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Lecture 10

1 Cheeger’s inequality

In the last lecture we introduced the notion of edge expansion, eigenvalues of the adjacency
matrix and the averaging interpretation of the action of the normalized adjacency matrix
M and stated Cheeger’s inequality that relates the spectral gap to the expansion.
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Today we will prove the left side of Cheeger’s inequality, the proof of the right side of the
inequality is harder and we will see it in a future lecture.

Why is the left side of Cheeger easier? The left side of Cheeger’s inequality is equivalent
to proving that Ag > 1 — 2h(G). It is easy to prove an inequality of the form A9 > ¢ using
the Rayleigh quotient characterization of the second eigenvalue from the previous lecture,
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In order to prove that Ao > ¢ it suffices to find a vector v € R™, v L 1 such that the Rayleigh
quotient xxTTiwa > c¢. The averaging interpretation of the action of M is useful for bounding
the Rayleigh quotient.

Proof idea: Given a partition (5, S) of the vertices of G with edge expansion h(S) the
proof idea is to find vector v € R", v L T with Rayleigh quotient at least 1—2h(S). Applying
the argument to the sparsest cut in G yields the left side of Cheeger’s inequality,

A2 > 1—2h(G) 3)
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Given a partition (S,S) of the vertices of G with |S| < n/2, define vector v such that
v;i = —|S| fori € S and v; = |S| fori € S.
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PROOF: The vector v L I by design as the vertices in S contribute —|S||S| to 3 v; which
is cancelled by the |S||S| contributed by vertices in S. In order to bound the Rayleigh
quotient, we compute the quantities v v and vT M,

Ty — Z IS|2 + Z 1S|? = |S].[S].(IS] + |S]) = n|S|.|S| (4)
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If there are no edges in G crossing the partition (S, S) then Mv = v and v Mv = v"Tv by
the averaging interpretation of the action of M. Consider the effect of adding an edge (4, j)
across the partition. One of the terms in the average 5>, , vj, changes from —|S| to |S],

this results in a net increase of L:'S' = 5 in the average value. Arguing similarly, we find

that the average value ékaj v), decreases by 7.

Adding an edge (i, j) across the partition changes Mv; — Mv;+% and Mv; — Muv; — 5.
The inner product between v and Mv changes by —(|S| + |S|)% = —%2 for the addition of
every edge across (.5, S5). Therefore,
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oI My = UTU—F|E(S,5’)|
= n|S|IS| - n’|S|n(S) ()

The equality |E(S, S)| = d|S|h(S) follows from the definition of edge expansion. The value
of the Rayleigh quotient is,
vI'Mv  n|S||S| — n?|S|h(S)

r—= mEd —1- |”S|h(5) > 1 - 2h(S) (6)
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1.1 The spectral gap as a relaxation of conductance

Another perspective on Cheeger’s inequality is the observation that the spectral gap (1 —
Az2) is a relaxation of the optimization problem of computing the conductance ¢(G). The
spectral gap can be written in terms of the Rayleigh quotient,
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The sum of the entries of z is equal to 0 as x L 1 so we have (3 z;)? =Y 22+ 2z;2; = 0.
The expression in the denominator of the above expression can be rearranged to obtain

dy; 5512 = %Z”(% - xj)z’
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The expression for the spectral gap is invariant under shifting all the coordinates of x by
a constant, so the constraint x L 1 can be changed to x € R™ \ 0. If x is restricted to the
characteristic vector of a cut {0,1}" \ 0 the value of the expression (8) is the conductance
of the cut defined by x. The conductance ¢(G) can therefore be viewed as a relaxation of
the spectral gap,
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The conductance is obtained by minimizing the expression (8) over characteristic vectors
of cuts in {0,1}" \ 0 while the spectral gap is obtained by minimizing the same expression
over R™\ 0. It follows that ¢(G) > 1 — Ay and using 2h(G) > ¢(G) we have another proof
of the left side of Cheeger’s inequality.



