Quickly: Matrix View, Taking Dual.
Matching, algebra, geometry.
Facility Location.

Matrix View.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}
Column variable: x_{e}. Column (dual) constraint: $p_{u}+p_{v} \geq 1$.
Exercise: objectives?

Rules for School..
or..."Rules for taking duals"
Canonical Form

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:

$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$
"inequalities" \leftrightarrow "nonnegative variables"
"nonnegative variables" \leftrightarrow "inequalities"
Another useful trick: Equality constraints. "equalities" \leftrightarrow "unrestricted variables."

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1
\end{aligned}
$$

$$
x_{e} \geq 0
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:
Only match on tight edges.
Nonzero p_{u} on matched u.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$
Find maximum weight perfect matching
Solution: x_{e} indicates whether edge e is in matching

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1
\end{aligned}
$$

$$
x_{e} \geq 0
$$

Dual.
Variable for each constraint. p_{V} unrestricted
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$
$\min \sum_{v} p_{v}$

$$
\forall e=(u, v): \quad p_{u}+p_{v}>w_{e}
$$

Weak duality? Price function upper bounds matching
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$
Strong Duality? Same value solutions. Hungarian algorithm !!!
Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs
$\left.s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands d_{1}, \ldots, d_{k}.
Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow with minimum μ.
variables: f_{p} flow on path p.
P_{i}-set of paths with endpoints s_{i}, t_{i}

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e} \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Take the dual.
$\min \mu$
$\forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e}$
$\forall i: \sum_{p \in P_{i}} f_{p}=D_{i}$
$f_{p} \geq 0$

Modify to make it $>$, which "go with min. And only constants on right hand side.
$\quad \min \mu$
$\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0$
$\forall i: \sum_{p \in P_{i}} f_{p}=D_{i}$
$f_{p} \geq 0$

Exponential size.
Multicommodity flow. $\min \mu$

Dual is.

$$
\max \sum_{i} D_{i} d_{i}
$$

$$
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm. Find violated constraint \rightarrow poly time algorithm.
Answer 3: there is polynomial sized formulation.
Question: what is it?

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

$$
\sum_{e} c_{e} d_{e}=1
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem
Weak duality: toll lower bounds routing.
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths only have toll on congested edges.

Maximum matching and simplex

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
$d_{e_{1}}$.	\cdots	0	\cdots	.	0
	\vdots	:	仡	\vdots	\vdots	0
	.	\ldots	-1	...	$c_{e_{1}}$	0
$d_{e_{2}}$	\vdots	\vdots	.	\vdots	\vdots	0
	.	\ldots	-1	\cdots	$C_{e_{2}}$	0
$d_{e_{k}}$	\vdots	\vdots		!	\vdots	0
	.		-1	...	$c_{e_{k}}$	0
	\vdots	\vdots	!	.	:	0
d_{i}	\cdot	\cdot	1	-	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\Sigma_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Column variable: μ. Column (dual) constraint: $\sum_{e} d(e) c(e)=1$. Exercise: obiectives?
Facility location

Set of facilities: F, opening cost f_{i} for facility i Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)
Triangle inequality: $d_{i j} \leq d_{i k}+d_{k j}$.

Facility Location

Linear program relaxation:

"Decision Variables".
y_{i} - facility iopen?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.

The dual.

$\min c x, A x \geq b \leftrightarrow \max b x, y^{\top} A \leq c$.

$$
\begin{gathered}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i},
\end{gathered}
$$

$$
\left.\begin{array}{rrrl}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & & \max \sum_{j} \alpha_{j} & \\
\forall j \in D & \sum_{i \in F} x_{i j} \geq 1 & ; \alpha_{j} & \forall i \sum_{j \in D} \beta_{i j} \leq f_{i}
\end{array} ; y_{i}\right)
$$

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i},
\end{array}
$$

$$
x_{i j}, y_{i} \geq 0
$$

$$
x_{i j}=\frac{1}{2} \text { edges. }
$$

$$
y_{i}=\frac{1}{2} \text { edges. }
$$

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure. Not as pretty!

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \leq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to
connect!
Objective: $\Sigma_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-d_{i j}$.
Total payment to facility i at most f_{i} before opening.
Complementary slackness: $x_{i j} \geq 0$ if and only if $\alpha_{j} \geq d_{i j}$. only assign client to "paid to" facilities.

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?

y_{i} and $x_{i j}$ separately? Assign to closed facility!
Round $x_{i j}$ and open facilities?
Different clients force different facilities open.
Any ideas?
Use Dual!
Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
3. Removed assigned clients, goto 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.

$f_{\text {min }}$ - min cost facility in N_{j}
$f_{\text {min }} \leq f_{\min } \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.
$N_{j} \cap N_{k}=\emptyset$ for j and k in step 2.
\rightarrow Any facility in ≤ 1 sum from step 2 .
\rightarrow total step 2 facility cost is $\sum_{i} y_{i} f_{i}$.

Primal dual algorithm

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Typically.

Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

$$
\begin{gathered}
\max \sum_{j} \alpha_{j} \\
\forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \\
\alpha_{j}, \beta_{i j} \leq 0
\end{gathered}
$$

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$.
Connection Cost of j^{\prime} :

$$
\begin{aligned}
& \leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}} . \\
& \operatorname{since} \alpha_{j} \leq \alpha_{j^{\prime}}
\end{aligned}
$$

Total connection cost:
at most $3 \sum_{j^{\prime}} \alpha_{j} \leq 3$ times Dual OPT.
Previous Slide: Facility cost
\leq primal "facility" cost \leq Primal OPT. Total Cost: 4 OPT.

Twist on randomized rounding.
Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$. Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$. $2 O P T(D)$ plus connection cost or primal.
Total expected cost
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
\rightarrow at most 3OPT.

Facility location primal dual.
Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i.
Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Connect facilities that were paid by same client.
Permanently open an independent set of facilities.
For client j, connected facility i is opened. Good.
Connected facility not open
\rightarrow exists client j^{\prime} paid i and connected to open facility.
Connect j to j 's open facility.

> Constraints for dual.
> $\quad \sum_{j} \beta_{i j} \leq f_{i}$
> $\alpha_{i}-\beta_{i j} \leq d_{i j}$.
> Grow α_{j}.
> $\alpha_{j}=d_{i j}$!
> Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
> Grow $\beta_{i j}$ (and α_{j}).
> $\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
> Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
> LP Cost: $\sum_{j} \alpha_{j}=4.5$
> Temporarily open all facilities.
> Assign Clients to "paid to" open facility. Connect facilities with client that pays both. Open independent set.
> Connect to "killer" client's facility.
> Cost: $1+3.7=4.7$.
> A bit more than the LP cost.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i.
$f_{i}+\sum_{j \in \mathcal{S}_{i}} d_{j j} \leq \sum_{j} \alpha_{j}$.
Proof:
$f_{i}=\sum_{j \in S_{i}} \beta_{i j}=\sum_{j \in S_{i}} \alpha_{j}-d_{j i}$. $=\sum_{j \in S_{j}} \beta_{i j}=\sum_{j \in S_{i}} \alpha_{j}-\alpha_{i j}$.
Since directly connected: $\beta_{i j}=\alpha_{j}-d_{i j}$.

Analysis.

Claim: Client j is indirectly connected to i
$\rightarrow d_{i j} \leq 3 \alpha_{j}$.
Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{i^{\prime}} \geq d_{j^{\prime}}$ and $\alpha_{j} \geq d_{i i^{\prime}}$.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$
When i^{\prime} opens, stops both α_{j} and α_{i}^{\prime}.
α_{j}^{\prime} stopped no later (..maybe earlier..)
$\alpha_{j} \leq \alpha_{j}^{\prime}$.
Total distance from j to i '.
$d_{i j}+d_{i j^{\prime}}+d_{i j^{\prime}} \leq 3 \alpha_{j}$
\square

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i}-directly connected clients to open facility i.
$f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i
$\rightarrow d_{i j} \leq 3 \alpha_{j}$.
Total Cost:
direct clients dual $\left(\alpha_{i}\right)$ pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal. 3 OPT.
Fast! Cheap! Safe!

