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Abstract

Anytime Channel Coding with Feedback

by

Hidayet Tunc Simsek
Doctor of Philosophy in Engineering – Electrical Engineering

and Computer Sciences

University of California, Berkeley

Professor Pravin P. Varaiya, Chair

We build on the Anytime information theory of Anant Sahai. Within that broad range we focus on the
Anytime channel coding problem for discrete-time memoryless channels with noiseless feedback. Our
main result is an upper bound on the exponent of anytime coding. For the special case of a Binary
Erasure Channel with feedback the result is tight or, in other words, the upper bound is achievable. The
upper bound turns out to have some interesting properties. For any discrete-time memoryless channel
the bound is a concave function, it is strictly positive for all rates up to capacity and identically zero
at capacity. Furthermore, for symmetric channels, the bound is expressed parametrically in terms of
Gallager’s exponent which is generally denoted as E0. The discussion occupies Chapters 1-3.

In Chapter 4, we specialize to the Binary Symmetric Channel and design a family of ‘time-
sharing’ codes that achieve an exponent close to the upper bound. In particular, the achievable region
beats the sphere-packing bound which was thought to be a hard bound on performance with fixed
delays [21]. This shows that the sphere-packing bound is misleading when it comes to the opportunities
provided by feedback.

The two additional chapters may be read independently of the former material. In Chapter 5
we consider the problem of anytime relaying. We are interested in this problem because it represents
the simplest instance of a more general problem of real-time data processing. The relaying node must
be able to decode, interpret and re-encode the incoming data in a streaming fashion. We are unable to
treat the relaying problem in general and therefore restrict our attention to the special case of a one-hop
relay in which the link from the source node to the relaying node is an Erasure Channel with feedback.
In this case we are able to give a precise characterization of the anytime capacity of the end-to-end
relay.

In the final chapter we consider an infinite state Markovian jump system. The material pre-
sented in this chapter unfolded during one of our many attempts to model our anytime codes. We present
stability criteria for jump systems. Our results may be viewed as a simpler and finite alternative to the
traditional criteria which requires the solution of an infinite set of balance equations.

Professor Pravin P. Varaiya

Dissertation Committee Chair
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Chapter 1

Introduction

The reliable communication of real-time information over unreliable communication channels is
central in modern technological applications. Examples include interactive streaming multimedia found
in the on-line entertainment industry and interactive trading systems such as distributed auctions. There
is no shortage of demand for real-time communications and, fortunately, on the technological side, there
is no shortage of supply. We witness rapid development of integrated communication systems that
match and often surpass the requirements of the driving applications. In fact, we often see technology
driving the applications.

At the theoretical foundations of reliable communication of streaming data lies the simply
stated problem of estimating an unstable system from measurements taken over a noisy data-rate limited
communications link. In contrast to advances in technology, this seemingly simple problem, originally
motivated by Schalkwijk and Kailath [26, 24] in the 1960s, has since evaded a sufficiently general
understanding and a general method of design. Dynamic programming emerged as the favorite approach
but, ultimately, proved not to be a broadly applicable methodology. In the absence of additional
assumptions on the channel, the dynamic programming approach did not lead to tractable and useful
formulations.

A recent and more fundamental approach is contained in the Anytime information transmission
theorem of A. Sahai [22] in 2001. Contrary to previous belief, Sahai’s theorem demonstrates the existence
of encoders and decoders that are capable of tracking a random walk remotely over an arbitrary discrete-
time memoryless channel. No additional assumptions are needed on the channel. To see what’s going
on consider the situation illustrated in Figures 1.1 and Figure 1.2. The source is a random walk
described by the recursion xn+1 = xn + sn in which x0 = 0 and the {sn} are i.i.d. coin tosses with
P(sn = 1) = P(sn = −1) = 1/2. In contrast to the standard assumptions on the source, the random
walk is not stationary and the variance of xn tends to infinity. The communication channel is modeled
by a conditional probability distribution Qn(b|a) defined over the channel inputs a = 1, 2, · · · , A and the
channel outputs b = 1, 2, · · · , B. The tracking problem is to design an encoder that causally observes
xn and a decoder that, at time n, produces an estimate yn of xn such that,

sup
n≥0

E|xn − yn|2 <∞. (1.1)

The diagram in Figure 1.1 depicts the traditional framework, originally proposed by Witsen-
hausen [35]. The idea is to formulate the problem as a controller design problem. The decoder is
modeled as a dynamic system yn = Dn(yn−1, bn) and the encoder is modeled as a controller which
steers the decoder through the noisy control signal bn. As pointed out by Walrand and Varaiya [33] the



2

design problem may be casted as a dynamic program with partial information. The information state
crucially depends on the channel and admits no tractable representation in the absence of additional
simplifying assumptions.

The diagram in Figure 1.2 depicts the Anytime framework proposed by Sahai. In the spirit of
Shannon the idea is to break up the system into a source encoder-decoder and channel encoder-decoder
and to think of these as two separate design problems. For a simple random walk the source encoder-
decoder is trivial. In particular, the source encoder is described by the functions ESn (xn) = sn, n ≥ 0,
and the source decoder is described by the functions DS

n(s̃(n)) =
∑n

i=1 s̃n, n ≥ 0. The heart of the
matter lies in the channel encoder Ean(sn, bn−1) and the channel decoder s̃(n) = Da

n(b
n) in which s̃(n) is

a vector-valued estimate of the entire history of the bits that have entered the encoder up to time n,

s̃(n) =
(
s̃1(n), s̃2(n), · · · , s̃n(n)

)
, n ≥ 0.

Observe that the estimate of a particular bit may change at ‘any’ future time. The anytime channel
coding theorem states that for a discrete-time memoryless channel with Shannon capacity greater than
one there exists a channel encoder-decoder (Ea,Da) with parameters α > 0 and β > 0 such that for all
times n ≥ 0 and for all delays 0 ≤ d ≤ n we have,

P
(
sn−d 6= s̃n−d(n)

)
≤ β2−αd. (1.2)

So the probability of decoding error for a past bit drops off exponentially in the amount of time that
the system had to decode that bit. The tracking property (1.1) then follows as,

E|xn − yn|2 =
∑
sn

∣∣xn −DS
n(s̃(n))

∣∣2 P(s̃(n))

=
∑
sn

∣∣xn − n∑
i=1

s̃n
∣∣2 P(s̃(n))

=
∑
sn

∣∣ n∑
i=1

sn −
n∑
i=1

s̃n
∣∣2 P(s̃(n))

≤
∑

0≤d≤n
β2−αd

≤ β

1− 2−α

<∞.

We note the anytime channel coding theorem also justifies the use of the term ‘anytime’. More precisely,
the estimate of any given bit is permitted to change at any time and the estimate monotonically improves
in time.

In contrast with the traditional approach, the anytime approach imposes no additional require-
ments on the channel except that its Shannon capacity is bigger than one. It should be pretty clear
that if the capacity is less than one then there is no encoder-decoder that can track the random walk.
The additional flexibility of the anytime approach is because the decoder is allowed to re-examine its
past estimates based on its current knowledge. The traditional decoder is strictly progressive.

This brings us to the main subject of this dissertation. We attempt to contribute to the basic
problem by determining bounds on the anytime exponent α and to design anytime codes that achieve
or come close to these bounds. We will not worry about the magnitude of the coefficient β in our
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calculations. If α1 > α2, it is quite meaningful to say that one code with parameters (α1, β1) is better
than another code with parameters (α2, β2): For any particular bit the probability of bit decoding error
in (1.2) is governed by the exponent rather than the coefficient.

1.1 Summary of main results

We consider the anytime channel problem as described above. In addition to what is described
above the rate at which new bits enter the encoder is permitted to be different than one and is denoted
by R (R > 0). This roughly means that by time n a total of jn = dnRe source bits have entered the
encoder and, correspondingly, the decoder’s estimate at time n is given by,

s̃(n) =
(
s̃1(n), s̃2(n), · · · , s̃jn(n)

)
.

Consequently the anytime exponent also depends on the rate R and we write α(R) to denote the
dependence. The basic problem is to determine bounds on the anytime exponent α(R) and design
anytime codes that achieve or come close to these bounds over all rates R for which the anytime
exponent is non-zero.

The presentation consists of three parts. In the first part of our presentation we survey the
literature and present relevant results for the reliability function of block coding with and without
channel feedback. The purpose in doing so is to understand and, if possible, leverage the relationship
between the anytime exponent and the traditional reliability function of block coding.

The case of block coding with no feedback is well-understood and is treated in standard
textbooks. By contrast, when feedback is permitted, we come across a number of surprising results that
have not quite made it into the textbooks. We place emphasis on two such results (Theorems 2.1.1 and
2.2.1) which, at a very high level, state that feedback cannot be used to improve the reliability function
for symmetric channels and that the reliability function can be significantly improved if the block length
is allowed to depend on the feedback. We subsequently make use of the first result to upper bound
(Theorem 3.3.1) the anytime exponent for symmetric channels and we use the second result in our code
designs to improve the region of achievable exponents (Theorem 4.4.1).

Our upper bound turns out to have some desirable properties. In the second part of our
presentation we focus on the upper bound and demonstrate that it is concave, positive for all rates R
up to capacity C and identically zero at capacity (Theorem 3.3.2). For symmetric channels, we are able
to express our bound parametrically in terms of Gallager’s exponent which is usually denoted by E0.
So our upper bound is a ‘nice’ function. We subsequently argue that the bound is also a nice bound. In
particular, it is tight for a Binary Erasure Channel with feedback. The upper bound, denoted E+

a (R),
is plotted in Figure 1.3 for a Binary Erasure Channel with erasure probability ε = 1/4. The curve is
described as the greatest lower bound for a family of curves parameterized by 0 ≤ λ ≤ 1.

We conclude the main subject of our presentation by designing a time-sharing anytime code for
discrete-time memoryless channels with perfect feedback (Theorems 4.3.1 and 4.4.1). The performance
of the code is measured in terms of the region of achievable exponents. For the Binary Erasure Channel
the time-sharing reduces to a trivial bit-by-bit repetition scheme that achieves the upper bound. For
the Binary Symmetric Channel there is no such trivial reduction. We present a family of ‘N-up J-
down’ schemes that are fairly simple and achieves a region close to the upper bound. In particular, the
achievable region beats the sphere-packing bound which was thought to be a hard bound on performance
with fixed delays [21]. This shows that the sphere-packing bound is misleading when it comes to the
opportunities provided by feedback. The Anytime exponent for various N-up J-down codes for a Binary
Symmetric Channel with crossover probability ε = 1/4 are sketched in Figure 1.4. The reliability region
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Figure 1.1: The dynamic programming framework for tracking a random walk.
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Figure 1.2: The anytime framework for tracking a random walk.
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Figure 1.3: Plot of the Anytime upper bound E+
a (R) as a function of the transmission rate R for a

Binary Erasure Channel with erasure probability ε = 1/4. The curve is described as the greatest lower
bound for a family of curves parameterized by 0 ≤ λ ≤ 1.

achievable by the family of N-up J-down curves is understood to be greater than the least upper bound
of these curves. The curve E+

a (R) is the Anytime upper bound and Esp(R) is the sphere-packing bound.
Two subsequent chapters may be read independently of the former material. In Chapter 5 we

consider the problem of anytime relaying. We are interested in this problem because it represents the
simplest instance of a more general problem of real-time data processing. The relaying node must be
able to decode, interpret and re-encode the incoming data in a streaming fashion. We are unable to
treat the relaying problem in general and therefore restrict our attention to the special case of a one-hop
relay in which the link from the source node to the relaying node is an Erasure Channel with feedback.
In this case we are able to give a precise characterization of the anytime capacity of the end-to-end relay
(Theorem 5.2.1).

In the final chapter we consider an infinite state Markovian jump system. The material pre-
sented in this chapter unfolded during one of our many attempts to model our anytime codes. We
present sufficient conditions (Theorems 6.2.1 and 6.2.2) under which the jump system is stable. These
conditions may be viewed as a simpler and finite alternative to the traditional formulation which requires
the solution of an infinite set of balance equations.
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Figure 1.4: The Anytime exponent for various N-up J-down codes for a Binary Symmetric Channel
with crossover probability ε = 1/4. The curve E+

a (R) is the Anytime upper bound and Esp(R) is the
sphere-packing bound.

1.2 List of notation

To assist with the presentation, we have compiled the following list of symbols which appear
in the subsequent material.

1.2.1 Conventional symbols used in equations and derivations

xk Shorthand for xk = xk1 = (x1, x2, · · · , xk). Similarly for other symbols y, z, . . .

δ1, δ2, δ3 Arbitrary small numbers used in approximations.

λ, ρ, η Arbitrary optimization parameters.

P(X ) Probability of the event X .

E Expectation of the random variable X.

1.2.2 Symbols used to describe channels

ε Binary Symmetric Channel (BSC) crossover probability.

ε Binary Erasure Channel (BEC) erasure probability.
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pij , qij Channel transition probabilities for an arbitrary discrete memoryless channel.

C Shannon capacity.

C1 Relative entropy. See Theorem 2.2.1.

CA Anytime capacity.

1.2.3 Notation relating to fixed-length and variable-length block-coding

R, R̄ Transmission rate and average transmission rate.

T,N Block length for fixed-length block coding.

L Block length for fixed-length transmission of a binary message.

T̄ , N̄ Average block length for variable-length block coding.

ak, bk The random variables denoting the channel input and output at time k.

Ek,Dk The functions that describe the encoder and decoder.

Pe Probability of decoding error.

Pe,m Probability of decoding error given that the message m ∈ {1, 2, · · · ,M} was transmitted.

1.2.4 Notations specific to Anytime coding

d Decoding delay.

Pe,s(j, n) Probability of decoding error for the j-th bit at time n given that the bit sequence s = sn1 =
(s1, s2, · · · , sn) was transmitted.

xk, σ The state and system coefficient of an unstable system, Theorem 3.4.1 and (4.1).

yk, x̂k Decoder’s estimate of xk at time k.

φk, ψk Functions that describe the state encoder and estimator.

Ik Decoder’s interval of confidence for estimate x̂k.

Xk The worst-case estimation error.

1.2.5 List of reliability functions

E Reliability function for fixed-length block coding.

Er Random coding lower bound for the fixed-length block coding reliability function.

E+ Information theoretic upper bound for the reliability function of an arbitrary fixed-length block
code using feedback. See (2.2).

Esp Sphere-packing upper bound for the reliability function of an arbitrary fixed-length block code
using feedback over a symmetric channel. See Theorem 2.1.1.
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Eopt Burnashev’s reliability function for variable-length block codes with full information feedback. See
Theorem 2.2.1.

Ef Forney’s reliability function for variable-length block codes with binary decision feedback. See
Theorem 2.4.1.

EL Viterbi’s reliability function for tree codes using feedback. See Theorem 3.5.1.

Ea Anytime exponent or the Anytime reliability function.

E+
a Upper bound on the Anytime exponent. See Theorem 3.3.1 and 3.3.2. E+

a = EL for symmetric
channels.

E0 Gallager’s exponent used in the parametric representation of Esp and E+
a . See Theorem 2.1.1.
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Chapter 2

The role of feedback in traditional
communication

The basic and generally adopted use of feedback is to improve the performance of a feed-forward
communication system. Schalkwijk and Kailath [26, 24] considered the Additive White Gaussian Noise
(AWGN) channel with an ‘average power’ constraint and they demonstrated that feedback can be
used in such a way that the probability of decoding error drops as a ‘double’ exponential in the block
length. This result is interesting because without feedback, by the sphere-packing bound ([14], 5.8.2),
the dependence is strictly exponential.

Therefore we are surprised to learn of Berlekamp’s result [3] which says that the sphere-packing
bound remains valid for the Binary Symmetric Channel even with access to noiseless and delayless
feedback. More generally, the sphere-packing bound remains valid for any ‘sufficiently symmetric’
discrete memoryless channel.

The gap between Schalkwijk’s result and that of Berlekamp’s is explained by Wyner [36] who
showed that the probability of decoding error for an AWGN with a ‘peak power’ constraint (instead
of the average power constraint) cannot drop off as a double exponential in the block length: the
dependence is strictly exponential. This leads us to think that the single exponential dependence and,
in particular, the sphere-packing bound, is not an artifact of symmetric discrete channels but rather
an artifact of the block-coding framework. Perhaps block-coding is not the ‘best’ way to transmit
information when feedback is available. In the rest of the chapter, we consider discrete memoryless
channels with perfect feedback and we bring into sharp focus the key results that describe the reliability
function for such channels (Theorems 2.1.1 and 2.2.1). Among these we pay special attention to the
technique of Yamamoto and Itoh [37, 38]. This is a simple variable-length block-coding strategy which
achieves reliabilities above the sphere-packing bound.

2.1 The reliability function for block coding

We begin with the case of fixed-length block-coding. This means that the decoder is asked
to make a decision exactly after N uses of the channel. More precisely, consider a set of M messages.
A message m (1 ≤ m ≤ M) is fed into the encoder. The encoder emits N channel symbols an,
n = 1, 2, · · · , N to convey the message m to the decoder. The decoder receives bn, n = 1, 2, · · · , N .
There is a perfect feedback link from the decoder to the encoder. So the encoder is described by
functions,

an = En
(
m, b1, b2, · · · , bn−1

)
, n = 1, 2, · · · , N.



10

The channel is described by a ‘memoryless’ probability distribution,

P
(
bn = b | an = a, an−1, an−2, · · · , a1, (2.1)

bn−1, bn−2, · · · , b1
)

= P
(
bn = b | an = a

)
= pab, a = 1, 2, · · · , A, b = 1, 2, · · · , B.

The decoder is described by the function,

m′ = D
(
b1, b2, · · · , bN

)
.

Such a configuration defines a rate R = (logM)/N (nats) communication system with feedback. For
a family (N,M = 2RN ) of such fixed-length block codes the quantity that we are interested in is the
reliability function,

E(R) = lim
N→∞

logP−1
e

N
,

in which Pe is the probability of decoding error,

Pe = max
m∈{1,··· ,M=2RN}

P
{
m′ 6= m | m was transmitted

}
.

The result that we are interested in says that if the channel is ‘sufficiently’ symmetric then the sphere-
packing bound remains an upper bound for the reliability function with feedback [1],

E(R) ≤ Esp(R), 0 ≤ R ≤ C.

The channel is said to be sufficiently symmetric if the set of all output symbols can be divided into
subsets in such a way that for each subset the submatrix of channel transition probabilities [pij ] possesses
the property that each row is a permutation of another row and each column is a transposition of another
column. The Binary Erasure and Binary Symmetric Channels are symmetric according to this definition.

If the channel is not symmetric then the reliability function with feedback can be larger than
the sphere-packing bound [39]. In this case we know that the following quantity is an upper bound on
the reliability function with feedback,

E+(R) = min
G

{
max
i

∑
j

gij log
gij
pij

: max
q
I(G, q) ≤ R

}
(2.2)

where G = {gij} is a probability matrix and I(G, q) measures the information as,

I(G, q) =
∑
i

∑
j

qigij log
gij∑
i qigij

These results are summarized in the following Theorem.

Theorem 2.1.1 (Arutyunyan,[1]) Consider a family (N, 2RN ) of rate R block codes with access to
noiseless and delayless feedback. Then,

E(R) ≤ E+(R), 0 ≤ R ≤ C,
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where E+ is defined in (2.2). If the channel is symmetric then E+ reduces to the sphere-packing bound
E+(R) = Esp(R), 0 ≤ R ≤ C. The sphere-packing bound may be calculated by the following expression
given in [1],

Esp(R) = max
q

min
G

{∑
i

qi
∑
j

gij log
gij
pij

: I(G, q) ≤ R

}
, 0 ≤ R ≤ C,

or the following parametric Gallager form [14],

Esp(R) = max
ρ>0

[
E0(R, ρ)− ρR

]
E0(R, ρ) = −max

q

∑
j

[∑
i

qip
1

1+ρ

ij

](1+ρ)

, 0 ≤ R ≤ C.

Remark 2.1.1 An earlier version of Theorem 2.1.1 was given by Dobrushin [9]. He considered a
restricted class of symmetric discrete-time memoryless channels with feedback. For this class he showed
that feedback cannot be used to improve the reliability exponent for rates R larger than a critical threshold.

2.2 The reliability function for variable-length block coding

In variable-delay coding we allow the decoder to select when it wants to stop decoding. A
message m (m = 1, 2, · · · ,M) enters an encoder. The encoder is described by the process,

an = En
(
m, b1, b2, · · · , bn−1

)
, n = 1, 2, · · · , (2.3)

in which n is an index that denotes the n-th channel use and {an, bn} are channel inputs and outputs
described by a memoryless probability distribution,

P
(
bn = b | an = a

)
= pab, a = 1, 2, · · · , A, b = 1, 2, · · · , B,

At each time n the decoder receives bn. Based on what it has received up to time n the decoder either
makes an estimate m′ of m at time n or refrains from making a decision at time n. So the decoder is
described by a process,

Dn(b1, b2, · · · , bn) ∈ {1, 2, · · · ,M}
⋃
{∅}, n = 1, 2, · · · ,

where ∅ denotes that no decision has been made.
Both the encoder and decoder processes terminate at the first time instant when the decoder

makes a decision. We will write T to denote this time instant,

T = min{n ≥ 1 : Dn(b1, b2, · · · , bn) 6= ∅}.

Keep in mind that T is a random variable and both the encoder and decoder are random processes with
random termination times. For the set-up to make sense we need to know that the process terminates.
Typically, the following condition is required,

P
(
T <∞

)
= 1.

We would like to know more about the distribution of T , but such an analysis is quite difficult except
for a few special cases. Write T̄ = ET . Keeping in mind that T̄ can be infinite we define the rate of a
variable-length code as,

R̄ =
logM
T̄

,
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and we define the probability decoding error,

Pe = max
m=1,2,··· ,M

P
(
Dn(b1, · · · , bn) 6= m | T = n and message m was transmitted

)
where we assumed equally likely messages. Finally, for a family (R̄, 2T̄ R̄) of rate R̄ encoder-decoders,
we define the reliability function as,

E(R̄) = lim
Pe→0

logP−1
e

T̄
,

when the limit exists.

Theorem 2.2.1 (Burnashev, [5]) Consider a discrete-time memoryless channel with feedback and
transition probabilities {pij 6= 0}. For a family (T̄ , 2T̄ R̄) of rate R̄ encoder-decoders, the reliability is
upper bounded as,

E(R̄) ≤ Eopt(R̄) = C1

(
1− R̄

C

)
, 0 ≤ R̄ ≤ C,

where,
C1 = max

i,k

∑
l

pil log
pil
pkl

.

Furthermore, there exists a family that achieves Eopt(R) for all 0 ≤ R̄ ≤ C.

There are a few notable properties of this result. We mention two of these. First, C1 is
extremely easy to calculate for any discrete-time memoryless channel. Second, the performance exceeds
that of the sphere packing bound. A plot of Eopt(R) and Esp(R) for a binary symmetric channel with
cross-over probability ε = 0.1 is illustrated in Figure 2.1. Finally, that Eopt is a straight line suggests
a ‘time-sharing’ property of the family of encoders-decoders that achieve Eopt. This turns out to be a
correct observation and is developed further in the following section.

Horstein [17] considered a slight variation of the problem for the special case of the binary
symmetric channel. Instead of the message decoding error he considered the bit decoding error. He was
able to show that, on the average, one could achieve a reliability of orders of magnitude better than the
sphere packing bound. In particular, Horstein claims significant reliability in the near neighborhood of
capacity rather than having the reliability go to zero. However, in his approach, the ‘per bit’ transmission
time is counted only after a bit becomes active at the encoder. He did not count the time from when
the bit became available there.

2.3 An asymptotically optimal variable-length block coding tech-
nique for the Binary Symmetric Channel

We describe a very simple ‘time-sharing’ coding method which achieves the optimal variable-
length block coding exponent Eopt for a Binary Symmetric Channel with cross-over probability 0 ≤ ε <
1/2. The material described here was originally sketched out and the results conjectured by A. Sahai
in a discussion with the author. After this text was written Sahai discovered that this method was
previously described in Yamamoto and Itoh [37, 38].
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Figure 2.1: The reliability function of a Binary Symmetric Channel (ε = .1) with feedback.
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Let 0 ≤ R̄ ≤ C be a given average rate of transmission. Let N, ρ > 1 and δ > 0 be parameters
to be determined later. For simplicity we will always assume that 2R̄N is an integer. For notational
convenience we also introduce an auxiliary parameter L defined as,

L = N − R̄N

C − δ
.

The encoder begins by transmitting the message m using a length N − L block code that works well
at rates near the channel capacity. Based on what it has received, a maximum-likelihood (ML) decoder
produces an estimate m′ of the true message m. Observe that the encoder can also determine m′. If
m′ = m then the encoder sends L ones to indicate a ‘confirmation’ and if m′ 6= m it sends L zeros
to indicate a ‘deny’. At time N , the decoder makes a decision in favor of message m′ if

(
L − dρεLe

)
or more ones were received. Otherwise the decoder makes no decision. This situation is illustrated in
Figure 2.2. The procedure continues in transmission of blocks of length N . At time kN , if no decision
has been made then the decoder forgets about what it has observed up to time kN and the procedure
is repeated starting at time kN + 1.

Transmit message m  ∈{1,2, … , M}
Transmit
confirm
or deny

N-L L

Figure 2.2: Illustration of one block of transmission for the asymptotically optimal encoder-decoder.

Let Q denote the probability of the decoder making a decision at time N and write P = 1−Q.
Observe that at time N no decision is made either if (a) m′ = m and ρεL or more bits were flipped by
the binary symmetric channel in the subsequent transmission of the confirmation signal or (b) m′ 6= m
and fewer than (L − ρεL) bits were flipped by the channel in the subsequent transmission of the deny
signal. This translates to the following bound,

P ≤ P
(
m′ = m | m was transmitted

)
×

L∑
i=bρεLc

(
L

i

)
εi(1− ε)L−i

+ P
(
m′ 6= m | m was transmitted

)
×
L−bρεLc∑
i=0

(
L

i

)
εi(1− ε)L−i

≤
L∑

i=bρεLc

(
L

i

)
εi(1− ε)L−i + P

(
m′ 6= m | m was transmitted

)
≤ e

N
[
bρεLc

L
log Lε

bρεLc+(
L−bρεLc

L
) log

L(1−ε)
L−bρεLc

]
+ P be



15

≤ 2 max
{
e
N
[
bρεNc

N
log Nε

bρεNc+(
N−bρεNc

N
) log

N(1−ε)
N−bρεNc

]
, P be

}
(2.4)

where we used the Chernoff bound (pp. 531, [14]) to approximate the summation and we wrote P be to
denote the probability P

(
m′ 6= m | m was transmitted

)
of the block decoding error for message m. By

the random coding bound this probability is bounded by,

P be ≤ e−(N−L)Er( R̄N
N−L

)

= e−(N−L)Er(C−δ)

where Er is Gallager’s random coding exponent and we know that Er(x) > 0 for all x < C.
Based on the bound on P we can calculate approximate the distribution of the decision time

T . Because the decoder interprets the k-th block independently of the first k− 1 blocks it has received
it follows that the probability of making a decision at time kN is given by,

P
(
T = kN

)
= P k−1Q, k = 1, 2, · · ·

which we recall has the generating function,

EeθT =
Qeθn

1− PeθN
, (eθNP < 1), (2.5)

and the mean,

T̄ =
N

1− P
.

Theorem 2.3.1 For all δ > 0 and ρ > 1 there exists a sufficiently large N such that,

N < T̄ < N + δ. (2.6)

Proof:
Recall the log-sum inequality which states that for non-negative numbers a1, a2, · · · , an and

b1, b2, · · · , bn the following relationship holds,

n∑
i=1

ai log
bi
ai
≤
( n∑
i=1

ai

)
log

∑n
i=1 bi∑n
i=1 ai

with equality if and only if ai/bi are constant for i = 1, 2, · · · , n. Take,

a1 =
bρεNc
N

,

a2 =
L− bρεNc

N
,

b1 = ε,

b2 = 1− ε,

and use the log-sum inequality to show that,

bρεNc
N

log
Nε

bρεNc
+
(
N − bρεNc

N

)
log

N(1− ε)
N − bρεNc

≤ 0. (2.7)
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Now observe that bρεNc/N tends to ρε as N tends to infinity. So we can pick N large enough such that
bρεNc/N is strictly larger than ε. Consequently we can pick N large enough so that a1/b1 6= a2/b2.
This means that the inequality (2.7) is strict. In other words, we can select N large enough so that,

Ne
N
[
bρεNc

N
log Nε

bρεNc+(
N−bρεNc

N
) log

N(1−ε)
N−bρεNc

]
> δ/4 < 1/2. (2.8)

Then, by observing that the random coding exponent Er(C − δ) is strictly positive and observing also
that N − L = R̄N

C−δ we can pick N even larger, if necessary, so that,

N P be ≤ Ne−(N−L)Er(C−δ)

= Ne−N
R̄Er(C−δ)

C−δ

≤ δ/4 < 1/2. (2.9)

Finally, select N large enough to satisfy both inequalities (2.8) and (2.9) the desired result follows by,

N < T̄ =
N

1− P

≤ N(1 + 2P )
= N + 2NP
< N + δ.

�
This is the first result we were after. We turn our attention now to the probability of decoding

error. First consider the probability of the decoder making a decision error m′ 6= m at time N . For
this to happen first there must have been block decoding error in the first N −L time slots and second
the decoder must have understood the ‘deny’ signal as a ‘confirm’ signal. For the latter the binary
symmetric channel must have flipped (L − bρεLc) or more bits in the L time slots during which the
deny signal was being transmitted. By Bayes law,

P
(
m′ 6= m | m was transmitted, decision made at time N

)
=
P be ×

∑L
`=L−bρεLc ε

`(1− ε)L−`

Q

Because the decoder interprets the k-th block independently of the first k− 1 blocks it had received the
probability for the decoder ever making a decision error is given by the geometric series,

Pe =
∞∑
k=1

P be ×
∑L

`=L−bρεLc ε
`(1− ε)L−`

Q
P
(
T = kN

)
≤

∞∑
k=1

∑L
`=L−bρεLc ε

`(1− ε)L−`

Q
P
(
T = kN

)
≤ e

L
[
(

L−2bρεLc
L

) log
bρεLc

L(1−ε)

]
1− P

(2.10)

where the last inequality follows from the Chernoff bound. This leads to the following result.
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Theorem 2.3.2 For all δ > 0 and ρ > 1 we may select L large enough so that,

Pe ≤ eL
[
(1−2ρε) log ρε

1−ε
+δ
]
(1 + δ). (2.11)

where L = N − NR̄
C−δ .

Proof: First follow the steps in the proof of Theorem 2.3.1 to show that for large N there exists a
δ′ > 0 such that P < e−δ

′N . Next, we use the fact that bρεNc/N can be selected arbitrarily close to ρε
by choosing N even larger. So for large enough N we have,(

N − 2bρεNc
N

)
log

bρεNc
N(1− ε)

≤ (1− 2ρε) log
ρε

1− ε
+ δ (2.12)

Finally, we select N even larger, if necessary, so that,

1
1− P

≤ 1 + 2P (2.13)

≤ 1 + δ′

The desired result follows by using (2.12) and (2.13) in (2.10). �
This gives us the second result we were after. Finally write T̄ (ρ, δ) and Pe(ρ, δ) to denote the

mean decision time and probability of decoding error which is determined by having specified ρ > 1 and
δ > 0 and having selected L large enough to satisfy both inequalities (2.6) and (2.11). It now follows
that,

lim
ρ → 1,
δ → 0

logPe(ρ, δ)
T̄ (ρ, δ)

= (1− 2ε) log
ε

1− ε

(
1− R̄

C

)
. (2.14)

By Burnashev [5] this is the largest achievable variable-length block coding exponent for the Binary
Symmetric Channel.

We also draw attention to the importance of the transmission of the single bit that represents
the ‘confirm’ or ‘deny’ signals. The optimal exponent in (2.14) may be viewed as a time-sharing between
the rate at which we transmit the confirmation signal and the rate at which we transmit the true message.

2.3.1 The more general case

The previous result also holds for more general discrete memoryless channels (DMC). In the
following paragraphs we give a sketch of the proof. Consider an arbitrary DMC [pij ] and an encoder-
decoder pair that works in two phases as illustrated in Figure 2.2. The encoder is fed a message
m ∈ {1, 2, · · · ,M} which it transmits to the decoder by means of a ‘good’ length N − L block code at
a rate R = C − δ1 close to capacity. Based on what it has received, the decoder produces an estimate
m′ of m. This is the first phase of the transmission method.

Recall that the encoder can also calculate m′ and let i and k be the channel letters to be
determined later. During the second phase of transmission, if m′ = m, the encoder ‘confirms’ the
decoders estimate by transmitting L copies of the i-th letter. If m′ 6= m, the decoder ‘denies’ the
estimate by transmitting L copies of the k-th letter. Based only on the L control letters it has received,
the decoder decides either in favor of ‘confirm’ or ‘deny’. If ‘confirmed’, the estimate m′ is finalized and
transmission terminates. On the other hand, if ‘denied’, the decoder forgets about everything it has
received and the entire procedure is repeated.
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Observe that an error occurs only if the estimate m′ was different from m and a subsequent
‘deny’ was misunderstood as a ‘confirm’ (ie. false-positive). On the other hand, the transmission
repeats either if the estimate m′ was accurate but the subsequent ‘confirm’ was misunderstood as a
‘deny’ (false-negative) or if the estimate m′ was different from m and a subsequent deny was correctly
decoded. By Sanov’s Theorem [8], there exists a decoder for which the probability of a false-positive
and of a false-negative is bounded as,

P
(
false positive

)
≤ δ2

P
(
false negative

)
≤ 2C1(i,k)L (2.15)

and
P
(
m′ 6= m) ≤ δ3

where δ2, δ3 > 0 can be made arbitrarily small by choosing N large and C1(i, k) is the relative entropy
of i and k,

C1(i, k) =
∑
`

pi` log
pi`
pk`

.

On the other hand, because the transmission of blocks are independent, the average total transmission
time is the mean of a geometric random variable,

T̄ ≈ N

1− δ2 − δ3
. (2.16)

So the average rate of transmission is calculated to be,

R̄ =
R(N − L)

T̄

= (C − δ1)(1− δ2 − δ3)
(

1− L

N

)
(2.17)

Finally, by selecting C1 = maxi,k C1(i, k) and using (2.17) in (2.15) we obtain the following bound for
the probability of decoding error,

Pe ≤ 2C1L

= 2C1N
L
N

= 2C1N
(
1− R̄

(C−δ1)(1−δ2−δ3)

)
. (2.18)

It then follows that the proposed method can approach Burnashev’s bound arbitrarily closely by choosing
N large.

An interesting situation occurs if at least one of the channel transition probabilities pi?k? is
identically zero. In this case we design the ‘confirmation’ signal to consist of L copies of the letter i?

and we design the ‘deny’ signal to consist of L copies of the letter k?. Because pi?k? = 0 we can design
the decoder so that the probability of a false positive is identically zero. This can be done by selecting
the decoder so that it never decides in favor of ‘confirm’ unless it sees at least one k?. The implication
of this result is that any desired level of reliability is achievable for 0 ≤ R̄ ≤ C. For example, the
achievable reliability region for a Binary Erasure Channel is illustrated in Figure 2.3.
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Achievable Reliability Region

E(R)

R1-e

E(R) > 0,   R < C

Figure 2.3: The achievable reliability region for a Binary Erasure Channel with erasure probability
0 ≤ e ≤ 1.

2.4 Discussion

We presented two basic results for discrete memoryless channels. The first is a negative result
says that feedback cannot be used to improve the reliability function of a family of fixed-length block
codes. The second result gives an upper bound on the reliability function of any family of feedback
codes. The bound has three important properties: (1) It is easy to calculate, (2) It is achievable by
means of a simple time-sharing argument and (3) It is significantly larger than the sphere-packing bound
and can even be infinite. We focused on these two results to establish how feedback can be used to
improve the asymptotic performance of a feed-forward system and the adversarial role of the traditional
fixed-length block coding framework.

There are many other ways in which feedback can be used to improve the performance. Before
we conclude we would like to touch on two such ‘practical’ uses.

2.4.1 Schalkwijk’s one-up J-down method

In a practical setting we are necessarily lead to think about ‘short’ codes with small delays.
In such a situation the previously described transmission methods are not useful. In this section we
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describe a very simple coding technique which leads to dramatic improvements for very short average
delays. This technique will also be useful in subsequent chapters in the design of ‘good’ anytime codes.
The material presented here was developed independently by the author but then turned out to be a
special case of Schalkwijk’s one-up J-down method known in the literature.

0 1 2

0/0

3 4

0/∅

1/∅

0/∅

1/11/∅

Figure 2.4: Illustration of 1-up J-down method for J = 2.

For simplicity of presentation consider a Binary Symmetric Channel with cross-over probability
0 ≤ ε < 1/2 and let the message set be m ∈ {0, 1}. The encoder repeats its binary message m until the
decoder makes a decision at a random time T . Because of feedback this time is known to the encoder.

Let J be a positive integer to be determined later. The decoder is described by a Mealy
finite state machine consisting of 2J + 1 states numbered as 0, 1, 2, · · · , 2J . The decoder is illustrated
in Figure 2.4. Initially, the decoder is in state J . Suppose at time n the decoder is in state zn ∈
{1, 2, · · · , 2J − 1}. If a zero is received the decoder jumps to state zn+1 = zn− 1 and if a one is received
the decoder jumps to state zn+1 = zn + 1. At time n the decoder makes a decision in favor of message
m = 0 if zn+1 = 0 or it makes a decision in favor of message m = 1 if zn+1 = 2J . Otherwise the decoder
makes no decision and outputs the symbol ∅ to indicate that no decision has been made. The decision
time T is given by the following stopping time,

T = min
{
n ≥ J : zn+1 = 0 or zn+1 = 2J

}
.

Observe that a decision can be made no earlier than J time steps.
The structure of the binary symmetric channel induces a natural probability model for the

decoder. Letting 0 ≤ ε < 1/2 to denote the BSC cross-over probability we can think of the decoder as a
finite Markov chain. Letting Zn denote the state of the chain at time n we write the one-step transition
probabilities,

qi,i+1(m) = P
(
Zn+1 = i+ 1 | Zn = i,m

)
= m− ε

qi,i−1(m) = P
(
Zn+1 = i− 1 | Zn = i,m

)
= m− (1− ε)

for m = 0, 1 and i = 1, 2, · · · , 2J − 1. The decision states zero and 2J are modeled as absorbing states.
To calculate the probability of decoding error we need to calculate the probability of ending

up in the absorbing state zero when the message m = 1 or equivalently the probability of ending up
in the absorbing state 2J when the message m = 0. This is a standard exercise in a first course in
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stochastic processes (pp.26, [18]). We reorder the states as {0, 2J, 1, 2, · · · , 2J − 1} so that the two
absorbing states are up front. Based on this ordering we write the one-step transition matrix Q(m),

Q(m) =

 I2×2 | 0
−−−−−−−
S(m) | R(m)

 , m = 0, 1,

where

S(m) =


m− (1− ε) 0

0 0
...

...
0 0
0 m− ε

 , m = 0, 1,

and

R(m) =



0 m− ε
m− (1− ε) 0 m− ε

m− (1− ε) 0 m− ε

. . .

m− (1− ε) 0


, m = 0, 1.

The matrix S(m) is of dimension 2J − 1 × 2 and R(m) is of dimension 2J − 1 × 2J − 1. Given that
the chain starts in state J the probability of ending up in state zero for message m = 1 is known to be
the (J, 1)-th entry for the matrix (I −R(1))−1S(1). Consequently,

Pe,m=1 = (N, 1)-th entry of
(
I −R(1)

)−1
S(1). (2.19)

Because of symmetry we also have that Pe,m=0 = Pe,m=1. The inverse
(
I −R(1)

)−1 exists because Q is
a probability matrix.

The mean decoding time is calculated along the same lines. We consider the mean time until
the chain enters either the absorbing state zero or the absorbing state 2J . Following the steps above
we obtain,

T̄ = ET

=
2J−1∑
i=1

(
I −R(0)

)−1

J,i
. (2.20)

This completes our calculations. To evaluate the results we consider the case of J = 2 and a
Binary Symmetric Channel with cross-over probability ε = 10−3. Using these parameters in (2.19) and
(2.20) gives,

Pe,m

∣∣∣∣
ε=10−3,N=2

= 1.002× 10−6, m = 0, 1.

and

T̄

∣∣∣∣
ε=10−3,N=2

= 2.004.

So for J = 2 the 1-up 2-down method gives a probability of decoding error of approximately ε2. It
should be clear that we can do no better. This result stands in sharp contrast to the case of block
coding which is useless for a block length of two.
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2.4.2 Limited feedback

In the preceding discussion we assumed a ‘perfect’ feedback channel and ‘complete information’
at the encoder and we used this to achieve the tight performance bounds of Theorem 2.2.1. It is also
natural to wonder whether we can use feedback to achieve such significant performance gains subject
to practical constraints on feedback channel and, consequently, limitations on the information known
to the encoder. Surprisingly, it turns out that even very limited feedback can be used to drastically
improve the performance of a feed-forward system. In the following paragraphs we make this statement
precise.

Consider a rate R (nats) block-code of length N that consists of the M = eNR codewords
x1, x2, · · · , xM . Based on this (N,M = eNR) block-code, transmission occurs as follows. A message
m ∈ {1, 2, · · · ,M} enters the encoder which it subsequently emits using the m-th codeword xm. At
time N , upon receiving the word y, the decoder produces the estimate m′ of m if there exists a true
codeword such that,

∀m′′ 6= m′,
P
(
xm′ , y

)
P
(
xm′′ , y

) > eNρ

where ρ ≥ 0. If no such codeword exists, the decoder forgets what it has received and requests a
retransmission. The transmission repeats in this fashion until the decoder produces an estimate. The
parameter ρ governs the relative magnitudes of the probability of decoding error and the probability
of a retransmission: as ρ increases, the probability of a decoding error is reduced but retransmissions
are more likely. This scheme, originally due to Forney [13], describes a variable-length method of
transmission with the following property,

Theorem 2.4.1 (Forney, [13]) For any δ > 0 and rate R < C there exists a decision threshold ρ ≥ 0
and a block-code (N, eNR) such that,

C0 ≤ R− δ ≤ R̄ ≤ C,

Pe ≤ e−N(Ef−δ)

in which the exponent Ef is given by the following expression,

Ef (R̄) = Esp(R̄)− R̄+ C,

and C0 is the rate at which Esp becomes infinite.

There are two things to keep in mind. First, the achievable exponent Ef is strictly larger than
the sphere-packing bound over the entire spectrum of finite values. In particular, Ef is significantly
superior at rates close to capacity. To see this, observe that as R̄ tends to C, Ef approaches zero with
a slope of negative one. In contrast, the sphere-packing curve approaches zero with a slope that also
tends to zero. Second, only one bit of feedback is used for each block transmitted from the encoder to
the decoder. Consequently, this demonstrates that even the ‘least’ amount of feedback information can
be used to significantly improve the performance of the feed-forward system.
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Chapter 3

Anytime channel coding with feedback

We formally present the anytime channel coding problem. We formulate the problem as an
encoder-decoder design problem. The objective is to design encoder-decoder pairs with large ‘exponents’.
In order to evaluate the exponent we present lower and upper bounds that depend only on the channel.
The main contribution of this chapter is to find an upper-bound. We conclude by reviewing a method
of design that will be used extensively in subsequent chapters.

3.1 Problem set-up

A source produces one bit sj of new information every 1/R time units for a prescribed rate
R > 0. These bits are fed into an encoder. At time n (n ≥ 0), based on what it has seen so far, the
encoder emits a channel symbol an. At the same time n a decoder receives bn. Based on what it has
seen up to time n the decoder produces an estimate ŝ(n) for ‘all’ of the true source bits s1 through sjn
where jn is the number of bits produced by the source up to time n,

jn =
⌈
nR
⌉
.

Observing that ŝ(n) is a vector, we write,

ŝ(n) =
(
ŝ1(n), ŝ2(n), · · · , ŝjn(n)

)
. (3.1)

There is a perfect feedback link from the channel output to the encoder. So the encoder is described
by functions,

an = En
(
s1, s2, · · · , sjn , b1, b2, · · · , bn−1

)
≡ En

(
sjn1 , b

n−1
1

)
,

where we use the notation sjn1 = (s1, s2, · · · , sjn) and similarly for other variables a, b, etc... The channel
is described by a memoryless probability distribution,

P
(
bn = b | an = a, an−1, an−2, · · · , a1, bn−1, bn−2, · · · , b1

)
= P

(
bn = b | an = a

)
= pij , a = 1, 2, · · · , A, b = 1, 2, · · · , B. (3.2)



24

The integers A and B denote the number of distinct channel inputs and outputs respectively. Finally,
the decoder is described by functions,

ŝ(n) = Dn
(
b1, b2, · · · , bn

)
= Dn

(
bn1
)
.

The set-up is illustrated in Figure 3.1.

Encoder

Discrete-time
memoryless

communication
channel

Decoder

Perfect
feedback

link

Decoded bits

Unit
delay

Bit
source

1/R 1

Figure 3.1: A block diagram illustrating the set-up of anytime coding with feedback.

For a prescribed communication channel and rate R > 0 the basic problem is to design an
encoder-decoder pair (E ,D) such that for some α, β > 0 the probability of estimation error is bounded
as,

∀
(
n ≥ 0, j ≤ jn and sjn1

)
, P
(
ŝj(n) 6= sj | sjn1 was transmitted

)
≤ β2−αd(n,j) (3.3)

where d(n, j) denotes the time delay,
d(n, j) = n− j/R.

To keep the notation compact we write,

Pe,s
(
n, j
)

= P
(
ŝj(n) 6= sj | sjn1 was transmitted

)
.

The inequality in (3.3) is the anytime decoding property. The decoder is capable of producing an
estimate of any bit bj at any time n > j/R. The larger the time difference the better the quality of the
estimate. An encoder-decoder pair (E ,D) with this property is called an anytime encoder-decoder or
simply an anytime code.
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Remark 3.1.1 In a more general sense, we may consider replacing the 2−αd(n,j) in (3.3) by some
function f

(
d(n, j)

)
that tends to zero as d(n, j) tends to infinity. We will not do so here.

Remark 3.1.2 An anytime algorithm is an asymptotically convergent calculation that can be stopped at
any time to produce an approximate answer to a difficult question. The later the algorithm is stopped,
the closer the answer is to the asymptote. Anytime algorithms are in general non-trivial but are of
interest because they offer a mechanism to trade off calculation time vs. quality of answer.

For a given channel and rate R encoder-decoder (E ,D), the largest exponent α for which
inequality (3.3) holds is called the anytime exponent and is denoted as Ea(R). Observe that the
anytime exponent really depends on the channel and encoder-decoder. The notation Ea(R) is used
because the encoder-decoder is assumed to be associated with the rate R and the channel is assumed
to be clear from the context.

Definition 3.1.1 For a given channel and rate R encoder-decoder the anytime exponent is,

Ea(R) = sup
α

{
∃β > 0 s.t. ∀

(
n ≥ 0, j ≤ jn, s

jn
1

)
, Pe,s(n, j) ≤ β2−αd(n,j)

}
where d(n, k) denotes the discrete time delay,

d(n, j) = n− j/R.

Conversely, for a given exponent α > 0 we define the anytime capacity of the channel as,

CA(α) = sup
R≥0

{
Exists a β > 0 and rate R encoder-decoder (E ,D) s.t.

∀
(
n ≥ 0, j ≤ jn, s

jn
1

)
, Pe,s(n, j) ≤ β2−αd(n,j)

}
The basic objective is to design good rate R anytime codes for which the anytime exponent

Ea(R) is large over a large range of R. For this objective to make sense we really need bounds on the
anytime exponent. So given a channel we would like to have two functions E−

a (R) and E+
a (R) such that

there exists anytime codes with exponents greater than or equal to E−
a (R) and such that the exponent

of any coding scheme is less than or equal to E+
a (R). These two functions should depend only on the

channel.
Sahai’s lower bound holds for an arbitrary discrete-time memoryless channel without feedback.

This bound remains valid with feedback since feedback can only improve the anytime exponent. This
lower bound is presented in the following section. We are not aware of any known upper bounds.
Following the review of Sahai’s lower bound we design an upper bound using a time-sharing argument.
The rest of the chapter is devoted to understanding the properties of our upper bound.

Before continuing we encourage the reader to compare the definition of the anytime exponent
Ea with the way the reliability function is defined in Section 2.1. Observe that the reliability function
is defined over a family of block codes of increasing block length. By contrast, the anytime exponent is
associated with a single encoder-decoder pair.
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3.2 The random coding bound

Beyond defining the concept of Anytime information theory, Sahai was able to bound the any-
time capacity of an arbitrary discrete-time memoryless channel by a quantity well-known to information
theorists. Specifically, for any given discrete-time memoryless channel and for any rate 0 ≤ R ≤ C,
there exists an encoder-decoder pair such that,

1. the encoder-decoder has access to a common source of randomness,

2. there is no feedback link from the decoder to encoder,

3. for all 0 ≤ R ≤ C, Ea(R) ≥ Er(R log 2)/ log 2,

where Er(R) is Gallager’s random coding exponent (cf. Section 5.6, [14]) also discussed in Chapter 2.
The ‘well-known’ quantities are, of course, the Shannon capacity C and the exponent Er(R).

Remark 3.2.1 The log 2 factor is used to convert between the units of ‘nats’ and ‘bits’. For cleanliness
of the presentation the units of nats is preferable. To see this, compare the derivatives of ex and 2x.
However, in our setup, because bits, rather than messages, enter into the decoder, there is no convenient
way to define the anytime exponent and capacity in Nats.

Without common randomization a slightly weaker result is true. For any discrete-time mem-
oryless channel and rate 0 ≤ R ≤ C, there exists an encoder-decoder pair such that,

1. the encoder-decoder does not have access to a common source of randomness,

2. there is still no feedback link from the decoder to encoder,

3. exists β > 0 such that for all n ≥ 0 and j ≤ jn,

EsPe,s(n, j) ≤ β2−d(n,j)Er(R log 2)/ log 2 (3.4)

where the expectation is taken over all possible source messages. So without common randomization
we cannot bound the probability of error uniformly as required by Definition 3.1.1. At each time n,
there may be source sequences sjn1 and j < jn for which the probability of decoding error Pe,s(n, j) is
much larger than the average in (3.4).

We know that Er is strictly positive for any rate R strictly less than capacity. In this sense,
the most important point about the above mentioned results is that there exists an anytime code with
a strictly positive exponent for all rates strictly less than capacity. The converse follows from classical
results: There is no code for which the anytime exponent is positive at rates above capacity.

3.3 A time-sharing upper bound

Consider the following scenario. We are given a rate R source {sj} and anytime encoder-
decoder pair with anytime exponent Ea(R). At some randomly selected time n we select a delay λn
(0 ≤ λ ≤ 1) and ask the anytime decoder to produce an estimate ŝ1(n), ŝ2(n), · · · , ŝj(1−λ)n

(n) of the
true encoded bits s1, s2, · · · , sj(1−λ)n

. By Definition 3.1.1, the probability of an error in one of more of
the j(1−λ)n estimated bits is bounded as,

Pe,s
(
n, (1− λ)n

)
≤ β2−Ea(R)λn. (3.5)
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Keep in mind that the constant β is independent of the delay λn and in particular that this inequality
is true for any choice of the time index n, the delay λn and the true source bits s1, s2, · · · , sj(1−λ)n

.
Consider also the alternative scenario where the decision time n and the number of bits j(1−λ)n

is fixed ahead of time. In this scenario we are given the ‘best’
(
n, 2j(1−λ)n

)
block code. Up to time

n the source bits s1, s2, · · · , sj(1−λ)n
are fed into the block encoder. From times n to 2n the block

encoder communicates these bits over the channel and at time 2n the decoder produces an estimate
s̃1, s̃2, · · · , s̃j(1−λ)n

of the true source bits. For even the best such block code the probability of block
decoding error is bounded as,

Pe,s ≥ β̃2−nE
+((1−λ)R/ log2 e) log2 e (3.6)

where E+ is the upper bound on the reliability function of the channel (Theorem 2.1.1) and β̃ is some
constant that is independent of the source bits s and the time index n. The factor log2 e is used to
convert between the units of Bits and Nats.

Compare the two scenarios. Because of the additional a priori knowledge and because the
block encoder-decoder is the best possible we have by (3.5) and (3.6),

β2−Ea(R)λn ≥ β̃2−nE
+((1−λ)R/ log2 e) log2 e

By taking logs,

Ea(R) ≤ 1
λ
E+
(
(1− λ)R/ log2 e

)
log2 e−

1
λn

log
β̃

β
.

But β and β′ are both independent of n and n was arbitrary. So for any value of λ and an arbitrarily
small δ > 0 we can pick n so large so that,

Ea(R) ≤ 1
λ
E+
(
(1− λ)R/ log2 e

)
log2 e− δ.

Because λ was also arbitrary this proves the following result.

Theorem 3.3.1 Consider a discrete-time memoryless channel. The exponent of any rate R anytime
encoder-decoder pair is bounded as,

Ea(R) ≤ min
0<λ<1

E+
(
(1− λ)R/ log2 e

)
log2 e

λ

= E+
a (R), 0 ≤ R ≤ C.

in which E+ is given by Theorem 2.1.1. If the channel is symmetric then E+ may be replaced with the
sphere-packing bound Esp.

Remark 3.3.1 Because of the term (1− λ)R we call this the ‘time-sharing’ bound.

In the following subsections we present some of the basic properties of the upper-bound E+
a of

Theorem 3.3.1.
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3.3.1 A parametric representation for symmetric channels

Consider a symmetric channel with channel transition matrix [pij ]. For such a channel, the
upper bound E+

a on the anytime exponent is expressed in terms of the sphere-packing bound as follows,

E+
a (R) = min

0<λ<1

Esp
(
(1− λ)R/ log2 e

)
log2 e

λ

= min
0<λ<1

[
max
ρ>0

1
λ

(
E0(ρ)−

(1− λ)ρR
log2 e

)]
log2 e

= min
0<λ<1

[
max
ρ>0

1
λ

(
E0(ρ) log2 e− (1− λ)ρR

)]
. (3.7)

in which E0(ρ) log2 e is Gallager’s exponent base-2,

E0(ρ) log2 e = −max
q

log
∑
j

[∑
i

qip
1

1+ρ

ij

](1+ρ)

log2 e

= −max
q

log2

∑
j

[∑
i

qip
1

1+ρ

ij

](1+ρ)

(3.8)

The exponent E0(ρ), illustrated in Figure 3.2, is well-studied (Theorem 5.6.3, [14]) and has desirable
properties. It is positive concave and a line of slope C drawn from the origin is tangent to the curve
at ρ = 0. So unless the channel is trivial (ie. has zero Shannon Capacity C) then E0(ρ) > 0 for all
ρ > 0. On the other hand, the form of E+

a (R) in (3.7) resembles the ‘conjugate’ or the ‘dual’ of E0.
This suggests that E+

a itself might have similar desirable properties. This last observation leads to the
main result of this chapter.

Theorem 3.3.2 The function E+
a (R) given in (3.7) may be written parametrically as,

R = E0(η) log2 e/η (3.9)
E+
a (R) = E0(η) log2 e, η > 0.

and has the following properties,

1. limη→0E0(η) log2 e/η = C and E0(0) = 0,

2. limη→∞E0(η)/η = 0 and limη→∞E0(η) = Esp(0),

3. It is concave and decreases from E+
a (0) = Esp(0) log2 e to zero at R = C.

Remark 3.3.2 The result is based on the Sphere-packing bound which is known to be the tightest block-
coding bound at high rates for symmetric channels with feedback. At low rates, there may be tighter
block-coding bounds such as the Straight-Line bound, [19], that could be used to improve the result of
Theorem 3.3.2.

Remark 3.3.3 It is possible to get rid of the annoying log2 e factors by redefining E0 in base-2. How-
ever, this complicates the subsequent analysis which is more convenient base-e.
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Figure 3.2: Sketch of E0(ρ).

Proof: The first property follows immediately from the properties of E0. The third property follows
from the first and second properties together with (3.9). So we only need to prove the second property
and that E+

a can be represented parametrically as in (3.9).
First consider the limit,

lim
η→∞

E0(η)
η

.

By (3.8) and Jensen’s inequality,

lim
η→∞

E0(η)
η

= − lim
η→∞

max
q

log

[∑
j

[∑
i

qip
1

1+η

ij

](1+η)
] 1

η

≤ − lim
η→∞

max
q

log
∑
j

[∑
i

qip
1

1+η

ij

] 1+η
η

For very large values of η, the quantities p
1

1+η

ij can be made arbitrarily close to one and the exponent
1+η
η can also be made arbitrarily close to one. Consequently, for any probability distribution q, the

summation on the right hand side can be made arbitrarily close to one. Because log 1 = 0 this means
that the right hand side converges to 0. On the other hand, E0(η) ≥ 0 for all η ≥ 0 so the limit is
identically zero.

To complete the proof of the second property we observe the Gallager form for the sphere-
packing bound,

Esp(R) = max
ρ>0

[
E0(ρ)− ρR

]
.

Taking R = 0 and keeping in mind that E0(ρ) increases in ρ we obtain the desired result.
It remains to show that the upper-bound E+

a can be written parametrically as in (3.9). Con-
sider (3.7). Observe that the maximum in the brackets is a function of η and R and write f

(
η, ρ(η,R)

)
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to denote the maximum. The quantity ρ(λ,R) is understood to be the value of ρ in (3.9) at which the
maximum occurs. But E0 is concave so that ρ(λ,R) may be taken as any solution of,

∂E0(ρ)
∂ρ

− (1− λ)R
log2 e

= 0. (3.10)

A solution exists because E0 is concave. If the solution is not unique we will pick the smallest solution.
Now use (3.10) in (3.7),

E+
a (R)

log2 e
= min

0<λ≤1

1
λ

[
E0

(
ρ(λ,R)

)
− ρ(λ,R)

∂E0

(
ρ(λ,R)

)
∂ρ

]
. (3.11)

Write g(λ,R) to denote the quantity in the brackets. Again, by concavity, the minimizing value of λ
can be taken as any solution of,

∂ 1
λg(λ,R)
∂λ

= 0.

By the ratio rule of differentiation, this solution is any fixpoint of the following equation,

λ =
g(λ,R)
∂g(λ,R)
∂λ

, (3.12)

where, by direct calculation and (3.10),

∂g(λ,R)
∂λ

= −ρ(λ,R)
R

log2 e
.

Using this in (3.12) and subsequently in (3.11),

R =
E0

(
ρ(λ,R)

)
log2 e

ρ(λ,R)
,

E+
a (R) = E0

(
ρ(λ,R)

)
log2 e.

The desired result then follows by observing that ρ(λ,R) must be strictly positive and renaming it as
η. �

The point of this theorem is to demonstrate that the function E+
a has some desirable properties.

So E+
a is a ‘nice’ function. We still need to see whether it is also a ‘nice’ bound. In particular, does

it represent a reasonably close value to the true achievable anytime exponent? This is a non-trivial
question to which we have no definitive answer. Instead, we compare E+

a with previously known truly
achievable anytime exponents. We proceed to do so for the case of an optimal encoder-decoder for the
Binary Erasure Channel with feedback.

3.3.2 The bound is tight for the Binary Erasure Channel with feedback

Consider a Binary Erasure Channel with feedback and a rate R source {sj}. The optimal
anytime encoder maintains an infinite binary queue. Every 1/R time units the next source bit is put at
the end of the queue. At the n-th use of the channel, the encoder emits the bit at the head of the queue.
If there were no errors, this bit is removed from the queue. If there were errors, the bit is retransmitted
at time n+ 1. The function of the decoder is obvious.

The encoder-decoder pair described above is trivially optimal. We use the term optimal to
mean that it achieves the largest possible anytime exponent. The exact formula for the achievable
exponent is calculated in [22].
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Theorem 3.3.3 Consider a Binary Erasure Channel with feedback and erasure probability 0 ≤ ε ≤ 1.
The anytime exponent of any encoder-decoder is bounded by,

Ea

(
1− 1

η
log2

[
1 + ε(2η − 1)

])
(3.13)

= η − log2

[
1 + ε(2η − 1)

]
, η > 0. (3.14)

The relationship holds with equality for the encoder-decoder described above.

Now consider the upper-bound calculated in Theorem 3.3.2. For the Binary Erasure Channel
the channel transition probabilities are,

[pij ] =
[

1− ε ε 0
0 ε 1− ε

]
Using these figures in (3.8),

E0(η) log2 e = −max
q

log2

∑
j

[∑
i

qip
1

1+η

ij

](1+η)

= −max
q

log2

[(
q0(1− ε)

1
1+η

)(1+η)

+
(
q1(1− ε)

1
1+η

)(1+η)

+
(
q0ε

1
1+η + q1ε

1
1+η

)(1+η)
]

q=(.5,.5)
= − log2

[
(1− ε)

1
2η

+ ε
]

= η − log2

[
1 + ε(2η − 1)

]
Using this in (3.9) gives the following parametric representation for E+

a ,

R = 1− 1
η

log2

[
1 + ε(2η − 1)

]
(3.15)

E+
a (R) = η − log2

[
1 + ε(2η − 1)

]
This expression coincides with the anytime exponent of Theorem 3.3.3. Because this exponent is achiev-
able we conclude that the upper bound E+

a is tight for all η > 0 and consequently for all 0 ≤ R ≤ C
for the Binary Erasure Channel with feedback.

For illustrative purposes (Figure 3.3) we plot E+
a (R) versus R for a Binary Erasure Channel

with feedback and erasure probability ε = 1/4. In the figure we have also plotted the curve (1/λ)Esp
(
(1−

λ)R/ log2 e
)
log2 e versus R for several distinct values of the parameter λ. For each value of λ the

associated curve tangentially touches E+
a at the value predicted by (3.15).

3.4 Anytime coding and estimation of unstable systems

Anytime codes are interesting because they can be used to estimate the state of an unstable
scalar system over a noisy communication channel with or without feedback. This result was proven
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Figure 3.3: Plot of E+
a (R) vs. R for a Binary Erasure Channel with erasure probability ε = 1/4.

by Sahai [22]. The converse statement is also true. If we can reliably estimate the state of an unstable
system over a noisy channel then we can construct an anytime code for that channel. Although less
obvious the converse statement is more interesting because it provides a method to design anytime codes.
Constructing an anytime code by designing an estimator is analogous to solving an integer program by
solving its linear program relaxation. The idea is to avoid typical problems in integer counting and case
enumeration.

In this section we prove Sahai’s theorem that shows how to construct an anytime code from a
stable estimator. In subsequent chapters we will use this result to design anytime codes. The proof is
repeated here to avoid excessive cross referencing.

Theorem 3.4.1 (Sahai) Consider the unstable system,

xn = σxn−1 + wn, n ≥ 1, x0 = 0, σ > 1

where wn is a bounded but otherwise unknown disturbance. Suppose there exists an encoder that observes
xn at time n and communicates its observations over a noisy channel to a decoder in such a way that
the decoder produces an estimate yn of xn for which,

∀n ≥ 1, sup
n

E|xn − yn|η <∞.

Under these conditions we can construct a rate R = log2 σ anytime encoder-decoder pair for which,

Ea(R) ≥ ηR.

In other words,
CA(η log2 σ) ≥ log2 σ.
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Remark 3.4.1 The result holds for any noisy channel with or without feedback or memory.

Proof: Let δ > 0. We construct a rate R = log2+δ σ anytime code with the necessary anytime exponent.
A pre-encoder simulates a system,

xn = σxn−1 + wn, n ≥ 1, x0 = 0, σ > 1

and feeds the state xn into the encoder of the theorem. At time nτ , the pre-encoder examines the source
bits,

sb(n−1)Rc+1, · · · , sbnRc
and selects,

wn = σn
bnRc∑

m=b(n−1)Rc+1

(2 + δ)−msm

if bnRc ≥ b(n− 1)Rc+ 1 or selects wn = 0 otherwise. Observe that wn is bounded for all n ≥ 1. To see
this, note that bac − bbc ≤ ba− bc ≤ bac − bbc+ 1 and simplify,

wn = σn
bnRc∑

m=b(n−1)Rc+1

(2 + δ)−m sm

=
(
bnRc − b(n− 1)Rc − 1

)
σnR (2 + δ)−b(n−1)Rc−1

≤
(
bRc+ 1

)
σnR (2 + δ)−b(n−1)Rc−1

≤
(
bRc+ 1

)
(2 + δ)nR (2 + δ)−b(n−1)Rc−1

≤
(
bRc+ 1

)
(2 + δ)−bRc−1 (2 + δ)nR−bnRc

≤
(
bRc+ 1

)
(2 + δ)−bRc.

So wn is a bounded but otherwise arbitrary sequence as required by the assumptions of the theorem.
The reason for selecting wn in this awkward manner is obvious once we write out the state evolution,

xn = σn
(

(2 + δ)−1s1 + (2 + δ)−2s2 + · · ·+ (2 + δ)−bnRcsbnRc

)
.

The post-decoder guesses ŝ1(n), ŝ2(n), · · · , ŝbnRc(n) such that,

yn = σn
∞∑

m=−1

(2 + δ)−mŝm(n).

So if the first j bits ŝ1(n), · · · , ŝj(n) were guessed incorrectly then necessarily,

|yn − xn| ≥ σn−j/R min
ŝ
bnRc
j+1

[ bnRc∑
m=j+1

(2 + δ)−msm −
bnRc∑
m=j+1

(2 + δ)−mŝm(n)
]

≥ σn−j/R2
∞∑

m=j+1

(2 + δ)−m

= σn−j/R
2δ

1 + δ
.
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Consequently, by Markov’s inequality,

P
(
ŝj(n) 6= sj

)
≤ P

(
ŝj1(n) 6= sj1

)
≤ P

(
|yn − xn| > σn−j/Rc1

)
≤ E|yn − xn|η

c1ση(n−j/R)

≤ c2σ
−η(n−j/R)

which proves the theorem. �
The main purpose of this theorem was to demonstrate a design method for anytime codes. We

first design a stable estimator for an unstable system with parameter σ. The proof of the theorem then
gives a construction which leads to a rate R = log2 σ anytime encoder-decoder. It is interesting, but
perhaps irrelevant, that the anytime exponent of the constructed encoder-decoder is similar in form to
the parametric representation of the bound E+

a of Theorem 3.3.2.
To conclude we state without proof the converse of Theorem 3.4.1.

Theorem 3.4.2 Consider a discrete-time channel whose capacity is C and for which E∗
a is an achievable

anytime exponent. Consider also the system,

xn = σxn−1 + wn, n ≥ 1, x0 = 0, σ > 1.

If log2 σ < C then there exists an encoder-decoder pair such that the encoder observes xn at time n and
communicates its observations to the decoder in such a way that the decoder produces an estimate yn of
xn for which,

sup
n≥0

E|xn − yn|η <∞

for any η < E∗
a(log2 σ)/ log2 σ.

3.5 Discussion: Tree codes

Consider a discrete memoryless channel and a rate R = p
q anytime encoder. Because the rate

is purely rational and because an anytime encoder is also a ‘sequential’ encoder, we can describe its
operation by means of a coding tree. The coding tree has 2p branches, each containing q symbols from
the input alphabet of the channel as illustrated in Figure 3.5. The source bits s1, s2, s3, · · · determine
a path along the tree. The encoder moves along this path (one node each q time steps) and emits the
channel symbols it sees along the way. At time n, based on the n channel symbols it has received, the
decoder produces an estimate ŝ(n) = (ŝ0, ŝ1, · · · , ŝjn) where,

jn =
⌈
n
p

q

⌉
, n = 1, 2, · · ·

It there is a feedback channel from the encoder to the decoder, the branch labels depend on the history
of symbols transmitted by the encoder and the history of symbols received by the decoder.

Suppose that we drop the anytime property and that we are interested in an encoder-decoder
pair that produces the ‘best’ estimate ŝ(N) for a given time N . Suppose also that we drop the feedback
assumption. Then the tree code reduces to a convolutional code for which Viterbi proved the following
result in his seminal paper [32],
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Figure 3.4: A block diagram illustrating the construction of an anytime code from a state estimator.

Theorem 3.5.1 (Viterbi, [32]) Consider a rate R = p/q tree code with total transmission time N .
Let the source sequence be ‘zero padded’ such that the last d (0 ≤ d ≤ N) bits sdNRe−d+1

dNRe = 0. Then the
probability of decoding error is bounded by,

P
(
ŝ
dNRe−d
1 6= s

dnRe−d
1

)
> 2−d[EL(R)+o(d)]

where EL(R) is determined by solving for η > 0 in the following equations,

R = E0(η) log2 e/η (3.16)
EL(R) = E0(η) log2 e.

Furthermore, the bound is tight for R > E0(1).

There are three important aspects of Viterbi’s bound. First, he is not assuming any feedback
information. Second, the bound is tight for a region of rates close to capacity. Lastly, the bound (3.16)
is identical to the parametric bound in (3.9). Putting all of these together we obtain the following
surprising result,

“Feedback cannot be used to improve the reliability of a tree code for symmetric channels
and for the region of rates R > E0(1).”
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To put this into perspective recall the analogous result for block-codes. (Theorem 2.1.1) Without
feedback, the family of tree-codes of length N is a strict subset of the family of length N block-codes.
But with feedback, the two families are one in the same. Consequently, the result for tree-codes is
stronger than its analogue for block-codes.
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Figure 3.5: A rate R = 1/3 Tree-code with two branches, each labeled with q = 3 channel symbols.
The source bits sn, n = 0, 1, 2, · · · are indicated below branches and the channel symbols are indicated
above the branches.
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Chapter 4

A time-sharing anytime code

We design an anytime code with feedback. The design has a simple time-sharing property.
The time horizon is broken into segments of length N . Each segment is then divided into a ‘information’
and ‘control’ part. The information part is used to transmit new bits of data from the encoder to the
decoder. For an anytime code no errors can go uncorrected. When an error occurs the control part is
used to inform the decoder about the situation. The basic idea may appear to be a special case of the
time-sharing argument for variable-length block codes described previously in Section 2.3. However,
there is a crucial difference. Because the decoder reinterprets every bit upon receiving new data it is
possible that bits that were correctly decoded in the past can be corrupted by errors that occur in the
present. These kinds of back-ups are a very real and difficult bottleneck for Anytime codes.

The code has an interesting ‘renewal’ property that helps us deal with the back-up problem.
There are time instants when we say the code is renewed. At a renewal time the encoder-decoder
dynamics are reset. Between renewals times, new bits of information are transmitted, if there were
no errors, or no new information is transmitted, if there were errors that were then recaptured by a
sequence of distinguishing symbols.

To avoid problems of integer counting and enumeration we employ Theorem 3.4.1. So rather
than designing an anytime code we design a stable estimator for an unstable scalar system. The reader
who has skipped forward may wish to look at Section 3.4 before proceeding.

Our time-sharing codes achieve an Anytime exponent Ea(R) close to the upper bound E+
a

derived in the previous chapter. As a consequence, the achievable exponent beats the sphere-packing
bound. Therefore, observing that the Anytime exponent Ea can be used to lower bound the performance
of a convolutional or tree code targeted at a fixed decoding delay, we have disproved Pinsker’s result [21]
which argues that the sphere-packing bound is a hard bound on fixed delay decoding with feedback. In
particular, this disproves the general belief that feedback is useless for the Binary Symmetric Channel:
the sphere-packing bound is misleading when it comes to the opportunities provided by feedback.

4.1 The estimation problem

We consider a one-dimensional, unstable discrete-time system,

xn+1 = σ xn + wn, σ > 1, x0 = 0, n ≥ 0, (4.1)

where wn ∈ [−W,W ] is a bounded but otherwise unknown disturbance. An encoder observes xn. Based
on its observations up to time n it emits a channel symbol an. At the same time a decoder receives bn.
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Based on what it has received up to time n the decoder produces an estimate x̂n of xn. Formally, the
encoder is described by functions φn,

zn = φn
(
xn, bn−1

)
, n ≥ 0,

the channel is described by the probability distribution (3.2) and the decoder is described by functions
ψn,

x̂n = ψn(bn), n ≥ 0.

By Theorem 3.4.1 the pair (φ, ψ) is a rate R = log2 σ anytime encoder-decoder with anytime exponent
η log2 σ provided that the error in the estimate is η-stable,

sup
n≥0

E|xn − x̂n|η <∞. (4.2)

The design objective is:

Fix the system coefficient σ > 1 and design an encoder-decoder pair (φ, ψ) such that the
error in the estimate is η-stable for the largest possible η.

4.2 The best estimator for the perfect channel

Let’s begin with a special case. Suppose the channel is the perfect binary channel. So the
channel input an is a binary signal and the channel output bn is equal to the channel input,

bn = an, n ≥ 0.

The following theorem is originally due to Tatikonda.

Theorem 4.2.1 If σ < 2 there is a bounded-error encoder-decoder pair so that,

sup
k≥0

|xk − x̂k| <∞.

If σ > 2 no such pair exists.

Remark 4.2.1 A generalization of this theorem also holds for higher dimensional linear systems for
which xk is a vector and σ is a matrix. See Tatikonda [29] for details.

Proof: We construct the required pair. At each n, the decoder determines an uncertainty interval
[ln, un] that is guaranteed to contain xn and selects the estimate to be the mid-point of this interval,
x̂n = 1

2(ln + un), starting with [l0, u0] = [−1, 1]. Observe that at each time n, the encoder can also
calculate x̂n. The encoder selects an+1 as an+1 = 1 if xn+1 ≥ σx̂n and an+1 = 0, otherwise. Upon
receiving an+1, the decoder selects [ln+1, un+1] by

[ln+1, un+1] =

{
[σx̂n, σun +W ] , if zn+1 = 1,
[σln −W,σx̂n] if zn+1 = 0

(4.3)

Since xn+1 = σxn + wn ∈ σ[ln, un] + [−W,W ] it follows that xn+1 ∈ [ln+1, un+1]. The size of the
uncertainty interval evolves as

un+1 − ln+1 =
σ

2
(un − ln) +W,
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which remains bounded if σ < 2.
On the other hand, at time n, xn =

∑n−1
j=0 σ

n−1−jwj can be any point in the following interval,

Xn =
σn − 1
σ − 1

[−W,W ].

By time n the decoder has observed 2n possible values of an, based on which it could have made 2n

possible point estimates ψn(an). Hence the worst estimation error is at least

max
x∈Xn

min
ψn

|x− ψn(an)| ≥ |Xn|

= 2W
σn − 1
σ − 1

1
2n
,

which is unbounded if σ > 2. �
The construction is very simple but demonstrates a fundamental technique. The idea is to

maintain an interval at the decoder and to ‘cut’ the interval at the fastest possible rate. We proceed
now to the general case. We attempt to carry over the basic technique developed here. Because of
channel noise, however, we can no longer guarantee the interval to contain the true state.

Observe that for the perfect channel,

sup
n≥0

E|xn − x̂n|η <∞

for any η > 0. By invoking Theorem 3.4.1 we see that the anytime capacity of the perfect binary channel
is given by,

CA(α) = 1, α > 0.

Conversely, the anytime exponent for the perfect channel is infinite for any rate up to one,

Ea(R) = ∞, 0 ≤ R ≤ 1.

4.3 A decent estimator for a non-perfect channel

The decoder maintains an interval In = [ln, un]. Contrary to our previous construction we
cannot guarantee In to contain the true state at all times. For this reason we will call this the ‘interval
of confidence’. The decoder believes that the true state is in the interval so it produces the estimate x̂n
of the true state xn as the mid-point of the interval,

x̂n =
ln + un

2
. (4.4)

At time n+ 1, the encoder also computes the interval In. Once again, the encoder can do this because
it has perfect knowledge of the decoder.

4.3.1 The decoder

At time n, the decoder adaptively listens for a variable-length codeword. Let N , L and M
be parameters to be determined later. The decoder first receives L channel symbols bn+L−1

n . These
symbols are used according to the maximum a posterior probabilities to distinguish between a binary
hypothesis: ‘back-up’ or ‘continue’.
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Say that the decoder makes a decision in favor of the hypothesis ‘continue’. The decoder then
receives N − L channel symbols bn+N−1

n+L that are used to select one of M possible messages according
to the maximum a posterior probabilities. The decoder concludes that the true state was in the m-th
cut [pm, pm+1] of an M partition of In−1 = [ln−1, un−1],

ln−1 = p1 ≤ p2 ≤ · · · ≤ pM = un−1.

Consequently, at time n+N − 1 the decoder updates the interval of confidence as,

In+N−1 = σN [pm, pm+1] + [−ΓσN (W ), ΓσN (W )], (4.5)

where

ΓσN (W ) ≡
N−1∑
i=0

σiW. (4.6)

The decoder saves the index m in a stack S for future use and at time n+N listens for a new variable-
length codeword.

For the first N − 1 time steps, while the decoder is receiving the codeword, the interval is
updated by,

In =σ[ln−1, un−1] + [−W,W ],
In+1 =σ[ln, un] + [−W,W ],

...
In+N−2 =σ[ln+N−3, un+N−3] + [−W,W ].

Suppose now that the decoder had decided in favor of the ‘back-up’ hypothesis at time n+L−1.
The decoder concludes that the true state xn−1 was not in the interval In−1 so the decoder pops a
partition index m from the top of the stack S and enlarges the interval as,

In+L−1 = σL
[
ln−1 −m|In−1|, un−1 +

(
M − (m+ 1)

)
|In−1|

]
(4.7)

+
[
− ΓσL(W ), ΓσL(W )

]
,

where Γ is the function defined in (4.6). In words, the interval is extended to the left by m|In−1| and
to the right by (2N − (m + 1)) and the resulting interval is propagated by the system equation (4.1).
At time n+ L the decoder waits for a new variable-length codeword.

Observe that independent of the value of the partition index m the interval is updated such
that,

σ(N+L)In−1 +
[
− ΓσN+L(W ), ΓσN+L(W )

]
(4.8)

⊆ IN+L−1, (4.9)

This concludes the description of the decoder.

4.3.2 The encoder

We prescribe the probability of transmission errors. Pe,h0 denotes the probability of decision
error for the ‘back-up’ hypothesis by L uses of the channel and Pe,h1 denotes the probability of decision
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error for the ‘continue’ hypothesis by L uses of the channel. We also prescribe the M probabilities Pe,m,
m = 1, 2, · · · ,M , which denote the probability of error in transmitting a M -ary message by N uses of
the channel. Write Pe = maxm Pe,m.

Based on our previous description of the decoder and on the prescribed probabilities, the
encoder can exhibit exactly three distinct behaviors as illustrated in Figure 4.1:

i) At time n − 1 if xn−1 ∈ In−1 and the decoder is waiting for a new codeword we select
φn, · · · , φn+L−1 to be the encoder that transmits the ‘continue’ hypothesis. So with probability (1−Pe,h1)
the decoder decides in favor of the ‘continue’ hypothesis in which case we select φn+L, · · · , φn+N−1 to
be the encoder that transmits the appropriate cut of the partition of In−1 that contains the true state
xn−1. With probability greater than (1−Pe) the decoder receives the true cut and updates the interval
according to (4.5) such that xn+N−1 ∈ In+N−1. This is the good case.

ii) With probability Pe,h1 the decoder decides in favor of the false back-up hypothesis. So at
time n+ L− 1 the decoder mistakenly enlarges the interval according to (4.7). The situation is not so
grim because at time n+ L− 1 we still have xn+L−1 ∈ In+L−1.

iii) Finally, the worst case occurs when the decoder decides in favor of the true continue
hypothesis but makes a mistake in deciding the true cut. At time n + N − 1 the decoder mistakenly
updates the interval according to (4.5) but the true state xn+N−1 is no longer contained in the updated
interval In+N−1. Starting at the troublesome time n + N the encoder is designed in such a way as to
bias the decoder to always favor the ‘back-up’ decision. The encoder goes back to normal operation at
the smallest time n′ > n + N such that the decoder has decided in an equal number of ‘back-up’ and
‘continue’ decisions in the time interval {n, n+ 1, · · · , n′}.

Observe that the smallest such time can be represented as n′ = n+K(N +L) for some integer
K > 0. This is because each continue decision leads to a run of N time steps and each back-up decision
leads to a run of L time steps. Furthermore, for any such K > 0 it follows by (4.8) that,

σK(N+L)In−1 + [−ΓσK(N+L)(W ), ΓσK(N+L)(W )] ⊆ In+K(N+L). (4.10)

This concludes the design of the encoder-decoder pair. What we really need now is a useful mathematical
model that describes the dynamics of the interval.

Observe that in each of the three possible cases there is a common property. The true state
is contained in the interval xn−1 ∈ In−1 and the decoder awaits a new codeword at the start and end
times. This suggests a natural mathematical abstraction which we pursue next.

4.3.3 Mathematical model of encoder-decoder

Say that the pair is ‘renewed’ each time the interval contains the true state and the decoder
awaits a new codeword. At each renewal time, the encoder-decoder dynamics are reset. In between
renewal times, the interval either shrinks, if there were no errors, or the interval grows, if there was an
error that was later recaptured by a sequence of back-ups. In the following paragraphs we make these
statements precise.

Let’s begin with some notation that we’ve found to be useful. Consider a stochastic process
Υ = (Υ1, · · · ,ΥT ) with random termination time T . Let Υ1,Υ2, · · · be independent copies of Υ. Write,

Υi =
(

Υi
1,Υ

i
2 · · · ,Υi

T i

)
, i ≥ 1.

Construct a new ‘renewal’ process by concatenating these independent copies of Υ,(
Υ1

1,Υ
1
2, . . . ,Υ

1
T 1 ,Υ2

1,Υ
2
2, . . . ,Υ

2
T 2 , . . .

)
(4.11)
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Figure 4.1: Illustration of three possible cases in the transmission of the control and information parts.
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Write Υ(n) to denote the n-th entry in this process. Let in denote,

in = min{i | T 1 + · · ·+ T i ≥ n }. (4.12)

Now consider the worst-case estimation error,

Xn = sup
wn

|xn − x̂n|, X0 = 0, n ≥ 0.

Using the notation developed above we have,

Lemma 4.3.1 Consider the prescribed probabilities Pe,h0, Pe,h1 and Pe. There exists a stochastic process
Υ with random termination time T such that the worst-case estimation error is bounded by,

Xn+1 ≤ Υ(n)Xn + 2W, X0 = 0, n ≥ 0. (4.13)

The distribution of Υ is given by,

P
(
T = L,

T∏
i=1

Υi = MσL
)

= Pe,h1 (4.14)

P
(
T = N,

T∏
i=1

Υi = M−1σN
)

≤ (1− Pe,h1)(1− Pe) (4.15)

and for K ≥ 1,

P
(
T = K(N + L),

T∏
i=1

Υi = σK(N+L)

)
(4.16)

≤ (1− Pe,h1)Pe

× 1
K

(
2(K − 1)
K − 1

)(
Pe,h0

)K−1(1− Pe,h0

)K
.

Proof: The existence of such a renewal process Υ is obvious from the description of the encoder. What
we need to verify is the specified distribution. The first two equations (4.14) and (4.15) are fairly
clear. These correspond to the cases of false backup and the ‘good’ successful transmission. To verify
the last inequality (4.16) we note a result known to combinatorial analysts. Consider the number of
{−1, 1}-sequences {r1, · · · , r2K} such that

∑j
i=1 ri > 0 for j < 2K and

∑2K
i=1 rk = 0. The number of

such sequences is given by the Catalan number , [34],

1
K

(
2(K − 1)
K − 1

)
,K ≥ 1.

Now consider the case scenario to which (4.16) corresponds. At time n − 1, a renewal occurs. So the
true state xn−1 ∈ In−1 and the decoder waits for a new codeword. The encoder delivers a cut but
the cut is received in error. The encoder then keeps transmitting ‘back-ups’ until the smallest time at
which the decoder has decided an equal number K of back-ups and false cuts. Associate the ‘back-up’
hypothesis with a −1 and the ‘false cut’ hypothesis with a +1. So add a point for each false cut and
deduct a point for each back-up. This can occur in 1

K

(2(K−1)
K−1

)
many ways and the probability of each
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occurrence is identical and given by
(
1 − Pe,h1

)
Pe ×

(
Pe,h0

)K−1(1 − Pe,h0

)K . This proves the desired
result. �

This lemma is useful for finding sufficient conditions for which the estimation error remains
bounded. By the definition of Xn and recursive substitution in (4.13) we bound the estimation error
as,

E|xn − x̂n|η ≤ EXη
n

≤ E
( n−1∑
n′=1

2W
n−1∏
n′′=n′

Υ(n′′)
)η

(4.17)

= (2W )ηE
( n−1∑
n′=1

n−1∏
n′′=n′

Υ(n′′)
)η

(4.18)

(4.19)

However, for this bound to be useful we need to be able to calculate the expectation of Xn. For this we
will make use of the following quantity,

γ(η, δ1) ≡ E
T∏
i=1

(
Υi(1 + δ1)

)η (4.20)

which denotes the average gain of the η-th moment of the estimation error in each renewal cycle of the
system. Using the fact that Renewal cycles are independent we write out γ(η, δ1) as,

γ(η, δ1) =
(
M
(
σ(1 + δ1)

)L)η
Pe,h1

+
(
M−1

(
σ(1 + δ1)

)N)η(1− Pe,h1)(1− Pe)

+ (1− Pe,h1)Pe (4.21)

×
∞∑
K=1

1
K

(
2(K − 1)
K − 1

)(
σ(1 + δ1)

)K(N+L)η(
Pe,h0

)K−1(1− Pe,h0

)K
.

Fortunately, we know the generating function [34] for the series. For any x ≤ 1/4,
∑∞

K=1(1/K)
(2(K−1)
K−1

)
xK =

(1−
√

1− 4x)/2. Using this we can simplify the expression in (4.21) into something more manageable,

γ(η, δ1) =
(
M
(
σ(1 + δ1)

)L)η
Pe,h1

+
(
M−1

(
σ(1 + δ1)

)N)η(1− Pe,h1)(1− Pe)

+ (1− Pe,h1)
Pe

2Pe,h0

×

[
1−

√
1− 4

(
σ(1 + δ1)

)(N+L)η
Pe,h0

(
1− Pe,h0

)]

Coming back to the bound that we were after, leads to the next result.
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Theorem 4.3.1 Consider an arbitrary discrete-time memoryless channel. Design a time-sharing encoder-
decoder by selecting L, N and M and two block coding schemes. The first scheme uses the channel L
times to distinguish between a binary hypothesis and the second scheme uses the channel N −L times to
transmit an M -ary message. Calculate the probability of decoding error for these schemes and denote
them as Pe,h0, Pe,h1 and Pe = maxm=1,··· ,M Pe,m.

Now consider system 4.1 with parameters σ > 1, η > 0 and W > 0. If you can find δ1 > 0
such that γ(η, δ1) < 1 then the design produces a bounded-error estimate for the system (4.1) with,

sup
n≥0

E|xn − x̂n|η <∞.

Proof: To prove this result it suffices to show that γ(η, δ1) < 1 implies that worst-case error Xn is
η-stable. By (4.17) it suffices to show that,

E

[
n−1∑
n′=1

n−1∏
n′′=n′

Υ(n′′)

]η
<∞, n ≥ 0. (4.22)

where we have omitted the 2W term for notational simplicity. Let η > 1. By Hölder’s inequality,[
n−1∑
n′=1

n−1∏
n′′=n′

Υ(n′′)

]η

=

[
n−1∑
n′=1

n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

)
(1 + δ1)−(n−n′)

]η
1
p
+ 1

q
=1

≤

[
n−1∑
n′=1

( n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

))p] η
p

×

[
n−1∑
n′=1

(1 + δ1)−q(n−n
′)

] η
q

p=η
=

[
n−1∑
n′=1

( n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

))η]
×

[
n−1∑
n′=1

(1 + δ1)
− η

η−1
(n−n′)

]η−1

≡

[
n−1∑
n′=1

( n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

))η]
× c1.

For any η > 1 and δ1 > 0 note that c1 is some finite constant that depends on η and δ1. So we can
bound (4.22) by,

E

[
n−1∑
n′=1

n−1∏
n′′=n′

Υ(n′′)

]η
≤ c1

n−1∑
n′=1

E
( n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

))η
. (4.23)

Recalling the definition of Υ(n′′) we write,

n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

)
=

T in′∏
j=m1

(
Υin′
j (1 + δ1)

)
×

(
in−1−1∏
i=in′

T i∏
j=1

(
Υi
j (1 + δ1)

))
×

m2∏
j=1

(
Υin−1−1
j (1 + δ1)

)
(4.24)

where in is the stopping time defined in (4.12) and m1 = n′− (T 1 + · · ·+T in′−1) and m2 = n−1− (T 1 +
· · ·+ T in−1−1). Now observe that E

∏T
i=1 max(Υi, 1)η < EσηT . This is because the estimation error can
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never grow faster than σ. Furthermore, because γ(η, δ1) < 1 it follows by Lemma 4.3.1 that EσηT <∞.
So E

∏T
i=1 max(Υi, 1)η = c2 for some constant that depends on η and σ. Now take expectations in

(4.24) and keeping in mind that the Υ1,Υ2, · · · are independent,

E
n−1∏
n′′=n′

(
Υ(n′′)(1 + δ1)

)η
= E

T in′∏
j=m1

(
Υin′
j (1 + δ1)

)η
×

(
in−1−1∏
i=in′

E
T i∏
j=1

(
Υi
j (1 + δ1)

)η)×E
m2∏
j=1

(
Υin−1−1
j (1 + δ1)

)η

≤ (c2)2
in−1−1∏
i=in′

E
T i∏
j=1

(
Υi
j (1 + δ1)

)η
= (c2)2

in−1−1∏
i=in′

E
T∏
j=1

(
Υj (1 + δ1)

)η
= (c2)2γ(η, δ1)in−1−in′−1.

So we can bound (4.23) and consequently (4.22) by,

E

[
n−1∑
n′=1

n−1∏
n′′=n′

Υ(n′′)2W

]η
≤ c1c

2
2

n−1∑
n′=1

γ(η, δ1)in−1−in′−1 (4.25)

To finish the job we employ a large deviations bound. First write,

γ(η, δ1)in−1−in′−1 ≤ γ(η, δ1)−1

(
P
(
in−1 − in′ < i

)
+ γ(η, δ1)i

)
(4.26)

Now, because in is a stopping time, by definition,

P
(
in−1 − in′ < i

)
= P

(
T 1 + · · ·T i ≥ n− 1− n′

)
. (4.27)

Letting µ = ET and n− 1− n′ = diµe and invoking Markov’s inequality we obtain,

P
(
T 1 + · · ·T i ≥ n− 1− n′

)
≤ E(2θT )i

2θ(n−1−n′) (4.28)

= 2
−(n−1−n′)

[
θ− log2 E2θT

µ

]
for any θ > 0. But an old result (Durrett, Lemma 9.4) is that the exponent θ − log2 E2θT

µ is strictly
positive for some small θ provided that there exists some θ > 0 for which E2θT <∞. This last condition
is implied by our hypothesis γ(η, δ1) < 1. So using (4.28) in (4.27) in (4.26) we conclude that there
exists some constant c3 < 1 such that,

γ(η, δ1)in−1−in′−1 ≤ cn−1−n′
3 .

Plugging this back into (4.25) concludes the proof of Theorem 4.3.1 for the case η > 1. The proof
follows for the case η ≤ 1 by replacing Hölder’s inequality above with Jensen’s inequality. �
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Theorem 4.3.1 gives us a fairly general method of designing stable estimators and, consequently,
anytime codes for arbitrary discrete-time memoryless channels. We first select a channel and a rate
0 ≤ R ≤ C. These are the design specifications. Based on the choice of channel and rate we solve the
following optimization problem,

maximize η (4.29)
subject to:

1)
(
M
(
σ(1 + δ1)

)L)η
Pe,h1

+
(
M−1

(
σ(1 + δ1)

)N)η(1− Pe,h1)(1− Pe)

+ (1− Pe,h1)
Pe

2Pe,h0

×

[
1−

√
1− 4

(
σ(1 + δ1)

)(N+L)η
Pe,h0

(
1− Pe,h0

)]
< 1

2) N,L,M,Pe,h0 , Pe,h1 , Pe are feasible: There exists a (L, 2) block code whose
probability of decoding error is Pe,h0 and Pe,h1 and there exists an (N − L,M)
block code whose worst case probability of decoding error is Pe.

3) δ1 > 0

4) σ = 2R + δ2, δ2 > 0

Finally, having solved the optimization for a positive η we proceed to construct a rate R anytime
encoder-decoder pair with anytime exponent Ea = ηR as described in Theorem 3.4.1.

Observe that δ1 and δ2 are slack parameters. The design space is therefore nothing but the
space of all (L, 2) and (N − L,M) block codes. Since L, N and M are also unconstrained the design
space is simply the space of all block codes that satisfies the first constraint. This is not a standard
optimization problem. We do not know how to solve it in a generalized sense. It is also not obvious
whether the exponent Ea = ηR predicted by (4.29) is truly optimal. For the Binary Erasure channel
we will see that (4.29) is trivially solved and yields the optimal exponent. For the Binary Symmetric
channel we are able to limit the design space to a small subset of block codes such that the exponent
predicted by (4.29) is ‘good’.

Remark 4.3.1 The δ1 is the slack parameter required by Theorem 4.3.1 and the δ2 is the slack parameter
required by Theorem 3.4.1. Both parameters may be selected arbitrarily small without any effect on the
anytime exponent of the encoder-decoder pair. However, the coefficient β in Definition 3.1.1 does depend
on δ1 and δ2.

4.3.4 The formulas are tight for the Binary Erasure Channel

Consider a Binary Erasure Channel. Observe that the optimal encoder-decoder (cf. Sec-
tion 3.3.2) coincides with the time-sharing encoder-decoder such that L = 0, N = 1 and M = 2. The
parameter L is degenerate because the decoder knows when channel erasures occur. So there is no real
need for ‘back-up’ or ‘continue’ messages. So the question is not whether the encoder-decoder is optimal.
Rather we check whether the optimization problem in (4.29) yields the optimal anytime exponent.

We evaluate the anytime exponent Ea = ηR that is predicted by (4.29). For the optimal
encoder-decoder we have L = 0, N = 1 and M = 2 which leads to the Pe,h0 = Pe,h1 = 0 and Pe = ε
where ε is the erasure probability of the channel. We need to evaluate the first constraint in (4.29), or
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equivalently, the expanded version in (4.21). By direct substitution the summation in (4.21) is simplified
as,

(1− Pe,h1)Pe ×
∞∑
K=1

1
K

(
2(K − 1)
K − 1

)(
σ(1 + δ1)

)(N+L)Kη(
Pe,h0

)K−1(1− Pe,h0

)K
= ε
(
σ(1 + δ1)

)(N+L)η
.

Plugging this back into (4.21), we obtain,(
2−1σ(1 + δ1)

)η
(1− ε) +

(
σ(1 + δ1)

)η
ε < 1.

Rearranging terms and taking logs,

log σ(1 + δ1) < −1
η

log
[

1
2η

(1− ε) + ε

]
= 1− 1

η
log
[
1 + ε

(
2η − 1

)]
. (4.30)

Using Theorem 3.4.1 and observing that δ1 > 0 is arbitrary we see that our formulation predicts that

the anytime exponent Ea = ηR is achievable by the rate R = 1− 1
η log

[
1+ ε

(
2η− 1

)]
optimal encoder-

decoder. Comparing this with the parametric representation in (3.13) reveals that the predicted values
for the rate and exponent are the optimally achievable values for the Binary Erasure Channel.

4.3.5 The formulas are decent for a good Binary Symmetric Channel

In contrast with the situation for the Binary Erasure Channel there is no trivially optimal
encoder-decoder for the case of the Binary Symmetric Channel. Unlike the case of the BEC, bits that
were correctly decoded in the past can be corrupted by errors that occur in the present. Consequently,
we are necessarily lead to think about the entire space of block codes to find a good solution to (4.29).
In particular, we need to consider codes that provide a good trade-off amongst the rate at which
new information is transmitted and the rate at which control information (ie. back-up or continue) is
transmitted.

Let’s begin with a good Binary Symmetric Channel. By this we mean that the channel
cross-over probability ε is very small so that channel errors are very unlikely. Because errors are
unlikely we consider those block codes that provide very little or no forward error protection. This
intuition turns out to be correct at modest rates. For such rates we pick L = 1 so that the binary
control information (‘backup’ or ‘continue’) is transmitted using a single unprotected bit. We also pick
M = 2N−L (N − L = 1, 2, · · · ) so that the new true information is transmitted without any forward
error protection. For these choices of N , L and M the optimization problem in (4.29) reduces to,

maximize η (4.31)
subject to:

1)
(

2N−1σ(1 + δ1)
)η
ε

+
(

2−(N−1)
(
σ(1 + δ1)

)N)η(1− ε)N
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+ (1− ε)
(1− (1− ε)N−1)

2ε
×

[
1−

√
1− 4

(
σ(1 + δ1)

)(N+1)η
ε
(
1− ε

)]
< 1

2) N = 2, 3, 4, · · ·
3) δ1 > 0

4) σ = 2R + δ2, δ2 > 0

To solve this optimization problem we need to determine the optimal Ea(R) = ηR as a function of the
rate R. Observe that δ1 and δ2 are slack parameters. Consequently, for a fixed N we can calculate
E

(N)
a = ηR as a function of R and then consider the optimal function Ea as the least upper bound over

the entire family {E(N)
a }N=1,2,···.

In Figure 4.2 we have numerically calculated E(N)
a (N = 2, 3, · · · , 11) for a Binary Symmetric

Channel with cross-over probability ε = 0.01. The blue curve is the upper bound E+
a . The dashed curve

is the sphere-packing bound and it is drawn only for reference. The gap between the anytime exponent
E

(2)
a and E+

a at R = 1/4 is fairly small and supports our intuition that forward error protection is not
necessary for a good BSC channel. On the other hand, the gap is significant at very low and high rates.

High rates are not achievable because of the time-sharing property of our encoder-decoder. A
fixed ratio, L/N , of the time is devoted to the transmission of control information, the ‘back-up’ or
‘continue’ signals. So unless L/N is very small rates close to capacity cannot be achieved. On the other
hand, if we design L/N very small then we significantly increase the chances of forward transmission
errors and consequently the transmission and retransmission of backups. There is very little or nothing
that we can do with the proposed scheme to recover performance at high rates.

At low rates a more interesting situation occurs. At rates close to zero, true information bits
are rare. In between the true bits, the encoder is transmitting an excess amount of control information
(ie. ‘back-up’ or ‘continue’). But this control information is unprotected so that ‘false backups’ occur
frequently. Such backups are costly and lead to a performance loss. However, observe that there is a
simple technique to recover this loss – do not transmit an excess amount of control information. To
see how this can be done, consider the peak of the curve labeled N = 2 and denote this point by
(R?, Ea(R?)). For rate R < R? we can modify the encoder and decoder so that the encoder transmits
true information at the optimal rate R? and transmits ‘dummy’ bits during the excess time. The encoder
knows that certain bits are dummy. Consequently, the reliability Ea(R?) is achievable for all R < R?.
This is illustrated in the figure by drawing a solid black line tangent to the peak.

4.4 Improving the estimator for a non-perfect channel

In the previous section we saw that a very simple time-sharing estimator performs well for a
‘good’ Binary Symmetric Channel. It turns out, however, that this estimator performs poorly if the
channel is very noisy. In this section we modify the estimator for improved performance on a very noisy
Binary Symmetric Channel. Our approach is to introduce an ‘inner’ encoder-decoder that converts the
noisy channel into a good virtual channel. The simple estimator is then applied to the virtual channel.

4.4.1 The inner encoder-decoder: creating the virtual channel

The inner encoder-decoder pair is Schalkwijk’s 1-up J-down (J is a parameter to be determined
later) previously described in Section 2.4.1. We repeat the description here to avoid excessive page
flipping.
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Figure 4.2: Anytime exponent E(N)
a , N = 2, 3, · · · , 11 of time-sharing code for a Binary Symmetric

Channel with cross-over probability ε = 0.01 and no forward error protection.

At time n a bit m ∈ {0, 1} is handed off to the inner encoder. The encoder repeatedly emits
m until the decoder makes a decision at a random time n+ T I , T I ≥ J .

As before the decoder is described by a Mealy machine consisting of 2J + 1 discrete states as
illustrated in Figure 2.4. At time n the decoder starts in state J . Suppose that the decoder is in state
zn′ at time n ≤ n′ ≤ n+T I . Upon receiving a one at time n′ the decoder jumps to state zn′+1 = zn′ +1.
Upon receiving a zero at time n′ the decoder jumps to state zn′+1 = zn′ − 1 at time n′ +1. The decoder
makes a decision in favor of m′ = 0 at the first time instant n+ T I at which it makes a jump into state
zero. Conversely, the decoder makes a decision in favor of m′ = 1 at the first time instant n + T I at
which it makes a jump into state 2J .

We write,

qm(t) = P
(
T I = J + 2t,m′ 6= m | bit m was transmitted

)
,

pm(t) = P
(
T I = J + 2t,m′ = m | bit m was transmitted

)
.
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By symmetry p1(t) = p0(t) and q1(t) = q0(t) so we will simply write p(t) and q(t) to denote the respective
quantities. The statistics of p(t) and q(t) are given by the matrix expressions (2.19) and (2.20). For
J = 2 and J = 3 these expressions reduce to,

p(t) = J t(1− ε)J+tεt, t ≥ 0, (4.32)

and
q(t) = J tεJ+t(1− ε)t, t ≥ 0. (4.33)

We are not able to come up with such simple expressions for J > 3. The interested reader may wish to
verify that for J = 2 and J = 3 that (4.32) and (4.33) indeed define a true probability distribution. In
particular,

∞∑
t=0

p(t) + q(t) = 1.

Observe that the inner encoder-decoder pair described here is used for the reliable transmission
of a single bit. The pair effectively converts a noisy Binary Symmetric Channel into something that
resembles a less noisy binary channel. More precisely, we think of the transfer function from the input
of the encoder to the output of the decoder to be a virtual channel. The transfer function is not quite a
standard channel because different bits experience different delays from the time they enter the encoder
until the time they leave the decoder.

4.4.2 The outer decoder

An outer decoder maintains an interval of confidence denoted as In = [ln, un], n ≥ 0. The
decoder believes that the true state is contained in the interval and therefore produces the estimate
x̂n = (ln + un)/2 for each time n ≥ 0. The description of the outer decoder then follows by describing
the update rule for the interval of confidence.

At time n the outer decoder, just having received a code-word, adaptively listens for a new
variable-length code-word. Let N be a parameter to be determined later. The outer decoder first
receives a bit bn+τ from the inner decoder. The time τ is a random variable that depends on the
statistics of the inner encoder-decoder. The outer decoder uses bn+τ to distinguish between a binary
hypothesis: ‘back-up’(bn+τ = 0) or ‘continue’ (bn+τ = 1).

Say that a decision is made in favor of the ‘continue’ hypothesis. The decoder then receives
N bits (bn+τ+t1 , bn+τ+t+1+t2 , · · · , bn+τ+

PN
i=1 ti

) from the inner decoder. The times t1, t2, · · · , tN are
randomly determined by the statistics of the inner encoder-decoder. These N bits are used to select
one of 2N possible messages according to the maximum a posterior probabilities. Denoting the selected
message by m the decoder concludes that the true state xn was in the m-th cut [pm, pm+1] of a 2N

partition of In−1 = [ln−1, un−1],

ln−1 = p1 ≤ p2 ≤ · · · ≤ p2N = un−1.

Consequently, at time n+ τ +
∑N

i=1 ti the decoder updates the interval of confidence as,

In+τ+
PN

i=1 ti
= στ+

PN
i=1 ti [pm, pm+1] + [−Γσ

τ+
PN

i=1 ti
(W ),Γσ

τ+
PN

i=1 ti
(W )]. (4.34)

The outer decoder saves the message m on a stack for future use and listens for a new code-word at
time n+ τ +

∑N
i=1 ti.
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Suppose now that the decoder had decided in favor of the ‘back-up’ hypothesis at time n+ τ .
The decoder concludes that the true state xn−1 was not in the interval In−1 so the decoder pops a
partition index m from the top of the stack and enlarges the interval as,

In+τ = στ
[
ln−1 −m|In−1|, un−1 +

(
2N − (m+ 1)

)
|In−1|

]
(4.35)

+
[
− Γστ (W ), Γστ (W )

]
,

where Γ is the function defined in (4.6). In words, the interval is extended to the left by m|In−1| and
to the right by (2N − (m + 1)) and the resulting interval is propagated by the system equation (4.1).
At time n+ τ the decoder waits for a new variable-length codeword.

Observe that independent of the value of the partition index m the interval is updated such
that,

στIn−1 +
[
− Γστ (W ), Γστ (W )

]
⊆ In+τ , (4.36)

This concludes the description of the outer decoder.
Observe also that the outer decoder described here is almost identical to the description of the

time-sharing decoder of Section 4.3.1. To see this take L = 1 and M = 2N in the description of the
time-sharing decoder. The only notable difference is that the input to the time-sharing decoder comes
from a true Binary Symmetric Channel whereas the input to the decoder described here comes from
the virtual channel induced by the inner encoder-decoder.

4.4.3 The outer encoder

It should be no surprise the description of the outer encoder follows from the description of
the time-sharing encoder of Section 4.3.2. The description begins by considering the behavior of the
outer encoder at a time n − 1 at which the true state xn−1 is contained in the decoder’s interval of
confidence, xn−1 ∈ In−1, and the decoder is waiting for a new code-word. The outer encoder advises
the inner encoder to emit a ‘one’ indicating the continue hypothesis. A random τ time units later the
decoder decides on either the continue or the back-up hypothesis. Suppose that — with probability
p(τ) — the decoder decided on the continue hypothesis. In this case the encoder calculates the cut of
the 2N partition of In−1 that contained xn−1 and hands off the N bits that represents the cut to the
inner encoder. These bits are transmitted to the outer decoder at random times n + τ + t1, n + τ +
t+ 1 + t2, · · · , n+ τ +

∑N
i=1 ti respectively. If there were no errors in the transmission of these N bits,

at time n + τ +
∑N

i=1 ti the decoder updates its interval of confidence according to (4.34) such that
xn+τ+

PN
i=1 ti

∈ In+τ+
PN

i=1 ti
and waits for a new code-word. This is the good case.

There are two more possible case scenarios. With probability q(τ) the decoder could have
decided in favor of the ‘back-up’ hypothesis at time n + τ . So at time n + τ the decoder mistakenly
enlarges the interval according to (4.35) and waits for a new code-word. This case scenario is not so
grim because at time n+ τ we still have that xn+τ ∈ In+τ .

Finally, the worst case scenario occurs if at time n+τ the decoder decides in favor of ‘continue’
but subsequently an error occurs in the transmission of the N bits that represent the cut of the partition
of In−1 that contained xn−1. At time n+ τ +

∑N
i=1 ti the decoder mistakenly updates the interval ac-

cording to (4.34) but the updated interval no longer contains the true state; xn+τ+
PN

i=1 ti
6∈ In+τ+

PN
i=1 ti

.

Starting at the troublesome time n + τ +
∑N

i=1 ti the encoder attempts to bias the decoder to always
decide in favor of the ‘back-up’ hypothesis. The encoder goes back to normal operation at the smallest
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time n′ such that the decoder decided in favor of an equal number of back-up and continue hypotheses
in the interval {n, · · · , n′}. It follows by (4.36) that,

σn
′−nIn−1 +

[
− Γσn′−n(W ),Γσn′−n(W )

]
⊆ In′ .

This concludes the description of the encoder.

4.4.4 Mathematical model of the modified system

The description of the outer encoder-decoder pair is almost identical to that of the time-sharing
encoder-decoder pair of Sections 4.3.2 and 4.3.1. The information about the state is encoded in exactly
the same way. The only thing that changes are the times at which the encodings occur. The latter is
due to the virtual channel induced by the inner encoder-decoder. Consequently, the ‘renewal’ property
is maintained and the model that was used to analyze the original system also applies here.

In conjunction with Lemma 4.3.1 we define a stochastic process Υ = {Υ1, · · · ,ΥT } with
random termination time T such that the worst-case estimation error Xn is bounded by,

Xn+1 ≤ Υ(n)Xn + 2W, X0 = 0, n ≥ 0. (4.37)

We remind the reader that the worst-case estimation error is defined asXn = supwn |xn−x̂n|. We also re-
mind the reader that the notation Υ(n) indicated the n-th entry of the process {Υ1

1,Υ
1
2, · · · ,Υ1

T 1 ,Υ2
1,Υ

2
2, · · · ,Υ2

T 2 , · · · }
in which the Υi = {Υi

1,Υ
i
2, · · · ,Υi

T i} are independent copies of Υ for all i ≥ 1. Supposing that we are
able to determine the distribution of Υ then we immediately get the following analog of Theorem 4.3.1,
the proof of which follows from that of Theorem 4.3.1.

Theorem 4.4.1 Consider a modified estimator with parameters J and N and consider system (4.1)
with parameters σ > 1, η > 0 and W > 0. Let,

γ(δ1, η, J,N) = E
T∏
i=1

(
Υi(1 + δ1)

)η
.

If you can find δ1 > 0 such that γ(δ1, η, J,N) < 1 then the modified estimator produces a stable estimate
for system (4.1) with,

sup
n>0

E|xn − x̂n|η <∞.

To make this a useful result we determine the distribution of Υ and subsequently calculate
γ(δ1, η, J,N). Consider the three situations that are possible in between renewals. These are the cases
of a false backup, a successful transmission and a recapturing sequence. The false backup is the easiest
and follows by selecting,

P
(
T = τ,

T∏
i=1

Υi = 2Nστ
)

= q(τ), τ ≥ 0.

To see this observe that q(τ) is nothing but the probability that a ‘continue’ hypothesis is transmitted
in error in τ time steps by the inner encoder-decoder. Then use Υi = 2Nστ in (4.37) and compare
with the actual dynamics of the interval given by (4.35). The case of a successful transmission is also
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straightforward and follows from (4.34) by selecting,

P
(
T = τ +

N∑
i=1

ti,

T∏
i=1

Υi = 2−NσT
)

= p(τ)p(t1)p(t2)p(t3) · · · p(tN ),
τ, t1, t2, · · · , tN ≥ 0.

The quantity p(τ) represents the probability of successfully transmitting the continue hypothesis in τ
time steps and the quantity p(t1)p(t2) · · · p(tN ) represent the probabilities of the subsequent successful
transmission of the partition cut.

To complete the model we need to describe the distribution of Υ that corresponds to a re-
capturing sequence. Analogous to the situation in Lemma 4.3.1 we consider a recapturing sequence
consisting of K errors and K true backups,

P
(
T =

K∑
k=1

N∑
i=1

(
τ (k) + t

(k)
i

)
+

K∑
k=1

ς(k),
T∏
i=1

Υi = σT
)

= p(τ (1))P

× 1
K

(
2(K − 1)
K − 1

)
q(τ (2))q(τ (3)) · · · q(τ (K))

× p(ς(1))p(ς(2))p(ς(3)) · · · p(ς(K))

×
K∏
k=2

((
p(t(k)1 ) + q(t(k)1 )

)(
p(t(k)2 ) + q(t(k)2 )

)
· · ·
(
p(t(k)N ) + q(t(k)N )

)
τ (k), ς(k), t

(k)
1 , t

(k)
2 , · · · , t(k)N ≥ 0, k = 1, 2, · · · ,K.

in which P denotes the overall probability of error in transmitting the partition cut,

P = 1− p(t1)p(t2) · · · p(tN ).

To verify these expressions it suffices to note that p(τ (1)) is the probability of successfully
transmitting the first continue hypothesis in τ (1) time steps and P is the probability that an error
occurs in one or more of the N bits in the subsequent transmission of the partition cut. The remaining
quantities describe the transmission of the K − 1 false continues and K true backups. Keep in mind
that a false continue occurs if a ‘back-up’ is understood as a ‘continue’ and the decoder expects to
receive N bits after deciding in favor of a continue. Each of the K − 1 false continues is captured by
the product q(τ (k))

(
p(t(k)1 ) + q(t(k)1 )

)(
p(t(k)2 ) + q(t(k)2 )

)
· · ·
(
p(t(k)N ) + q(t(k)N )

)
for k = 2, · · · ,K. Observe

that p(t) + q(t) is nothing but the probability that a bit is transmitted in t time steps. Finally, each of
the K true backups is captured by the terms p(ς(k)), k = 1, 2, · · · ,K, since this quantity describes the
successful transmission of the backup hypothesis in ς(k) time steps.

Having determined the distribution of Υ we revert our attention to the calculation of the
quantity γ(δ1, η, J,N) which is central to Theorem 4.4.1. By direct calculation,

γ(δ1, η, J,N) = E
T∏
i=1

(
Υi(1 + δ1)

)η
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=
∑
τ≥0

(
2N
(
σ(1 + δ1)

)(J+2τ)
)η
q(τ)

+
∞∑

τ ≥ 0
t1, · · · , tN ≥ 0

(
2−N

(
σ(1 + δ1)

)(J(N+1)+2τ+2t1+···+2tN )
)η
p(τ)p(t1) · · · p(tN )

+
∞∑
K=1

∑
τ(k), ς(k) ≥ 0

t
(k)
1 , t

(k)
2 , · · · , t

(k)
N

≥ 0
k = 1, 2, · · · , K

((
σ(1 + δ1)

)PK
k=1

PN
i=1

(
τ (k)+t

(k)
i

)
+

PK
k=1 ς

(k)
)η

× p(τ (1))P
1
K

(
2(K − 1)
(K − 1)

)
×

K∏
k=1

p(ς(k))

×
K∏
k=2

N∏
n=1

q(τ (k))
(
p(t(k)n ) + q(t(k)n )

)
For J = 2 and J = 3 this seemingly long expression reduces to something quite simple. This is because
the sums are geometric for these very special cases. To make the simplifications first observe that
probabilities add up to one so that,∑

t1,··· ,tN≥0

((
σ(1 + δ1)

)2t1+2t2+···+2tN

)η
P

= 1−
∑

t1,··· ,tN≥0

((
σ(1 + δ1)

)2t1+2t2+···+2tN

)η
p(t1)p(t2) · · · p(tN )

= 1−
(∑
t≥0

(
σ(1 + δ1)

)2tη
p(t)

)N
.

Using this and (4.32) and (4.33) in the lengthy expression for γ(δ1, η, J,N) we obtain,

γ(δ1, η, J,N) =
(

2N
(
σ(1 + δ1)

)J)η
QJ

+
(

2−N
(
σ(1 + δ1)

)J(N+1)
)η

(PJ)N+1

+ PJ

(
1− (PJ)N

)
2QJ

(
PJ +QJ

)
×

∞∑
K=1

1
K

(
2(K − 1)
(K − 1)

)((
σ(1 + δ1)

)J(N+2)
)η
PKJ Q

K
J (PJ +QJ)K ,

where PJ and QJ are shorthand for,

PJ =
∑
t≥0

(
σ(1 + δ1)

)2tη
p(t)

=
(1− ε)J

1− J
(
σ(1 + δ1)

)2η
ε(1− ε)

,
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and

QJ =
∑
t≥0

(
σ(1 + δ1)

)2tη
q(t)

=
εJ

1− J
(
σ(1 + δ1)

)2η
ε(1− ε)

.

To conclude we make use of the following generating function,

(1−
√

1− 4x)/2 =
∞∑
K=1

(1/K)
(

2(K − 1)
K − 1

)
xK

which holds for x < 1/4. Applying this to the series in the last expression for γ(δ1, η, J,N) we write,

γ(δ1, η, J,N) =
(

2N
(
σ(1 + δ1)

)J)η
QJ (4.38)

+
(

2−N
(
σ(1 + δ1)

)J(N+1)
)η

(PJ)N+1

+ PJ

(
1− (PJ)N

)
2QJ

(
PJ +QJ

)
×

[
1−

√
1− 4

(
σ(1 + δ1)

)J(N+2)η
PJQJ(PJ +QJ)

]
.

4.4.5 Performance for a noisy Binary Symmetric Channel

We now evaluate the anytime exponent of the modified estimator for a very noisy Binary
Symmetric Channel with cross-over probability ε = 1/4. To evaluate the exponent we take out usual
approach and we use (4.38) in Theorem 4.4.1 to obtain the following optimization problem,

maximize η (4.39)
subject to:

1)
(

2N
(
σ(1 + δ1)

)J)η
QJ

+
(

2−N
(
σ(1 + δ1)

)J(N+1)
)η

(PJ)N+1

+ PJ
(1− (PJ)N )

2QJ
(
PJ +QJ

)
×

[
1−

√
1− 4

(
σ(1 + δ1)

)J(N+2)η
PJQJ

(
PJ +QJ

)]
< 1

2) N = 1, 2, 3, · · ·
3) δ1 > 0

4) σ = 2R + δ2, δ2 > 0

Then, by Theorem 4.4.1, if (η,R) is achievable, then the exponent Ea(R) = ηR is achievable.
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We compare (4.39) with (4.31). By similarity in the construction we can solve for (4.39) using
the same technique that was used to solve for (4.31). The basic idea is to observe that δ1 and δ2 are
slack parameters and, consequently, for a fixed (J,N) we can calculate a new function E(J,N)

a (R) = ηR

as a function of R. Having computed E
(J,N)
a for N = 1, 2, · · · and J = 2, 3 we then consider the

optimal function Ea as the least upper bound over the entire family {E(J,N)
a }N=1,2,··· , J=2,3. These

curves evaluated for the BSC for J = 3, N = 1, 2, · · · , 6 and ε = 1/4 are illustrated in Figure 4.3.
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Figure 4.3: The improved anytime exponent for a noisy Binary Symmetric Channel with cross-over
probability ε = 0.25.

4.5 Discussion

If we compare the contour of the achievable regions in Figures 4.2 and Figure 4.3 we see
that the aspect ratio of the contour is ‘tighter’ to the upper bound for the noisy channel. From this
perspective, the code performs better for the noisy Binary Symmetric Channel (BSC) than it does for
the good BSC. It turns out that this surprising result has a simple explanation.

To see what’s going on we first keep in mind that the method of encoding is time-sharing so
that a fixed proportion of the time is spent on transmitting control information (cf. the ‘continue’ or
‘back-up’ hypothesis). For a good channel errors rarely occur. In the absence of errors, however, the
control information carries no ‘useful’ information and therefore may be seen as a waste of time that
would have otherwise been used to transmit new information. This fixed overhead explains why rates
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close to capacity are not achievable for the good channel. In comparison, errors occur frequently in a
very noisy channel. So the control information is useful most of the time and, consequently, the fixed
overhead incurs a smaller hit.
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Chapter 5

Regenerative relaying

In this brief chapter we consider the problem of the reliable transmission of real-time data over
two serially interconnected channels as illustrated in Figure 5.1. We give a precise characterization of
the source-to-destination anytime reliability. To avoid trivialities we assume that the interconnected
channels are not symbol-by-symbol compatible. By this we mean that the relaying node must decode,
interpret and re-encode the incoming data in a streaming fashion. Generalizations to more elaborate
graph topologies are possible, however, these will not be addressed here.

Formally, consider the relaying system is illustrated in Figure 5.1. A source produces one bit
of new information every time step. Denote the n-th bit by sn. At time n, an encoder observes sn.
Based on its observations it emits an ∈ {1, 2, · · · , 2L} through an L-bit erasure channel. The channel is
described by the memoryless probability distribution,

P(bn = a | an = a) = 1− ε,

P(bn = ∅ | ak = a) = ε, n ≥ 0, a ∈ {1, 2, · · · , 2L}

where bn ∈ {1, 2, · · · , 2L}∪{∅} denotes the channel output at time n. At time n a relay receives bn and
based on what it has received up to time n it produces an estimate r(n) =

(
r1(n), r2(n), · · · , rn(n)

)
of

the entire history of the source bits sn1 . Based on its estimate r(n) the relay emits a channel symbol
cn through a discrete-time memoryless, but otherwise arbitrary, channel (DMC). We will not need the
transfer function of the DMC, except that the channel output at time n will be denoted by dn.

Finally, the true destination receives dn at time n. Based on what it has received up to time
n it produces an estimate s̃(n) =

(
s̃1(n), s̃2(n), · · · , s̃n(n)

)
of the entire history of the true source bits

sn1 . The basic problem is to find parameters α > 0 and β such that,

P
(
s̃n(n+ d) 6= sn

)
≤ β 2−αd, n ≥ 0, d ≥ 0, (5.1)

or to determine when no such parameters exist. In particular, we are interested in the largest such
parameter α which will be called the anytime exponent of the source-to-destination system.

Before we proceed to bury ourselves in equations it is instructive to check whether there is a
simpler way to relay the information from the source to the destination. Suppose that the second DMC
had exactly 2L + 1 inputs. In this case we could take the relay to simply forward the channel symbols
bn to the channel symbols cn,

cn = bn, n ≥ 0.
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In this way we obtain a ‘concatenated’ discrete-time memoryless channel from the source to the desti-
nation. So the basic problem reduces to a point-to-point anytime coding problem. This would mean
that there exists α, β > 0 in (5.1) if and only if

CA(α) > 1

where CA(α) is the α-anytime capacity of the concatenated channel.
On the other hand, if the input symbol set of the second DMC is not compatible with the

output symbols of the L-bit erasure channel then there is no channel-to-channel mapping of symbols
without reconstructing the true source bits at the relay. This is because the channel symbol cn depends
explicitly on each of the n bits in sn1 = (s1, s2, · · · , sn).

Source, S
sn

N-bit erasure channel

Relay, R
r(n)

Destination, D
s(n)

An arbitrary discrete-time
memoryless channel (DMC)

an                                                                                                bn

cn
dn

an an

∅

Perfect feedback link

Figure 5.1: An abstract relaying system. The L-bit erasure channel is a discrete-time memoryless
channel described by P(bn = a | an = a) = 1− ε and P(bn = ∅ | an = a) = ε for all a ∈ {1, 2, · · · , 2L}.

5.1 Producing an estimate at the relay

The system consisting of the source, L-bit Erasure Channel and the relay is modeled as an
infinite first-in first-out (FIFO) binary queue. At each time n the source inserts a new bit at the end of
the queue. Immediately after inserting a new entry, the source selects the first l ≤ L non-empty entries
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in the queue and emits these bits in a packet of length L over the L-bit Erasure Channel. If no erasure
occurs then these l entries are removed from the queue. If an erasure occurs then the entries are left in
the queue to be re-transmitted at time n + 1. When n is strictly less than L the source inserts L − l
dummy bits to form an L-bit packet.

Suppose that by time n the relay has received f(n) true information bits,

f(n) = n− source’s queue length,

where the queue length is a random variable depending on the number of erasures that have occurred
up to time n. Because the relay knows when erasures occur it can determine the source’s queue length
and consequently f(n). So at time n the relay produces its best estimate as,

r(n) = (s1, s2, · · · , sf(n), 1, 1, · · · , 1), n ≥ 0, f(n) ≤ n.

Clearly no better estimate is possible. So the estimate is completely determined by the dynamics of
f(n), or equivalently by the dynamics of the queue length.

On the other hand, the queue is a simpleD/M [L]/1 system (deterministic arrivals, bulk Markov
departures). So we can determine the dynamics of the relay’s estimate. Let zn ∈ {0, 1, · · · } denote the
queue length at time n. and Pi,j denote the one-step transition probability,

Pi,j = P(zn+1 = j | zn = i),

and let πz(i) denote the stationary distribution,

πz(i) = lim
n→∞

P(zn = i),

if one exists. Using this notation we have,

P
(
rn(n+ d) 6= sn

)
= P{finding more than d elements in queue at time n+ d} (5.2)

=
∞∑
i=d

πz(i).

Consequently, to conclude the analysis we need to calculate πz(i). From the description of the queue
above, we determine the one-step transition probabilities,

P00 = 1− ε (5.3)
Pi,0 = 1− ε, i = 1, · · · , L− 1

Pi,i−L+1 = 1− ε, i ≥ L

Pi,i+1 = ε, i ≥ 0,

and the ‘generic’ balance equation,

πz(i) = Pi+L−1,iπz(i+ L) + Pi−1,iπz(i− 1) (5.4)
= (1− ε)πz(i+ L) + επz(i− 1), i ≥ L.

It is clear now that πz(i) will have a solution of the form γi up to a coefficient to be determined by the
balance equations for πz(i), i = 1, 2, · · · , L− 1. Using (5.2) and (5.4) we obtain,
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Theorem 5.1.1 Let the L-bit erasure channel have erasure probability ε such that

(1− ε)γL+1 − γ + ε = 0 (5.5)

has a solution |γ′| < 1. Then for any time n ≥ 0 delay d ≥ 0, the probability of estimation error for the
relay is upper bounded as,

P
(
rn(n+ d) 6= sn

)
≤ β′2−d log2

1
γ′ (5.6)

for some strictly positive constant β′ > 0 that depends on ε.

Remark 5.1.1 If equation (5.5) has a solution γ′ in the unit circle then it has at most one such solution
in the unit circle. For a fixed ε, we have that γ′ → ε as L→∞.

Remark 5.1.2 For L = 2 we have a unique solution |γ′| < 1 when ε < 1/2. This solution is given by

γ′ =
ε

1− ε
.

5.2 Relaying the estimate

We now have a simple model for the first part of the system consisting of the source, the L-bit
Erasure Channel and the estimator at the relay. The question that remains to be answered is how the
intermediate estimate will be transmitted to the true destination. Many solutions are possible. In this
section we describe a general solution that is simple and performs well.

Let p′ and q be two integers to be determined later. We define p = log2

∑p′

i=0 2i and pick
an ‘off-the-shelf’ rate-p/q anytime code for the discrete-time memoryless channel that lies between the
relay and the true destination. We will not worry about the specifics of the code; only that the code
can emit one of {1, 2, · · · , 2p′} symbols every q time steps.

The relay maintains an infinite binary queue in conjunction with the source’s queue. Every q
time steps the relay selects and removes up to the first 0 ≤ i ≤ p′ entries of its own queue and emits i
true information bits plus p′ − i ‘dummy’ symbols. So every q time steps the relay prepares a packet
that can take up to

∑p′

i=0 2i values and hands it to the ‘off-the-shelf’ anytime encoder, which then ships
it off to the true destination. On the other hand, at each time step, the relay receives up to L true
source bits. It simply places these bits at the end of the queue.

The source’s and relay’s queues form a series queuing system. In the language of queuing
systems, the source’s queue is a D/M [L]/1 (deterministic arrival, bulk departure) and the relay’s queue
is one of deterministic departures. The arrivals to the relay’s queue are exactly equal to the departures
of the source’s queue. We have illustrated the situation in Figure 5.2.

Let πz,y(i, j) denote the stationary distribution of the series queuing system. Suppose for the
moment that we have calculated πz,y(i, j). Would this help us in achieving our ultimate objective, to
determine α, β > 0 in (5.1)? We attempt to answer this question in the following theorem where the
notation CA(α) denotes the α-anytime capacity of the link between the relay and the true destination.

Remark 5.2.1 Suppose CA(α) ≤ 1 and the L-bit erasure channel has a non-zero probability ε > 0 of
erasures. Then, by definition of the Anytime capacity, there is no α, β > 0 for which,

P
(
s̃n(n+ d) 6= sn

)
≤ β 2−αd, n ≥ 0, d ≥ 0.
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Theorem 5.2.1 Pick p′ and q and pick an off-the-shelf rate R = log2

Pp′
i=0 2i

q anytime encoder such that
R > 1. Then, if,

1. there exists some α′ for which CA(α′) > R,

2. and there exists a stationary distribution πz,y(i, j) for the joint statistics of the source’s and relay’s
queues,

we can find an δ > 0 for which

P
(
s̃n(n+ d) 6= sn

)
≤ β(δ) inf

α:CA(α)≥R+δ
inf

0≤ρ≤1

[
2−α(1−ρ)d +

∑
i+j≥ρd

πz,y(i, j)
]
.

Consequently, we can find some α, β > 0 that satisfy (5.1).

Proof: Fix 0 ≤ ρ ≤ 1. Then the probability of the error event χ = {s̃n(n+ d) 6= sn} is upper bounded
by,

P
(
χ
)

≤ P
(
χ | relay has emitted bit sn by time n+ ρd

)
(5.7)

+P
(
relay has not emitted bit sn by time n+ ρd

)
By the definition of anytime capacity,

P
(
χ | relay has emitted bit sn by time n+ ρd

)
≤ β′2−αd

for any α such that CA(α) > R. The coefficient β′ depends on how close CA(α) is to the transmission
rate R. To lose the dependence we insist on the condition CA(α) ≥ R+ δ so that

P
(
χ | relay has emitted bit sn by time n+ ρd

)
≤ β(δ) inf

α:CA(α)≥R+δ
2−αd (5.8)

for some finite constant β(δ) <∞.
Finally, the relay has not emitted bit sn by time n + ρd if we find more than a total of ρd

entries in the source’s queue plus the relay’s queue. This is nothing but,

P
(
relay has not emitted bit sn by time kn+ ρd

)
=

∑
i+j≥|ρd|

πz,y(i, j). (5.9)

Using (5.9) and (5.8) in (5.7) and taking the infremum over all 0 ≤ ρ ≤ 1 gives the desired result. �
This result has an appealing aspect. The stationary distribution π is independent of the second

discrete-time memoryless channel. It is a function only of the erasure probability ε of the erasure channel
and the rate R at which the relay emits bits. On the other hand, the anytime exponent is independent
of the stationary distribution. It depends only on the rate R. So the relaying problem is reduced to
picking the optimum rate R. Picking a small rate increases the performance of the anytime encoder but
degrades the performance of the queues. Picking a larger rate improves the performance of the queues
but degrades the performance of the anytime encoder.
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5.3 Analysis of the queuing system

Before we stated our theorems we made the assumption that we could calculate π. It turns
out that the problem has enough structure that we can find a closed form solution up to the calculation
of coefficients. Here are the calculations.

Recall that zn denotes the state of the source’s queue at time n. Denote the relay’s state by
yn. Recall also that πz,y(i, j) is the stationary distribution of Pn(zn = i, yn = j). As we did in the
previous section, we determine π by solving for the balance equations. By direct observation of the
one-step transition probabilities (5.3) and for sufficiently large i, j,

πz,y(i, j) = πz,y
(
i− p+ qL, j + q(L− 1)

)
P

(q)
j+q(L−1), j (5.10)

= πz,y
(
i− p+ (q − 1)L, j + (q − 1)(L− 1)− 1

)
P

(q)
j+(q−1)(L−1)−1, j

= πz,y
(
i− p+ (q − 2)L, j + (q − 2)(L− 1)− 2

)
P

(q)
j+(q−2)(L−1)−2, j

...

= πz,y
(
i− p, j − q

)
P

(q)
j−q, j

=
q∑

k=0

πz,y
(
i− p+ (q − k)L, j + (q − k)(L− 1)− k

)
P

(q)
j+(q−k)(L−1)−k, j

where P (q)
j1,j2

denotes the q-step transition probability of the state of the source’s queue:

P(zn+q = j2, xn = j1).

That there is such a compact representation for the balance equations is not a surprise. This is conse-
quence of the fact that the series queuing system consists of one queue driving the other. This is why
the balance equations are defined only in terms of the q-step transition probability of the driving queue.

To conclude the calculations we need two more things; the q-step transition probabilities and
a guess for the solution. Again by direct observation of (5.3) we see that for large j there are exactly(
q
k

)
ways to go from state zn = j+ (q− k)(L− 1)− k to state zn+q = j in q steps. Each of these choices

involve k ‘up’ transitions and q − k ‘down’ transitions. So we have,

P
(q)
j+(q−k)(L−1)−k, j =

(
q

k

)
(1− ε)kεq−k.

Plug this back into (5.10) and write,

πz,y(i, j) =
q∑

k=0

(
q

k

)
πz,y

(
i− p+ (q − k)L, j + (q − k)(L− 1)− k

)
(1− ε)kεq−k. (5.11)

We guess that the solution to this last recurrence equation is of the form,

πz,y(i, j) = πy(i)πz(j)

= ηiγj
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where πy is the stationary distribution of {yn} and πz is the stationary distribution of {zn}. Plug this
guess into (5.11) and simplify,

1 = ηqL−pγq(L−1)

( q∑
k=0

(
q

k

)
η−kLγ−k(L−1)(1− ε)kεq−k

)
= ηqL−pγq(L−1)

(
η−Lγ−(L−1)(1− ε) + ε)q

= η
qL−p

q γ(L−1)
(
η−Lγ−(L−1)(1− ε) + ε)

and with one final step,
ηR = (1− ε) +

(
γL−1ε

)
ηL, (5.12)

where R = p/q is the rate at which the relay emits bits to the final destination. Finally, for appropriate
values of L,R, ε if we can find |γ| < 1 in (5.5) and |η| < 1 in (5.12) then these must be the unique solutions
of (5.5) and (5.12) respectively. This concludes our analysis and treatment of the subject. The reader
is encouraged to compare the structure of the characteristic equation (5.12) with the representation in
(3.13) of a Binary Erasure Channel.

M[L]Deterministic arrivals.
1 bit each time step

Bulk departures.
Upto L bits each

time step.

D

Deterministic departures.
p' bits each q time steps.

Source’s Queue

Relay’s Queue

Figure 5.2: Illustration of the series queuing system for the source and relay.
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Chapter 6

Recurrence and stability in infinite
Markovian jump systems

In one of our many initial attempts to model anytime codes we considered a systems approach
based on jump systems. Ultimately we discovered that there were better methodologies but we never-
theless pursued our investigation for the sake of completeness. In this chapter we present what we’ve
learned about jump systems and a set of stability criteria that may be viewed as a simpler and finite
alternative to the traditional criteria which requires the solution of an infinite set of balance equa-
tions. The material is presented in a self-contained fashion and may be read independently of the other
chapters.

Discrete-time jump linear systems are useful models for many systems that exhibit abrupt
changes in their dynamics. In the physical world, the change in dynamics is due to the occurrence
of discrete events at random times. For example, the time and number of customers that arrive at a
checkout-stand or the time and amount of change in the price of stock. Intuitively, there are two sources
of randomness; the time at which an event occurs and which of several possible events have occurred.

The system is said to be Markovian if the times between events are independent (memoryless)
and the event which will occur next depends only on the last occurred event. Formally, let θ(k), k ≥ 1,
be a Markov chain that takes values in the infinite set S = {0, 1, 2, · · · }. To each i ∈ S assign an n-by-n
matrix Ai. Based on this Markov chain and assignment, the Markovian jump linear system is,

xk+1 = Aθ(k)xk + vk, k ≥ 0, (6.1)

in which xk ∈ Rn is the state variable and vk ∈ Rn is a disturbance term.
We are interested in determining the asymptotic stability of the state xk as k tends to ∞.

Because the system can exhibit an infinite number of dynamics, the general problem is difficult. An
exact characterization of stability requires solving an infinite number of coupled balance equations.

In contrast, there are many physical systems that are typically simple even though the system
may potentially exhibit an infinite number of complex dynamics at random times. This is because a lot
of events are rare. In this article, we attempt to find a simple characterization of such systems.

To illustrate the idea, let’s solve the problem for a simple example. Consider the Markov chain,
θ(k), illustrated in Figure 6.1. For simplicity there is no disturbance, vk = 0, k ≥ 0. Take A(0,0) = 1/2
and for all 1 ≤ j + 1 ≤ i, A(i,j) = 2. So we have a system that is seemingly unstable. However, we will
show that for qi = Cλ−i, i ≥ 0, λ > 16/3, the Markov chain visits state (0, 0) so frequently that the
system ‘typically’ behaves like xk+1 = 1/2xk and is consequently stable.
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Here are the calculations. We define the quantities,

Tn = min{k > 0 | θ(T 1 + · · ·+ Tn−1 + k) = (0, 0)}
nk = min{n | T 1 + · · ·+ Tn ≥ k}

The random variable (r.v.) Tn is the time between the (n − 1)st and nth return to state (0, 0). The
r.v. nk is the number of times (0, 0) has been visited by time k ≥ 1. By the Markov property, Tn are
independent and identically distributed (i.i.d.). By symmetry in the problem, P (T 1 = i+1) = qi, i ≥ 0.
Using this notation, we write

xk = 2m × 2T
nk−1−2 × · · · × 2T

1−2 × x0,

in which 0 ≤ m < Tnk . By taking the square, expectations and using the independence of the return
times,

E
(
‖xk‖2

∣∣ θ(0) = (0, 0), x0

)
= E22m × E

(
E22(T 1−2)

)nk−1 × ‖x0‖2

≤ E4T
1 × E

(
E4T

1−2
)nk−1 × ‖x0‖2

=
4λ
λ− 4

× E

(
λ

4λ− 16

)nk−1

× ‖x0‖2.

Furthermore, by definition of nk and by Markov’s inequality,

P (nk < n) = P (T 1 + · · ·+ Tn ≥ k) ≤
E
(
4T

1)n
4k

.

So, taking n = bk/µc, for an appropriately chosen µ > 0, it is easy to see that P (nk < bk/µc) → 0
exponentially with k. On the other hand, λ

4λ−16 < 1 because λ > 16/3. So we have the following simple
inequality,

E

(
λ

4λ− 16

)nk

≤ P
(
nk < bk/µc

)
+
(

λ

4λ− 16

)bk/µc
P
(
nk ≥ bk/µc

)
.

Evidently, this expectation, and hence, E
(
‖xk‖2

∣∣ θ(0) = (0, 0), x0

)
tends to zero exponentially as k

tends to infinity.
So what have our calculations revealed? We started with a system that was unstable all the

time except when the underlying Markov chain visited state (0, 0). Regardless, we showed that, by
recurrence, the system was stable. We believe that the preceding example illustrates a basic fact about
many real-world jump systems. That is, the system may potentially exhibit an infinite number of
dynamics. But the system typically exhibits only a finite set of ‘good’ dynamics. Deviations to ‘bad’
dynamics for long periods are unlikely. Consequently, the system, although seemingly complex, behaves
like a simple and finite system. The main results of this chapter (Theorems 6.2.1 and 6.2.2) models this
effect.

The general approach for determining stability of (6.1) is to look at the Lyapunov exponents
of the system. Costa and Fragoso [7] showed that stochastic stability (c.f. Definition 6.1.1) is equivalent
to the existence of a solution to an infinite set of coupled Lyapunov equations. The ideas presented
here should be seen as an alternative way to determine stability when the system (6.1) is sufficiently
recurrent. Our idea is similar to the notion of ‘regularity’ used by Fang and Loparo in [11] to find
computationally efficient methods for determining stability of discrete-time jump linear systems. A
similar idea, under a different name, can also be found in Bucklew [4].
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q1
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4,0 4,1 4,2 4,3

q4
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Figure 6.1: A simple infinite Markov jump linear system. The state θ(k) of the chain takes values
in S = {(0, 0), (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), · · · }. The transition probabilities are qi = Cλ−i,
i ≥ 0, λ > 16/3 and C = 1/

∑∞
i=0 λ

−i. The coefficient process is A(0,0) = 1/2 and for all 1 ≤ j + 1 ≤ i,
A(i,j) = 2.
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6.1 Preliminaries

The concepts of stability for infinite jump systems is somewhat complex and fragile. In this
section, we present some notation and preliminary results to familiarize the reader with the intricacies.

Recall that the infinite Markov jump linear system is,

xk+1 = Aθ(k)xk + vk, k ≥ 0, (6.2)

where xk ∈ Rn is the state variable, ‖vk‖ ≤ V is an unknown but bounded disturbance term, Ai,
i ∈ S = {0, 1, 2, · · · } is a collection of n-by-n matrices and θ(k) ∈ S is a countable state Markov chain.
The Markov chain is assumed to be time-homogeneous, irreducible and aperiodic.

The uncertainty in the system is due to (i) the disturbance vk, (ii) the initial state x0 and (iii)
the Markov chain θ(k). We do not assume a probabilistic structure on the disturbance. For simplicity
we also take x0 as a fixed non-random vector. Then the only source of randomness is the Markov chain:
the distribution p = (p0, p1, · · · ) of the initial state θ(0) and the transition probabilities P = (pij)S×S .
Denote the underlying probability space by (Ω,F ,P). The solution process xk = x(k, x0, ω, v

k), where
vk = (v1, · · · , vk), is then a random process on the probability space Ω. We will use the explicit notation
x(k, x0, ω, v

k) only when necessary, otherwise we will simply write xk.
The preceding structure leads us to the following definitions of stability which are similar to

those found in [12].

Definition 6.1.1 Let Φ be a set of probability distributions (for the initial state θ(0)) on S. Then, for
` > 0, system (6.2) is said to be,

a. Asymptotically `-stable w.r.t. Φ if for any x0 ∈ Rn and distribution p ∈ Φ,

lim
k→∞

E‖x(k, x0, ω, 0)‖` = 0.

b. Stochastically `-stable w.r.t. Φ if for any x0 ∈ Rn and distribution p ∈ Φ,

∞∑
k=0

E‖x(k, x0, ω, 0)‖` <∞.

c. Exponentially `-stable w.r.t. Φ if for any x0 ∈ Rn and distribution p ∈ Φ of θ(0), there exists K, τ > 0
such that,

E‖x(k, x0, ω, 0)‖` ≤ K‖x0‖`2−τk.

d. Asymptotically `-bounded w.r.t. Φ if for any x0 ∈ Rn and distribution p ∈ Φ,

lim
k→∞

sup
vk

E‖x(k, x0, ω, v
k)‖` <∞.

The cases for ` = 1 and ` = 2 are also called mean stable and mean-square stable respectively.

One might expect that some of the concepts of stability are related. Indeed, in Definition 6.1.1,
(b) implies (a) and (c) implies both (a) and (b). Furthermore, if the Markov chain has only a finite
number of states, then (a) also implies (b), so that (a) and (b) are equivalent.

One might also expect that exponential stability implies asymptotic boundedness. However,
this conjecture is false in the absence of additional assumptions. To see why, consider a simple example
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with pi(i+1) = 1, A0 = 0 and for all i > 0, Ai = 2. Thus, if we take Φ = {(1, 0, 0, · · · )} then the system is
asymptotically, exponentially and stochastically stable, but not asymptotically bounded. On the other
hand, suppose that the Markov chain admits a stationary distribution π = (π0, π1, · · · ) and the chain
is stationary, then exponential stability implies asymptotic boundedness. To show this, write,

x(k, x0 = 0, ω, vk) =
k∑
j=1

Aθ(k,ω) · · ·Aθ(j+1,ω)vj .

Then,

E‖x(k, x0 = 0, ω, vk)‖ ≤
∑k

j=0E‖Aθ(k,ω) · · ·Aθ(j+1,ω)‖V

=
∑k

j=0E‖Aθ(j,ω) · · ·Aθ(1,ω)‖V (6.3)

=
∑k

j=0E‖x(j, ‖x0‖ = V, ω, 0)‖

in which the second equality follows from the stationarity of θ(k). But the system is exponentially
stable, so there exists λ, β > 0 such that E‖x(k, x0 = 0, ω, 0)‖ ≤ λV 2−βk. Thus, the last series in
(6.3) is convergent so that the system is asymptotically bounded. This simple derivation leads to the
following result.

Corollary 6.1.1 Let Φ be a set of probability distributions on S = {0, 1, 2, · · · } that are P -invariant.
That is, if p = (p0, p1, · · · ) ∈ Φ then p′ = (p′0, p′1, · · · ) ∈ Φ where p′i =

∑∞
j=0 pjipj. If there exists

constants K,λ > 0 such that for all x0 and p ∈ Φ,

E‖x(k, x0, ω, v
k = (0, · · · , 0)‖ ≤ K‖x0‖2−λk,

the system is asymptotically bounded.

Let’s conclude our discussion of stability with the following question. Consider system (6.2)
and the largest set of distributions Φ for which the system is stable with respect to Φ. Then, how big
is Φ? In our experience, we’ve seen that it can be quite small. For example, recall the simple system
we looked at in the introduction. If the distribution P

(
θ(0) = (i, 0)

)
, i ≥ 1 is ‘heavy-tailed’, then the

system is unstable. For example, let,

P
(
θ(0) = (i, 0)

)
= Di−2, D = 1/

∞∑
i=1

i−2,

Then, the instability of the system follows by calculating the following expectation,

E
(
‖xk‖2

)
≥ 22k‖x0‖2P{the chain was in a long branch at time k = 0}

≥ 22k‖x0‖2
∞∑
i=k

Di−2

≥ 22k‖x0‖2

∫ ∞

k+1
Dy−2dy

=
22k‖x0‖2D

(k + 1)

and letting k tend to infinity.
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6.2 Main results

Our objective is to characterize the stability of jump systems that have the following property:
the system may potentially exhibit an infinite number of dynamics but the system typically exhibits
only a finite set of ‘good’ dynamics and deviations to other ‘bad’ dynamics for long periods are not
likely. Evidently, our first task is to describe more precisely what we mean by this.

For any state i ∈ S of the underlying Markov chain, we define the following random variables,

R(i) = min{k ≥ 1 | θ(k) = i},
T 1(i) = min{k ≥ 1 | θ(Y (i) + k) = i},

and for n > 1, recursively,

Tn(i) = min{k ≥ 1 | θ(R(i) + T 1(i) + · · ·Tn−1(i) + k) = i}.

So R(i) is the time to reach state i for the first time and Tn(i) is the time between the (n − 1)st and
nth return to i. Based on the return-times write the coefficient process {Aθ(k)} as follows,

ARk (i) = Aθ(k), k = 1, · · · , R(i),

A1
k(i) = Aθ(k+R(i)), k = 1, · · · , T 1(i),

and for n > 1,
Ank(i) = Aθ(k+R(i)+T 1(i)+T 2(i)+···+Tn−1(i)), k = 1, · · · , Tn(i).

Finally, denote,

T (i) = T 1(i),

Γ(i) =
T 1(i)∏
k=1

A1
k(i), (6.4)

∆(i) =
T 1(i)∏
k=1

max
(
‖A1

k(i)‖, 1
)

Lemma 6.2.1 Consider system (6.2) with vk = 0. Let ` > 0 and i ∈ S be a state of the underlying
Markov chain, θ(k), for which E

(
∆(i)`

)
is finite. Then, there exists a finite random variable γ

(
θ(0)

)
such that,

E
(
‖xk‖`

∣∣ θ(0)
)
≤ γ

(
θ(0)

)
E
(
E‖Γ(i)‖`nk(i)

)
in which nk(i) = min{n ≥ 1 | T 1(i) + · · ·+ Tn(i) ≥ k}.

Remark 6.2.1 The random variable γ(θ(0)) is a function of two things: ∆(i) and the time R(i) at
which the Markov chain reaches i for the first time. The details are shown in the proof of the Lemma
in the appendix.

In this lemma, we have attempted to capture a notion of typicality in infinite jump systems. We
pick a state i ∈ S of the underlying Markov chain. Each time the chain visits i, the expected magnitude
of the state E‖xk‖` grows (if E‖Γ(i)‖` > 1) or shrinks (if E‖Γ(i)‖` < 1) by a factor of E‖Γ(i)‖`. If the
chain is positive recurrent, then the chain visits i infinitely often. So, the number E‖Γ(i)‖` characterizes
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the typical behavior of the system. Intuitively, the behavior is good when E‖Γ(i)‖` < 1 and the chain
visits i frequently.

Let’s come back to stability. With respect to the preceding characterization, are there any
general conditions for stability?

Theorem 6.2.1 Consider system (6.2) with vk = 0. Let ` > 0 and i ∈ S be a state of the un-
derlying Markov chain, θ(k), for which E

(
∆(i)`

)
is finite and E‖Γ(i)‖` < 1. Consider the set Φ =

{(1, 0, 0, · · · ), (0, 1, 0, · · · ), · · · } of distributions of θ(0). Then,

a. If ET (i) <∞ the system is asymptotically `-stable w.r.t. Φ,

b. If E
(
T (i)2

)
<∞ the system is stochastically `-stable w.r.t. Φ,

c. If ∃τ > 0 s.t. EeτT (i) <∞, the system is exponentially `-stable w.r.t. Φ.

Proof: The system is asymptotically `-stable w.r.t. the given Φ if and only if E‖xk‖` → 0 for each
φ ∈ Φ. Due to the special structure of Φ, this is equivalent to E

(
‖xk‖`

∣∣ θ(0)
)
→ 0. Similarly for

stochastic and exponential stability.
By definition of nk(i) (Lemma 6.2.1) we have,

P (nk(i) < n) = P (T 1(i) + · · ·+ Tn(i) ≥ k).

On the other hand, for any λ < 1, we have,

E(λnk(i)) ≤ P (nk(i) < n) + λnP (nk(i) ≥ n)
≤ P (T 1(i) + · · ·+ Tn(i) ≥ k) + λn. (6.5)

Using this inequality we will now show the desired results using classical techniques from the theory of
large deviations.
Case a. Let n = b

√
k/µc for some µ > ET (i). By Markov’s inequality,

P (T 1(i) + · · ·+ Tn(i) ≥ k) ≤ nET (i)
k

≤ 1√
k
.

So P (T 1(i) + · · · + Tn(i) ≥ k) → 0 as k → ∞. We also have that λb
√
k/µc → 0 as k → ∞. Thus, by

(6.5), E(λnk(i)) → 0 as k → ∞. So by taking λ = E‖Γ(i)‖` in Lemma 6.2.1, E
(
‖xk‖`

∣∣ θ(0)
)
→ 0 as

k →∞. In conclusion, the system is asymptotically `-stable w.r.t. Φ = {(1, 0, 0, · · · ), (0, 1, 0, · · · ), · · · }.
Case b. Let n = bk1/4/µc for some µ > ET (i). Again by Markov’s inequality,

P (T 1(i) + · · ·+ Tn(i) ≥ k) ≤ n2ET (i)2

k
≤ 1
k3/2

.

So the series
∑k

t=1 P (T 1(i)+ · · ·+Tn(i) ≥ t) is convergent. On the other hand, the series
∑∞

t=1 λ
bk1/4/µc

is also convergent. This follows by the integral test of convergence; that is,

∞∑
t=1

λk
1/4/µ <∞⇔

∫ ∞

1
λt

1/4
dt <∞.



74

But, by the change of variables y = t1/4,
∫∞
1 λt

1/4
dt =

∫∞
1 4y3λydy <∞. Using the convergence of the

preceding two series, we have by (6.5),

lim
k→∞

k∑
t=1

E(λnt(i)) <∞.

The desired result follows once again by taking λ = E‖Γ(i)‖` in Lemma 6.2.1 and observing the definition
of stochastic stability.
Case c. Let n = bk/µc for some µ > ET 1(i). For the last time, by Markov’s inequality,

P (T 1(i) + · · ·+ Tn(i) ≥ k) ≤ E(eτT (i))n/eτk

= e−k(τ−lnE(eτT (i))/µ), τ > 0.

A known result (Durrett, Chapter 1, Lemma 9.4) is that the exponent τ − lnE(eτT (i))/µ > 0 for some
small τ provided that there exists τ > 0 for which EeτT (i) <∞. In conclusion, by (6.5), E(λnt(i)) → 0
exponentially as k →∞ and the desired result follows again by taking λ = E‖Γ(i)‖` in Lemma 6.2.1.�

This shows that there is a close connection between stability and recurrence. Intuitively,
if the system is recurrent, it exhibits typical behavior. The preceding Theorem justifies this line of
thinking. Deviations from the typical behavior are characterized by examining the frequency at which
the underlying Markov chain visits state i.

We now present the final result of this chapter. It says that, by recurrence, exponential stability
implies mean boundedness. This may seem obvious, but recall (c.f. Section 6.1) that the implication is
not in general true.

Theorem 6.2.2 Consider the system (6.2). Suppose one can find a state i ∈ S of the underlying
Markov chain for which E∆(i) is finite and E‖Γ(i)‖ < 1. If for some τ > 0, EeτT (i) <∞,

lim
k→∞

sup
v1,...,vk

E
(
‖xk‖ | θ(0)

)
<∞.

In other words, system (6.2) is asymptotically mean-bounded with respect to Φ = {(1, 0, 0, · · · ), (0, 1, 0, · · · ), · · · }.

Proof: At time k, the state of the system (6.2) is given by the random sum,

xk = Aθ(k) · · ·Aθ(1) x0 +
k∑
i=1

Aθ(k) · · ·Aθ(i+1) vi. (6.6)

Based on the state i of the underlying Markov chain, define,

zn,m(i, z) =
Tn∏
j=1

Anj (i) · · ·
Tm∏
j=1

Amj (i)× z, m ≤ n.

Using this, we may decompose (6.6) into two parts: the ‘zero-state’ and the ‘zero-input’. We write,

xk =Ank(i)
p (i) · · ·Ank(i)

1 (i) znk(i)−1,0(i, z0)

+
k∑
j=1

Ank(i)
p (i) · · ·Ank(i)

1 (i) znk(i)−1,nj(i)

(
i, A

nj(i)

Tnj(i)(i) · · ·A
nj(i)
q (i) vj

)
(6.7)
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in which nk(i) = min{n | T 1(i) + · · ·+ Tn(i) ≥ k} and 0 ≤ p < Tnk(i) and 0 ≤ q < Tnj(i).
By Theorem 6.2.1 we already know that the zero-input part of (6.7) tends to zero exponentially

with k. So we only need to worry about the series in (6.7). Taking norms and expectation of the series
and observing that Ank(i) is independent of zn,m(i, z), m ≤ n, we obtain,

E‖
k∑
j=1

Ank(i)
p (i) · · ·Ank(i)

1 (i) znk(i)−1,nj(i)

(
A
nj(i)

Tnj(i) · · ·A
nj(i)
q vj

)
‖

≤
∑
j=1

E
∥∥Ank(i)

p (i) · · ·Ank(i)
1 (i)

∥∥E∥∥znk(i)−1,nj(i)

(
A
nj(i)

Tnj(i) · · ·A
nj(i)
q vj

)∥∥ (6.8)

≤
∑
j=1

E∆(i)E
∥∥znk(i)−1,nj(i)

(
A
nj(i)

Tnj(i) · · ·A
nj(i)
q vj

)∥∥.
On the other hand, by definition of zn,m(i, z), we have,

E‖znk(i)−1,nj(i)(z)‖ ≤ E∆(i)V E
(
E‖Γ1‖

)nk(i)−1−nj(i). (6.9)

Now observe that P (nk(i)− 1− nj(i) < n) = P (T 1(i) + · · ·+ Tn+1(i) ≥ k − j) and for any 0 ≤ λ < 1

Eλnk(i)−1−nj(i) ≤ P (nk(i)− 1− nj(i) < n) + λnP (nk(i)− 1− nj(i) ≥ n).

Similar to what we did in Theorem 6.2.1, let n = b(k − j)/µc for some µ > ET (i) and use Markov’s
inequality to obtain,

P (T 1(i) + · · ·+ Tn+1(i) ≥ k − j) ≤ e−(k−j)(τ−lnE(eτT (i))/µ), τ > 0.

Finally, invoking the large deviations result (Durrett, Chapter 1, Lemma 9.4) once again, we have
that the exponent τ − lnE(eτT (i))/µ > 0 for some small τ > 0 and µ > ET (i). Consequently,
Eλnk(i)−1−nj(i) ≤ eε(k−j) for some small ε > 0. This means, however, that the series

∑k
j=1

(
E∆(i)

)2
V Eλnk(i)−1−nj(i)

is convergent. The desired result follows by taking λ = E‖Γ1(i)‖ and substituting (6.9) into (6.8). �

Proof of Lemma 6.2.1

Define a process, z(i) = {zn(i)}, by sampling x at the return-times Tn(i) according to z0(i) =
xR(i) and for n ≥ 1, zn(i) = xR(i)+T 1(i)+···+Tn(i). This new process may be written recursively as,

zn(i) =
(∏Tn(i)

k=1 Ank(i)
)
zn−1(i). (6.10)

The original system, x, is related to the sampled system, z(i), by the relation,

xk =
∏m
j=1A

nk(i)
j (i)× znk(i)−1(i), k ≥ 0, (6.11)

in which 0 ≤ m < Tnk(i).
By the Markov property, the blocks {An1 (i), · · · , AnTn(i)(i)} are i.i.d. So, for zn−1(i) 6= 0, the

random variable ‖zn(i)‖/‖zn−1(i)‖ is independent of zn−1(i). Denote Z = {zn(i) 6= 0, 0 ≤ n ≤ nk(i)−1}.
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Using the independence and (6.10),

E
(
‖znk(i)−1(i)‖`

)
= E

(
‖znk(i)−1(i)‖`

∣∣Z)P (Z) + E
(
‖znk(i)−1(i)‖`

∣∣Zc)P (Zc)

= E
(
‖znk(i)−1(i)‖`

∣∣Z)P (Z)

= EE

((‖znk(i)−1(i)‖
‖znk(i)−2(i)‖

· · · ‖z1(i)‖
‖z0(i)‖

‖z0(i)‖
)` ∣∣∣∣∣nk(i), Z

)
P (Z)

= E

(
E
(‖znk(i)−1(i)‖
‖znk(i)−2(i)‖

∣∣∣Z)` · · ·E(‖z1(i)‖‖z0(i)‖

∣∣∣Z)`E(‖z0‖)`)P (Z)

≤ E
(
E‖Γ(i)‖`

)nk(i)−1
E
(
‖z0(i)‖`

)
P (Z). (6.12)

Finally, taking norms and expectation of (6.11) and using the independence of Ank(i)
m , 0 ≤ m < Tnk(i)

and znk(i)−1, we obtain,

E
(
‖xk‖`

∣∣ θ(0)
)

= E
( m∏
j=1

A
nk(i)
j (i)

)` × E
(
‖znk(i)−1(i)‖`

∣∣ θ(0)
)

≤ E
(
∆(i)

)` × E
(
‖znk(i)−1(i)‖`

∣∣ θ(0)
)
. (6.13)

The desired result follows by substituting (6.12) into (6.13) and observing that,

E
(
‖z0(i)‖`

∣∣ θ(0)
)

= E
(
‖xR(i)‖`

∣∣ θ(0)
)
,

which, by the following claim, is a finite random variable. �
Claim: E

(
‖xR(i)‖`

∣∣ θ(0)
)
<∞.

Proof of claim: Recall that we assume the Markov chain is irreducible. So for any state j ∈ S, there is
a finite integer t > 0 for which,

qt(i, j) = P
(
θ(t) = j, T 1(i) ≥ t

∣∣ θ(0) = i
)
> 0.

Using this,

E
(

∆ (i)`
)

= E
(∏T 1(i)

k=1 max(‖Aθ(k)‖`, 1)
∣∣ θ(0) = i

)
≥ E

(∏T 1(i)
k=1 max(‖Aθ(k)‖`, 1)‖

∣∣ θ(0) = i, θ(t) = j, T 1(i) ≥ t
)
× qt(i, j)

≥ E
(∏T 1(i)

k=t+1‖Aθ(k)‖
`
∣∣ θ(t) = j

)
× qt(i, j)

= E
(∏R(i)

k=1‖A
R(i)
k ‖`

∣∣ θ(0) = j
)
× qt(i, j).

Dividing both sides by qt(i, j) gives the desired result. �

6.3 Conclusion

Infinite Markov jump linear systems are good models for many real-world systems. The sta-
bility analysis of such systems is difficult because the system may potentially exhibit an infinite number
of different dynamics at random times. In general, one needs to solve an infinite number of balance
equations.
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In this chapter, we first presented a simple example to demonstrate a basic property of many
real-world jump systems: even though there are an infinite number of different dynamics, only a finite
set of these are typical. Consequently, the system, although seemingly complex, behaves like a simple
and finite system. The main results of this paper (Theorems 6.2.1 and 6.2.2) was our attempt to capture
this effect.

We are unaware of any other literature that has addressed this issue. In comparison to known
results, we provide an alternative view of jump system that may be useful to determine stability for
systems with the mentioned property.
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Chapter 7

Future work: Noisy feedback

Consider a discrete memoryless channel and the basic problem of digital communication: the
reliable transmission of an infinite stream of bits such that each bit experiences a finite end-to-end delay.
In almost all practical situations, this problem is solved by grouping the bits into blocks and by the
use of ‘good’ block codes. So the problem is not why we use such blocks but how to group the bits. If
there is no feedback channel or if the feedback is perfect, there is no ambiguity among the encoder and
decoder as to which block corresponds to which group of bits. So the overall reliability of the entire
stream is determined by the reliability of the block code. Unfortunately, this construction cannot be
taken for granted if the feedback channel is noisy. To see this, keep in mind that feedback is used to
determine whether a particular block will be retransmitted at a future time. However, a long sequence
of errors is always possible, so that the encoder and decoder are in disagreement about which block of
bits is being transmitted. Observe that such a situation leads to a very large probability of decoding
error which may effectively be the dominating term in the overall reliability of the bit stream.

In a practical situation we overcome the difficulty by the use of sequence numbers. Just think
of the way we achieve reliability in TCP/IP. However, from a theoretical point of view, for any given
block length, the sequence numbers would grow unboundedly so that asymptotically the transmission
rate tends to zero. The infinite problem is therefore fundamentally interesting and different from the
case of no feedback or even perfect feedback.

In the following paragraphs we describe a coding scheme that was described by A. Sahai and
the author to address the infinite problem. The idea is to encode the retransmission requests using
a low-rate Anytime code. Because of the Anytime property, the encoder and decoder are eventually
guaranteed to be in agreement about which block is being transmitted. Therefore, the undetected
feedback error can never dominate the overall reliability of the infinite bit-stream. The basic idea is to
mimic Yamamoto and Itoh’s [37, 38] variable-length block coding scheme for the infinite setting:

• Each block is broken up into sub-blocks which are transmitted using a good block-code. The
decoder feeds back its estimate of each of the sub-blocks using an expurgated block code,

• After the estimate of the final sub-block is transmitted, the encoder emits a ‘confirm’ or ‘deny’
control signal. The decoder feeds back its estimate of the control signal using an anytime code.
If denied, the decoder expects to receive a retransmission of the same block at a future time. If
confirmed, the transmission of the block is finalized.

• Finally, blocks are interleaved so that a retransmission, if necessary, occurs at a suitable time in
the future. This gives the encoder enough time to interpret the Anytime decision feedback with
a very small probability of error.
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It is sufficient for the encoder and decoder to agree on the history of the control signal (i.e. ‘confirm’ or
‘deny’) for them to agree on the current block being transmitted. The Anytime code on the feedback
channel ensures this condition with an exponentially decaying probability of error. Therefore, disagree-
ment cannot contribute significantly to a decoding error. An error occurs if the encoder transmitted a
confirmation even though the preceding sub-blocks were not decoded correctly. This happens if there
is an error in the expurgated feedback for the sub-blocks, leading to the main result of [23]:

Ef (R̄) =
(

1
C1

+
1
Eex

)−1(
1− R̄

C

)
, 0 ≤ R̄ ≤ C,

where R̄ is the average rate of transmission and C1 is the relative entropy of the channel,

C1 = max
i,k

∑
`

pi` log2

pi`
pk`

.

The interesting thing about this result is the limiting condition as the feedback noise tends to zero.
Observe that for any rate 0 ≤ R̄ ≤ C, the expurgated exponent Eex(R̄) tends to infinity as the feedback
noise tends to zero. Thus, by comparison to (2.2.1) this shows that the reliability of the proposed
methods tends to Burnashev’s variable-length block coding reliability as the feedback noise tends to
zero. Because Burnashev’s reliability is tight, the proposed method is close to optimal if the feedback
noise is relatively small.

The preliminary results described above and in detail in [23] show that Anytime coding can
be a useful tool for using feedback in a noisy feedback setting. In Figure 7.1 we’ve plotted the exponent
Ef for the case of the forward Binary Symmetric Channel (BSC) with cross-over probability .1 and the
reverse BSC with cross-over probability 10−6. In the same figure we plot the Sphere-packing bound for
the forward channel. By comparison, noisy feedback can be used to significantly improve the reliability
at higher rates. It turns out that our formulation does not lead to improvements for very noisy feedback.
However, we believe extensions are possible: this is the subject of future research.
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Figure 7.1: The noisy feedback exponent Ef and the Sphere-packing bound Esp. The forward channel
is a Binary Symmetric Channel (BSC) with cross-over probability .1 and the reverse channel is a BSC
with cross-over probability 10−6.



81

Bibliography

[1] E. A. Arutyunyan. Lower Bound for Error Probability in Channels with Feedback. Problemy
Peredachi Informatsii, 13(2):36–44, 1977.

[2] A. Barg and G. D. Forney. Random Codes: Minimum Distances and Error Exponents. IEEE
Transactions on Information Theory, 48(9):2568–2573, 2002.

[3] E. R. Berlekamp. Block Coding for the Binary Symmetric Channel with Noiseless, Delayless
Feedback. In H.B. Mann (ed.), Error-Correcting Codes, John Wiley, New York, pp. 61–88, 1968.

[4] J. Bucklew. The Blind Simulation Problem and Regenerative Processes. IEEE Transactions on
Information Theory, 44(7):2877–2891, 1998.

[5] M. V. Burnashev. Data Transmission over a Discrete Channel with Feedback, Random Transmis-
sion Time. Problemy Peredachi Informatsii, 12(4):10–30, 1976.

[6] S. S. L. Chang. Theory of Information Feedback Systems. IEEE Transactions on Information
Theory, 2(3):29–40, 1956.

[7] O. Costa and M. D. Fragoso. Discrete-time LQ-Optimal Control Problems for Infinite Markov
Jump Parameter Systems. IEEE Transactions on Automatic Control, 40(12):2076–2088, 1995.

[8] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley, New York, 1991.

[9] R. L. Dobrushin. An Asymptotic Bound for the Probability Error of Information Transmission
Through a Channel Without Memory using the Feedback. Problemy kibernetiki, 8:161–168, 1962.

[10] R. Durrett. Probability: Theory and Examples. Second Edition, Duxbury Press, 1996.

[11] Y. Fang and K. A. Loparo. On the Relationship Between the Sample Path and Moment Lyapunov
Exponents for Jump Linear Systems. IEEE Transactions on Automatic Control, 47(9):1556–1560,
2002.

[12] X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck. Stochastic Stability Properties of Jump Linear
Systems. IEEE Transactions on Automatic Control, 37(1):38–53, 1992.

[13] G. Forney. Exponential Error Bounds for Erasure, List, and Decision Feedback Schemes. IEEE
Transactions on Information Theory, 14(2):206–220, 1968.

[14] R. Gallager. Information Theory and Reliable Communication. John Wiley, New York, 1968.

[15] A. Goldsmith and P. Varaiya. Capacity, Mutual Information, and Coding for Finite-State Markov
Channels. IEEE Transactions on Information Theory, 42(3):868–886, 1996.



82

[16] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. Third Edition, John Wiley, New
York, 1998.

[17] M. Horstein. Sequential Transmission using Noiseless Feedback. IEEE Transactions on Information
Theory, 9(3):136–143, 1963.

[18] G. F. Lawler. Introduction to Stochastic Processes. Chapman & Hall, New York, 1995.

[19] V. I. Levenshtein. Straight-Line Bound for the Undetected Error Exponent. Problemy Peredachi
Informatsii, 25(1):33–37, 1987.

[20] M. Mushkin and I. Bar-David. Capacity and Coding for the Gilbert-Elliott Channels. IEEE
Transactions on Information Theory, 35(6):1277–1290, 1989.

[21] M. Pinsker. Bounds on the Probability and of the Number of Correctable Errors for Nonblock
Codes. Problemy Perdachi Informatsii, 3(4):58–71, 1967.

[22] A. Sahai. Anytime Information Theory. PhD thesis, Massachusetts Institute of Technology, 2001.

[23] A. Sahai and T. Simsek. On the Variable-Delay Reliability Function of Discrete Memoryless Chan-
nels with access to Noisy Feedback. IEEE Information Theory Workshop, San Antonio, Texas,
October 24–29, 2004.

[24] J. P. M. Schalkwijk. A Coding Scheme for Additive Noise Channels with Feedback – Part II:
Bandlimited Channels. IEEE Transactions on Information Theory, 12(2):183–192, 1966.

[25] J. P. M. Schalkwijk. A Class of Simple and Optimal Strategies for Block Coding on the Bi-
nary Symmetric Channel with Noiseless Feedback. IEEE Transactions on Information Theory,
17(3):283–287, 1971.

[26] J. P. M. Schalkwijk and T. Kailath. A Coding Scheme for Additive Noise Channels with Feedback
– Part I: No Bandwidth Constraint. IEEE Transactions on Information Theory, 12(2):172–182,
1966.

[27] J. P. M. Schalkwijk and K. A. Post. On the Error Probability for a Class of Binary Recursive
Feedback Strategies. IEEE Transactions on Information Theory, 19(4):498–511, 1973.

[28] T. Simsek, R. Jain, and P. Varaiya. Control under Communication Constraints. Proceedings of the
41st IEEE Conference on Decision and Control, pages 3209–3216, 2002.

[29] S. Tatikonda. Control under Communication Constraints. PhD thesis, Massachusetts Institute of
Technology, 2000.

[30] A. Tchamkerten and E. Telatar. A Feedback Strategy for Binary Symmetric Channels. Proceedings
of the IEEE International Symposium on Information Theory, page 362, 2002.

[31] T. Veugen. A Simple Class of Capacity-Achieving Strategies for Discrete Memoryless Channels
with Feedback. IEEE Transactions on Information Theory, 42(6):2221–2228, 1996.

[32] A. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.



83

[33] J. C. Walrand and P. Varaiya. Optimal Causal Coding-Decoding Problems. IEEE Transactions
on Information Theory, 29(6):814–820, 1983.

[34] E. W. Weisstein. Catalan Number. From MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/CatalanNumber.html.

[35] H. S. Witsenhausen. On the Structure of Real-time Source Coders. Bell Systems Technical Journal,
58:1437–1451, 1979.

[36] A. Wyner. On the Schalkwijk-Kailath Coding Scheme with a Peak Energy Constraint. IEEE
Transactions on Information Theory, 14(1):129–134, 1968.

[37] H. Yamamoto and K. Itoh. Asymptotic Performance of a Modified Schalkwijk-Barron Scheme
for Channels with Noiseless Feedback. IEEE Transactions on Information Theory, 25(6):729–733,
1979.

[38] H. Yamamoto and K. Itoh. Correction to “Asymptotic Performance of a Modified Schalkwijk-
Barron Scheme for Channels with Noiseless Feedback”. IEEE Transactions on Information Theory,
26(5):628, 1980.

[39] K. Zigangirov. Upper Bounds on the Error Probability for Channels with Feedback. Probl. Per.
Inf., 6(2):87–92, 1970.


