Го	d	la	y

Quickly: Matrix View, Taking Dual. Matching, algebra, geometry. Facility Location.

Matrix View.

Row equation: $\sum_{e=(u,v)} x_e = 1$. Row (dual) variable: p_u . Column variable: x_e . Column (dual) constraint: $p_u + p_v \ge 1$. Exercise: objectives?

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
max c · x	min y ^T b
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$

 $min \leftrightarrow max$

 $\geq \leftrightarrow \leq$

"inequalities" \leftrightarrow "nonnegative variables"

"nonnegative variables" ↔ "inequalities"

Another useful trick: Equality constraints. "equalities" \leftrightarrow "unrestricted variables."

Complementary Slackness.

Dual:

 $\min \sum_{v} p_{v}$ $\forall e = (u, v): \quad p_{u} + p_{v} \ge w_{e}$

Complementary slackness: Only match on tight edges. Nonzero p_u on matched u.

Maximum Weight Matching.

Bipartite Graph G = (V, E), $w : E \to Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} \frac{w_e x_e}{w_e x_e}$$
$$\forall v : \sum_{e=(u,v)} \frac{x_e}{x_e} = 1 \qquad p_v$$
$$x_e > 0$$

Dual. Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. min $\sum_v p_v$

$$\min \sum_{v} p_{v} \\ \forall e = (u, v): \quad p_{u} + p_{v} \ge w_{e}$$

Weak duality? Price function upper bounds matching. $\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_v p_u.$ Strong Duality? Same value solutions. Hungarian algorithm !!!

Multicommodity Flow.

Given G = (V, E), and capacity function $c : E \to Z$, and pairs $(s_1, t_1), \ldots, (s_k, t_k)$ with demands d_1, \ldots, d_k . Route D_i flow for each s_i, t_i pair, so every edge has $\leq \mu c(e)$ flow with minimum μ .

variables: f_p flow on path p. P_i -set of paths with endpoints s_i, t_i .

 p_v

Take the dual.

$$\forall \boldsymbol{e} : \sum_{\boldsymbol{\rho} \ni \boldsymbol{e}} f_{\boldsymbol{\rho}} \le \mu \boldsymbol{c}_{\boldsymbol{e}} \\ \forall i : \sum_{\boldsymbol{\rho} \in P_{i}} f_{\boldsymbol{\rho}} = D_{i} \\ f_{\boldsymbol{\rho}} \ge 0$$

Modify to make it \geq , which "go with min. And only constants on right hand side.

$$\min \mu$$
$$\forall \boldsymbol{e} : \mu \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ge \boldsymbol{e}} f_{\boldsymbol{p}} \ge 0$$
$$\forall i : \sum_{\boldsymbol{p} \in \boldsymbol{P}_i} f_{\boldsymbol{p}} = \boldsymbol{D}_i$$
$$f_{\boldsymbol{p}} \ge 0$$

Exponential size. Multicommodity flow.

Dual is.

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm. Find violated constraint \rightarrow poly time algorithm.

Answer 3: there is polynomial sized formulation.

Question: what is it?

Dual.

$$\forall e : \mu c_e - \sum_{p \ge e} f_p \ge 0 \qquad d_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var: $\mu \rightarrow \sum_{e} c_e d_e = 1$. $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0$. Objective: right hand sides. max $\sum_i D_i d_i$

min µ

$$\max \sum_{i} D_{i}d_{i}$$

$$\forall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e) \qquad \sum_{e} c_{e}d_{e} = 1$$

 d_i - shortest s_i, t_i path length. Toll problem!
 Weak duality: toll lower bounds routing.
 Strong Duality. Tight lower bound. First lecture. Or Experts.
 Complementary Slackness: only route on shortest paths only have toll on congested edges.

Maximum matching and simplex.

Augmenting Path. Via Gaussian Elimination!

Matrix View

 f_p variable for path e_1, e_2, \ldots, e_k . p connects s_i, t_i .

			f _p		μ	rhs
	•		0		•	0
	:	÷	÷	÷	:	0
d_{e_1}			-1		C _{e1}	0
	:	÷	÷	÷	:	0
d_{θ_2}			-1		C _{e2}	0
	:	÷	÷	÷	÷	0
d_{e_k}			-1		C _{ek}	0
	:	÷	÷	÷	:	0
di	•	•	1	•		Di
obj	1	1	1	1		
Dow	one	traint		Г	f \	0 Dow

Row constraint: $c_e \mu - \sum_{\rho \ni e} f_p \ge 0$. Row (dual) variable: d_e . Row constraint: $\sum_{p \in P_i} f_p = D_i$. Row (dual) variable: d_i . Column variable: f_p . Column (dual) constraint: $d_i - \sum_{e \in p} d_e \le 0$. Column variable: μ . Column (dual) constraint: $\sum_e d(e)c(e) = 1$. Exercise: objectives?

Facility location

Set of facilities: F, opening cost f_i for facility iSet of clients: D.

 d_{ij} - distance between *i* and *j*. (notation abuse: clients/facility confusion.) Triangle inequality: $d_{ij} \le d_{ik} + d_{kj}$.

Facility Location

Linear program relaxation:

"Decision Variables". v_i - facility i open? x_{ii} - client *j* assigned to facility *i*.

> $\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$ $\forall j \in D \quad \sum_{i=r} x_{ij} \geq 1$ $\forall i \in F, j \in D \quad x_{ii} \leq y_i,$ $x_{ii}, y_i \geq 0$

Facility opening cost. Client Connection cost. Must connect each client. Only connect to open facility.

 $\min cx. Ax > b \leftrightarrow \max bx. v^T A < c.$

The dual.

 $\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$ $\forall j \in D \quad \sum_{i \in E} x_{ij} \ge 1$ $\forall i \in F, j \in D \quad x_{ii} \leq y_i,$ $\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \qquad \max \sum_j \alpha_j \\ \forall j \in D \qquad \sum_{i \in F} x_{ij} \ge 1 \qquad ; \quad \alpha_j \qquad \forall i \qquad \sum_{j \in D} \beta_{ij} \le f_i \qquad ; \quad y_i$ $\forall i \in F, j \in D \quad y_i - x_{ij} \ge 0 \quad ; \quad \beta_{ij} \qquad \forall i \in F, j \in D \quad \alpha_i - \beta_{ij} \le d_{ij} \quad ; \quad x_{ij}$ $x_{ij}, y_i \ge 0$ $\beta_{ii}, \alpha_i > 0$

Integer Solution?

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

 $x_{ij} = \frac{1}{2}$ edges.

 $y_i = \frac{1}{2}$ edges.

Any one Facility:

Facility Cost: ³/₂ Connection Cost: 3

Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!

Interpretation of Dual?

Round solution?

Round independently? y_i and x_{ii} separately? Assign to closed facility! Round x_{ii} and open facilities? Different clients force different facilities open. Any ideas? Use Dual!

Use Dual.

- 1. Find solution to primal, (x, y). and dual, (α, β) . 2. For smallest (remaining) α_i , (a) Let $N_i = \{i : x_{ii} > 0\}.$ (b) Open cheapest facility i in N_i . Every client j' with $N_{i'} \cap N_i \neq \emptyset$ assigned to i.
- 3. Removed assigned clients, goto 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_i f_i y_i$.

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$. (b) Open cheapest facility *i* in N_j . Every client *j'* with $N_{j'} \cap N_j \neq \emptyset$ assigned to *i*.

Proof: Step 2 picks client *j*.

 f_{\min} - min cost facility in N_i

 $N_i \cap N_k = \emptyset$ for *j* and *k* in step 2.

 \rightarrow Any facility in < 1 sum from step 2.

 \rightarrow total step 2 facility cost is $\sum_i y_i f_i$.

For k used in Step 2.

 $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_i} x_{ij} \leq f_{\min} \sum_{i \in N_i} y_i \leq \sum_{i \in N_i} y_i f_i.$

 $\begin{pmatrix}
\bullet, f_i \\
x_i \leq y_i \\
\bullet, f_j \\
j, \bullet
\end{pmatrix}$

Primal dual algorithm.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual. Raise dual variables until tight constraint. Set corresponding primal variable to an integer.

Recall Dual:

$$\max \sum_{j} \alpha_{j}$$

$$\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i}$$

$$\forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij}$$

$$\alpha_{j}, \beta_{ij} \leq 0$$

Connection Cost.

2. For smallest (remaining) α_j , (a) Let $N_j = \{i : x_{ij} > 0\}$. (b) Open cheapest facility *i* in N_j . Every client *j'* with $N_{j'} \cap N_j \neq \emptyset$ assigned to *i*.

Client *j* is directly connected. Clients j' are indirectly connected.

 $\begin{array}{ll} \mbox{Connection Cost of } j: & \leq \alpha_j. \\ \mbox{Connection Cost of } j': & \\ & \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}. \\ & \mbox{since } \alpha_j \leq \alpha_{j'} \end{array}$

Total connection cost: at most $3\sum_{j'} \alpha_j \leq 3$ times Dual OPT.

Total Cost: 4 OPT.

Facility location primal dual.

 α_i

Phase 1: 1. Initially $\alpha_j, \beta_{ij} = 0$. 2. Raise α_j for every (unconnected) client. When $\alpha_j = d_{ij}$ for some *i* raise β_{ij} at same rate Why? Dual: $\alpha_j - \beta_{ij} \le d_{ij}$. Intution:Paying β_{ij} to open *i*. Stop when $\sum_i \beta_{ij} = f_i$. Why? Dual: $\sum_i \beta_{ij} \le f_i$ Intution: facility paid for. <u>Temporarily open *i*.</u> Connect all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client. Permanently open an independent set of facilities.

For client *j*, connected facility *i* is opened. Good. Connected facility not open \rightarrow exists client *j'* paid *i* and connected to open facility. Connect *j* to *j'*'s open facility.

Twist on randomized rounding.

Client *j*: $\sum_i x_{ij} = 1$, $x_{ij} \ge 0$. Probability distribution! \rightarrow Choose from distribution, x_{ij} , in step 2.

Expected opening cost: $\sum_{i \in N_j} x_i j f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total $\leq \sum_i y_i f_i.$

 $D_i = \sum_i x_{ij} d_{ij}$ Connection cost of primal for *j*.

Expected connection cost $j' = \alpha_j + \alpha_{j'} + D_j$.

In step 2: pick in increasing order of $\alpha_j + D_j$.

→ Expected cost is $(2\alpha_{j'} + D_{j'})$. Connection cost: $2\sum_j \alpha_j + \sum_j D_j$. 2*OPT*(*D*) plus connection cost or primal.

Total expected cost:

Facility cost is at most facility cost of primal. Connection cost at most 2*OPT* + connection cost of prmal.

 \rightarrow at most 3*OPT*.

Constraints for dual. $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow α_{j} . $\alpha_{j} = d_{ij}!$ Tight constraint: $\alpha_{j} - \beta_{ij} \leq d_{ij}.$ Grow β_{ij} (and α_{j}). $\sum_{j} \beta_{ij} = f_{i}$ for all facilities. Tight: $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost: $\sum_{i} \alpha_{i} = 4.5$

Temporarily open all facilities. Assign Clients to "paid to" open facility. Connect facilities with client that pays both. Open independent set. Connect to "killer" client's facility. Cost: 1 + 3.7 = 4.7. A bit more than the LP cost.

Analysis

Claim: Client only pays one facility. Independent set of facilities. **Claim:** S_i - directly connected clients to open facility *i*. $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$. **Proof:** $f_i = \sum_{i \in S_i} \beta_{ii} = \sum_{i \in S_i} \alpha_i - d_{ii}$.

$$\begin{split} \mathbf{f}_i &= \sum_{j \in \mathcal{S}_i} \beta_{ij} = \sum_{j \in \mathcal{S}_i} \alpha_j - \mathbf{d}_{ij}. \\ \text{Since directly connected: } \beta_{ij} &= \alpha_j - \mathbf{d}_{ij}. \end{split}$$

Analysis.

 $j \bullet (i') \bullet i \\ j' \bullet j'$

Putting it together!

Claim: Client only pays one facility. **Claim:** S_i - directly connected clients to open facility *i*. $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$. **Claim:** Client *j* is indirectly connected to $i \rightarrow d_{ij} \le 3\alpha_j$. Total Cost: direct clients dual (α_j) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!

See you on Thursday.