0.$ Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$. and separate balls implies total $\leq \sum_i y_i f_i$.

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

 $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$. and separate balls implies total $\leq \sum_i y_i f_i$.

 $D_j = \sum_i x_{ij} d_{ij}$ Connection cost of primal for j.

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2*OPT* + connection cost of prmal.

Client $j: \sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ii} , in step 2.

Expected opening cost:

$$\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i$$
. and separate balls implies total $\leq \sum_i y_i f_i$.

$$D_j = \sum_i x_{ij} d_{ij}$$
 Connection cost of primal for j .

Expected connection cost $j' \quad \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

 \rightarrow Expected cost is $(2\alpha_{j'}+D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2OPT(D) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.

 \rightarrow at most 3*OPT*.

1. Feasible integer solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

$$\max \sum_{j} lpha_{j}$$
 $orall i \in F$ $\sum_{j \in D} eta_{ij} \leq f_{i}$ $orall i \in F, j \in D$ $lpha_{j} - eta_{ij} \leq d_{ij}$ $lpha_{j}, eta_{ij} \leq 0$

Facility location primal dual.

Phase 1:

Facility location primal dual.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

Phase 1: 1. Initially α_i , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_i = d_{ij}$ for some i

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why?

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some i

Then $\alpha_j = \alpha_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$.

```
Phase 1: 1. Initially \alpha_j, \beta_{ij} = 0.

2. Raise \alpha_j for every (unconnected) client.

When \alpha_j = d_{ij} for some i raise \beta_{ij} at same rate Why? Dual: \alpha_j - \beta_{ij} \leq d_{ij}. Intution:Paying \beta_{ij} to open i.

Stop when \sum_i \beta_{ij} = f_i. Why?
```

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some iraise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some iraise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$ Intution: facility paid for.

Phase 1: 1. Initially α_i , $\beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$. Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$

Intution: facility paid for.

Temporarily open i.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_{i} \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open *i*.
Connect all tight *ji* clients *j* to *i*.

Connect all tight Ji clients J to i.

3. Continue until all clients connected.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution: Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open *i*.

Connect all tight ji clients j to i.

3. Continue until all clients connected.

Phase 2:

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for. Temporarily open i.

 $\frac{\text{Connect all tight } ji \text{ clients } j \text{ to } i.$

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution: Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution: Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \leq f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

Phase 1: 1. Initially α_j , $\beta_{ij} = 0$.

2. Raise α_j for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution: Paying β_{ij} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ii}$

Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight ji clients j to i.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Phase 1: 1. Initially $\alpha_i, \beta_{ii} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_i = d_{ii}$ for some *i* raise β_{ii} at same rate Why? Dual: $\alpha_i - \beta_{ii} \le d_{ii}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_i \beta_{ii} = f_i$. Why? Dual: $\sum_i \beta_{ii} \leq f_i$ Intution: facility paid for. Temporarily open i.

Connect all tight ji clients j to i.

Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client *i*, connected facility *i* is opened. Good. Connected facility not open

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i

raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ii} to open i.

Stop when $\sum_{i} \beta_{ij} = f_i$.

Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for.

Temporarily open i.

Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.

Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Connected facility not open

 \rightarrow exists client j' paid i and connected to open facility.

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$.

2. Raise α_i for every (unconnected) client.

When $\alpha_j = d_{ij}$ for some i raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \leq d_{ij}$. Intution:Paying β_{ij} to open i.

Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ii} \le f_i$

Intution: facility paid for.

Temporarily open *i*.
Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client j, connected facility i is opened. Good.

Connected facility not open

 \rightarrow exists client j' paid i and connected to open facility.

Connect *j* to *j*''s open facility.

•

•

• •

$$\sum_{j} \beta_{ij} \leq f_i$$

•

•

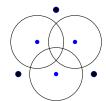
• •

$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

$$\sum_{j} eta_{ij} \leq f_i \ lpha_i - eta_{ij} \leq d_{ij}.$$
 Grow $lpha_j.$

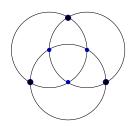
$$\sum_{j} eta_{ij} \leq f_i \ lpha_i - eta_{ij} \leq d_{ij}.$$
 Grow $lpha_j$.



$$\sum_{j} \beta_{ij} \le f_{i}$$

$$\alpha_{i} - \beta_{ij} \le d_{ij}.$$
Grow α_{j} .
$$\alpha_{j} = d_{ij}!$$

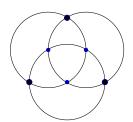
$$\alpha_i = d_{ii}!$$



onstraints for dual
$$\sum_i \beta_{ii} < f_i$$

$$\sum_{j} \beta_{ij} \leq f_{i}$$

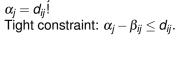
$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$
Grow α_{j} .
$$\alpha_{j} = d_{ij}!$$
Tight constraint:

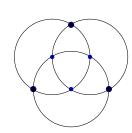


 $\sum_{j} \beta_{ij} \leq f_i$ $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

$$lpha_i = d_{ii}!$$

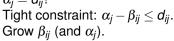


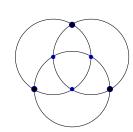


Constraints for dual.
$$\sum_i eta_{ij} \leq f_i$$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .





Constraints for dual.
$$\sum_{j}eta_{ij}\leq f_{i}$$

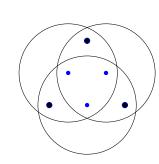
 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

$$ow \ \alpha_j. = d_{ii}!$$

 $\alpha_i = d_{ij}!$

Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).

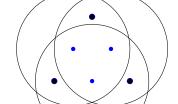


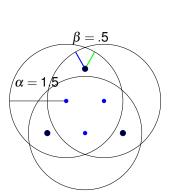
 $\sum_{j} \beta_{ij} \leq f_i$ $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i .

 $\alpha_i = d_{ij}!$

Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).





Constraints for dual.
$$\sum_i eta_{ii} \leq f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow α_i .

 $\alpha_i = d_{ij}!$

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow
$$\beta_{ij}$$
 (and α_j). $\sum_j \beta_{ij} = f_i$ for all facilities.

 $\beta = .5$

lpha = 1.5

Constraints for dual.

$$\sum_{j} \beta_{ij} \leq f_{i}$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow
$$\alpha_j$$
. $\alpha_i = d_{ii}!$

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$.

w
$$\beta_{ij}$$
 (and α_j).
 $\beta_{ii} = f_i$ for all facilities

Grow β_{ij} (and α_i). $\sum_{j} \beta_{ij} = f_i$ for all facilities. Tight: $\sum_{j} \beta_{ij} \leq f_i$

 $\beta = .5$

lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_i \beta_{ij} \le f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow α_i .

 $\alpha_i = d_{ii}!$

Tight constraint: $\alpha_i - \beta_{ij} \leq d_{ij}$. Grow β_{ij} (and α_i).

 $\sum_{j} \beta_{ij} = f_i$ for all facilities. Tight: $\sum_{j} \beta_{ij} \leq f_i$

$\beta = .5$ lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_{i} \beta_{ij} \leq f_{i}$$

 $\alpha_i - \beta_{ij} \leq d_{ij}$.

Grow α_i . $\alpha_i = d_{ii}!$

LP Cost: $\sum_{i} \alpha_{i}$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ij} (and α_i).

 $\sum_{j} \beta_{ij} = f_i$ for all facilities. Tight: $\sum_{j} \beta_{ij} \le f_i$

$\beta = .5$

lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\nabla : \beta_{ii} < f_i$$

 $\sum_{i} \beta_{ij} \leq f_i$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow α_i . $\alpha_i = d_{ii}!$

LP Cost: $\sum_{i} \alpha_{i} = 4.5$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_{i}$$
 for all facilities.
Tight: $\sum_{j} \beta_{ij} \leq f_{i}$

lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_i eta_{ii} \leq f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

$$\alpha_i - \beta_{ij} \leq d_{ij}.$$
Grow α_j .

 $\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow
$$\beta_{ij}$$
 (and α_j).
 $\sum_i \beta_{ij} = f_i$ for all facilities

 $\sum_i \beta_{ii} = f_i$ for all facilities.

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.
Tight: $\sum_{j} \beta_{ij} \leq f_i$
LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

lpha = 1.5

Constraints for dual.

Constraints for dual.
$$\sum_i eta_{ii} \leq f_i$$

 $\alpha_i - \beta_{ii} \leq d_{ii}$.

$$\alpha_i - \beta_{ij} \leq d_{ij}.$$
Grow α_j .

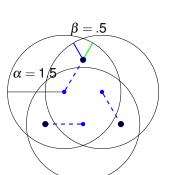
 $\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow
$$\beta_{ij}$$
 (and α_j).
 $\sum_i \beta_{ij} = f_i$ for all facilities

 $\sum_i \beta_{ii} = f_i$ for all facilities.

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.
Tight: $\sum_{j} \beta_{ij} \leq f_i$
LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

 $\alpha_{i} - \beta_{ij} \leq d_{ij}$.

Grow α_i .

Grow
$$\alpha_j$$
. $\alpha_i = d_{ii}!$

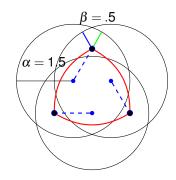
Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tíght: $\sum_i \beta_{ij} \leq f_i$

LP Cosť:
$$\sum_{j} \alpha_{j} = 4.5$$

Temporarily open all facilities. Assign Clients to "paid to" open facility.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j .

$$\alpha_i = d_{ii}!$$

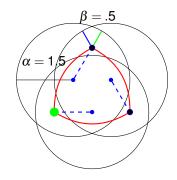
Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tight: $\sum_{j} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility.
Connect facilities with client that pays both.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j .

$$\alpha_j = d_{ij}!$$

Tight constraint: $\alpha_i - \beta_{ii} \le d_{ii}$.

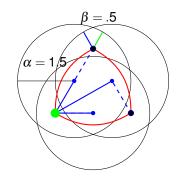
Grow β_{ij} (and α_j).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.
Tight: $\sum_{i} \beta_{ij} \leq f_i$

LP Cost: $\sum_{j} \alpha_{j} = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with client that pays both. Open independent set.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_i .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$. Grow β_{ii} (and α_i).

$$\sum_{j} \beta_{ij} = f_i$$
 for all facilities.

Tight: $\sum_i \beta_{ii} \leq f_i$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$

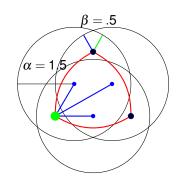
Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both.

Open independent set.

Connect to "killer" client's facility.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j . $\alpha_i = d_{ii}!$

Tight constraint:
$$\alpha_j - \beta_{ij} \le d_{ij}$$
.
Grow β_{ij} (and α_i).

 $\sum_{i} \beta_{ij} = f_i$ for all facilities.

Tight:
$$\sum_{j} \beta_{ij} \leq f_i$$

LP Cost: $\sum_{i} \alpha_i = 4.5$

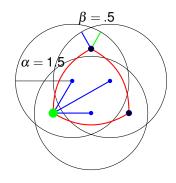
Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both. Open independent set.

Connect to "killer" client's facility.

Cost: 1 + 3.7



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_i .

 $\alpha_i = d_{ii}!$ Tight constraint: $\alpha_i - \beta_{ii} \leq d_{ii}$.

Grow β_{ii} (and α_i). $\sum_i \beta_{ii} = f_i$ for all facilities.

Tight: $\sum_i \beta_{ii} \leq f_i$ LP Cost: $\sum_i \alpha_i = 4.5$

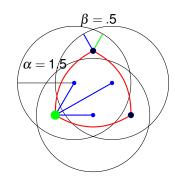
Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both.

Open independent set. Connect to "killer" client's facility.

Cost: 1 + 3.7 = 4.7.



$$\sum_{j} \beta_{ij} \leq f_{i}$$

$$\alpha_{i} - \beta_{ij} \leq d_{ij}.$$

Grow α_j .

$$\alpha_i = d_{ii}!$$

Tight constraint: $\alpha_j - \beta_{ij} \leq d_{ij}$. Grow β_{ii} (and α_i).

 $\sum_{j} \beta_{ij} = f_i$ for all facilities.

Tight: $\sum_{j} \beta_{ij} \leq f_i$ LP Cost: $\sum_{i} \alpha_i = 4.5$

Temporarily open all facilities.

Assign Clients to "paid to" open facility.

Connect facilities with client that pays both. Open independent set.

Connect to "killer" client's facility.

Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.

Claim: Client only pays one facility.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

$$f_i = \sum_{j \in S_i} \beta_{ij}$$

Claim: Client only pays one facility.

Independent set of facilities.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Proof:

$$f_i = \sum_{j \in S_i} \beta_{ij} = \sum_{j \in S_i} \alpha_j - d_{ij}.$$

Since directly connected: $\beta_{ii} = \alpha_i - d_{ii}.$

Claim: Client j is indirectly connected to i

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i'

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i' conflicts with i.

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

Directly connected to (temp open) i' conflicts with i. exists j' with $\alpha_{j'} \geq d_{ij'}$ and $\alpha_j \geq d_{i'j'}$.

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{i'} \ge d_{ii'} and \alpha_i \ge d_{i'i'}.
```

When i' opens, stops both α_i and α'_i .

```
Claim: Client j is indirectly connected to i \rightarrow d_{ij} \leq 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \geq d_{ij'} and \alpha_j \geq d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier..)
```

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \ge d_{ij'} and \alpha_j \ge d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier...) \alpha_j \le \alpha'_j.
```

```
Claim: Client j is indirectly connected to i \to d_{ij} \le 3\alpha_j. Directly connected to (temp open) i' conflicts with i. exists j' with \alpha_{j'} \ge d_{ij'} and \alpha_j \ge d_{i'j'}. When i' opens, stops both \alpha_j and \alpha'_j. \alpha'_j stopped no later (..maybe earlier..) \alpha_j \le \alpha'_j. Total distance from j to i'.
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later} \ (..\text{maybe earlier..}) \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + \end{array}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later} \ (..\text{maybe earlier...}) \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{jj'} + \\ \end{array}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to \ d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later (..maybe earlier..)} \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{ij'} + d_{i'j'} \end{aligned}
```

```
 \begin{array}{l} \textbf{Claim:} \  \, \textbf{Client} \ j \ \text{is indirectly connected to} \ i \\ \  \, \to \ d_{ij} \leq 3\alpha_j. \\ \\ \text{Directly connected to (temp open)} \ i' \\ \text{conflicts with} \ i. \\ \text{exists} \ j' \ \text{with} \ \alpha_{j'} \geq d_{ij'} \ \text{and} \ \alpha_j \geq d_{i'j'}. \\ \\ \text{When} \ i' \ \text{opens, stops both} \ \alpha_j \ \text{and} \ \alpha_j'. \\ \alpha_j' \ \text{stopped no later (..maybe earlier..)} \\ \alpha_j \leq \alpha_j'. \\ \\ \text{Total distance from} \ j \ \text{to} \ i'. \\ d_{ij} + d_{ij'} + d_{i'j'} \leq 3\alpha_j \\ \end{array}
```

Claim: Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$.

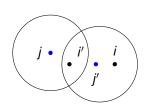
Directly connected to (temp open) i' conflicts with i. exists j' with $\alpha_{i'} \ge d_{ii'}$ and $\alpha_i \ge d_{i'i'}$.

When i' opens, stops both α_j and α'_j .

 α'_j stopped no later (..maybe earlier..) $\alpha_j \leq \alpha'_i$.

Total distance from j to i'.

$$\textit{d}_{\textit{ij}} + \textit{d}_{\textit{ij'}} + \textit{d}_{\textit{i'j'}} \leq 3\alpha_{\textit{j}}$$



Putting it together!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

Putting it together!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

 $\rightarrow \textit{d}_{\textit{ij}} \leq 3\alpha_{\textit{j}}.$

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$.

Claim: Client j is indirectly connected to i

 $\rightarrow \textit{d}_{\textit{ij}} \leq 3\alpha_{\textit{j}}.$

Total Cost:

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client j is indirectly connected to i

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client j is indirectly connected to i

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

Claim: Client only pays one facility.

Claim: S_i - directly connected clients to open facility i.

$$f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$$
.

Claim: Client *j* is indirectly connected to *i*

$$ightarrow$$
 $d_{ij} \leq 3\alpha_{j}$.

Total Cost:

direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!

