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Lecture 11

1 Markov chains and Cheeger’s inequality

Sampling a random element from a set S ⊂ {0, 1}n is a fundamental computational problem
that arises in a number of contexts. The sampling problem is closely related to a seemingly
different computational task - approximating the cardinality of S within a multiplicative
factor of 1 + ε. Here are some examples of these tasks:

(i) The elements of S are grid points inside the convex body P ∈ Rd. A special case is
the problem of numerically integrating a convex function of d variables.

The convex body P might be specified by a collection of linear inequalities. There is a
natural graph associated with S: the neighbors of a vertex v are the grid points nearest to
it. If a neighboring grid point does not satisfy an inequality defining P then a self loop is
added to v. The graph is 2d regular, and it is easy to generate the neighbors of v by looking
at the nearest grid points and checking whether they belong to P . We therefore have a
graph G(S,E) defined on an exponentially large set S, together with an efficient procedure
to reconstruct the edges of G locally.

A natural algorithm for picking a random element of S is to start from a particular
vertex of G and repeatedly move to a random neighbor. Stop after t steps and output the
current vertex. The big question is this: is it possible that the output vertex is close to
random after polynomially many steps t, even though the size of the graph is exponentially
large? This is the question we will address using the connections between sparse cuts and
spectral gaps.

(ii) Given a graph G(V,E), consider the problem of finding a random spanning tree in
the graph. The number of spanning trees in G can be counted exactly using the properties of
electrical networks. The set S of spanning trees of G can be exponentially large in n = |V |.
Once again, we may define a natural graph associated with S where two spanning trees are
adjacent if they differ in exactly two edges. The graph is connected and given a spanning
tree s ∈ S, all the neighbors of s can be found efficiently.

(iii) More generally, the elements of the set S may have positive weights associated
with them. The sampling problem now asks for an element of S sampled with probability
proportional to its weight. A fundamental model in statistical physics is a system of particles
located on a two dimensional (or three dimensional) grid. Assume that each particle can
be in state ±1. If there are n particles, a configuration of the system is an element of
{+1,−1}n. The energy of the system is determined by nearest neighbor interactions - for
example, a simple rule might say E =

∑
(i,j)−σiσj . This is the so-called ferromagnetic

regime, where configurations with aligned spins have low energy and are favored.
The equilibrium distribution at a given temperature T is the Gibbs distribution, where

a configuration having energy E occurs with probability proportional to e−
E
kT . Statistical

physics tells us that the properties of the material can be determined by sampling from the
Gibbs distribution.
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The metropolis process is a natural Markov chain for sampling from weighed sets. The
probability of making a transition from x → y is proportional to min(1, w(y)w(x)) for the
Metropolis process. For sampling from the Gibbs distribution we choose a random par-

ticle and flip its state with probability min(1, e−
∆E
kT ) where ∆E is the change in energy due

caused due to flipping.

1.1 Markov Chains and random walks

A random walk on a graph G is following process: a particle starts from a fixed vertex (or a
distribution over vertices) and moves to a random neighbor at every step. We are interested
in the probability distribution that describes its position after t steps. If G is d-regular,
connected and non-bipartite then as t tends to infinity, the probability distribution tends
to the uniform distribution. In the case of a bipartite graph, if the particle starts on the
left side of the bipartition, it will be on the right side at odd numbered steps and left side
at even numbered steps, and therefore there is no limiting distribution.

The random walk on G can be described by its normalized adjacency matrix M as
follows: let vi be the n-dimensional vector, whose j-th component is the probability that
the particle is at vertex j after i steps of the random walk. It is easy to see that vi+1 = Mvi
as the action of M averages over neighbors.

Wlog we assume that the walk starts at a fixed vertex, the starting distribution can be
taken to be e1. The behavior of the walk can be understood by decomposing e1 =

∑
αivi in

the spectral basis for M , we note that α1 = 1√
n

. The matrix M is diagonal in the spectral

basis so after k steps the walk evolves to,

Mke1 =
1√
n
v1 +

∑
i>1

λki αivi (1)

If all the eigenvalues of M are positive, then after the random walk converges to the uniform
distribution 1√

n
v1 and the rate of convergence is controlled by the spectral gap µ = 1− λ2.

However, all we know is that −1 ≤ λi ≤ 1 for eigenvalues of M , negative eigenvalues are a
real issue, for example λmin = −1 if the graph is bipartite and in this case the random walk
does not converge to the uniform distribution. If there are eigenvalues close to −1 the rate
of convergence is not controlled by the spectral gap.

These issues can be overcome if we modify the walk slightly and consider the lazy random
walk (M + I)/2 instead. The eigenvalues of (M + I)/2 are 1+λi

2 and therefore lie in the

interval [0, 1], the spectral gap for the lazy random walk is 1−λ2
2 = µ/2.

The speed of convergence to the uniform distribution π is measured in terms of the `1
distance d1(vi, π) =

∑
i |vi−πi|, the Markov chain is said to be rapidly mixing if d1(vi, π) ≤ ε

for i = poly(logN, 1ε ). It is convenient to bound the squared `2 distance d2(vi, π) =
∑

i(vi−
πi)

2 in terms of the spectral gap, this translates to a bound on the `1 distance via the
Cauchy Schwarz inequality

√
Nd2(vi, π)2 ≥ d1(vi, π)2.

If the spectral gap µ = 1
p(n) where n is the degree of a node and p(n) is a polynomial,

then after k = O(p(n) logN) steps,

d2(vk, π) =

∣∣∣∣∣
(
I +M

2

)k
e1 −

1√
N
v1

∣∣∣∣∣
2

≤
(

1 + λ2
2

)k
=

(
1− 1

2p(n)

)k
≤ 1

poly(N)
(2)
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After O(p(n) logN) steps of the random walk we have 1
poly(N)

≥ d1(vi, π)2. If the spectral

gap is 1/p(n), the Markov chain is rapidly mixing and converges to the uniform distribution
in O(p(n) logN) steps.

1.2 Volume estimation

Recall the random walk defined on the grid points inside a convex body defined earlier. The

edge expansion h(S) = E(S,S)
d|S| is approximately equal to the ratio of the surface area of S to

its volume. The approximation is valid only if the grid size is sufficiently small compared
to the size of the convex body. The discussion on the convergence of the Markov chain here
is just a sketch, for example if the convex object is an elongated parallelogram the graph
on grid points inside it will not even be connected.

The hard part of Cheeger’s inequality h(G) ≤
√

2(1− λ2) is useful for showing that the
spectral gap is large, if we can bound the edge expansion h(G). The following isoperimetric
inequality for convex objects P ∈ Rn yields bounds on the edge expansion for the graph on
grid points inside P ,

V oln−1(S, S) ≥ min(V ol(S), V ol(S))

diam(P )
(3)

For example a bound of 1/n3 for edge expansion obtained using the isoperimetric inequality
translates to a bound of O(n6 logN) on the convergence time of the Markov chain using
Cheeger’s inequality. The isoperimeteric inequality shows that the random walk on grid
points inside P converges to the uniform distribution over grid points in polynomial time
if the diameter of P is poly(n) and P is ‘sufficiently nice’.

1.3 Counting partial orders

A good illustration of the Markov chain method is Khachiyan’s solution to the problem
of sampling from the uniform distribution on the total orderings consistent with a given
partial order on elements x1, · · · , xn. The partial order is specified by inequalities of the
form xi ≥ xj among the elements xi and the task is to estimate the number of total orderings
compatible with the constraints.

It is easy to find one consistent ordering by running a topological sort algorithm on the
directed graph representing the constraints. The neighbors of a consistent total ordering are
generated by by exchanging elements xi, xj in the order if the resulting order is consistent,
and adding a self loop otherwise. Each vertex has degree

(
n
2

)
in the resulting graph.

Khachiyan observed that a constraint xi < xj is a halfspace that divides the n dimen-
sional hypercube [0, 1]n into two equal parts. The hypercube gets partitioned into n! equal
parts by the

(
n
2

)
hyperplanes corresponding to the results of all possible comparisons be-

tween elements (xi, xj). The order polytope is the intersection of hyperplanes corresponding
to the partial order constraints and has volume K

n! where K is the number of consistent total
orderings.

Estimating the number of consistent total orders is equivalent to estimating the volume
of order polytope. The walk on orderings can be viewed as a walk on the n! simplices that
partition the hypercube, so the isoperimetric inequality (3) can be used to bound the edge
expansion.
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The diameter of the order polytope is
√
n as it is contained in the hypercube. The

volume of a cut (S, S) in the order polytope is |S|n! . Each edge in the graph connects two
unit simplices whose boundary is an n− 1 dimensional unit simplex. The surface area per
edge is 1/(n − 1)! and the total surface area is at least |S|

n!
√
n

. The total number of edges

across the cut S must be at least |S|/n3/2, yielding a bound on the edge expansion,
The isoperimetric inequality (3) applied to the order polytope yields,

V oln−1(S, S) =
E(S, S)

(n− 1)!
≥ |S|
n!
√
n

This yields the following bound on the edge expansion as the degree d is O(n2),

h(S) =
|E(S, S)|
d|S|

≥ 1

n7/2

Going through the calculation using Cheeger’s inequality, the Markov chain converges
to the stationary distribution in time O(n7 logN). Here N is the total number of orderings
which is upper bounded by N !, so the convergence time is O(n8 log n). A sharper analysis
of the convergence time is possible, our goal here was to show convergence in polynomial
time.


