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Abstract

Anytime Capacity of the AWGN+Erasure Channel with Feedback

by

Qing Xu

Master of Science in Engineering-Electrical Engineering and Computer Science

University of California at Berkeley

Professor Anant Sahai, Chair

We study the feedback anytime reliability of a discrete-time channel with additive

white Gaussian noise where the channel output is also subject to i.i.d. erasures. The

encoder has noiseless access to the past channel outputs, which includes perfect in-

formation regarding which transmissions were erased. There is an average power

constraint on the channel input. The channel is an idealized model for a multiple

access system where the channel noise is modelled as an additive white Gaussian pro-

cess and collisions between packets are modelled as erasures. The anytime reliability

of a channel is an important property in the design of delay sensitive application such

as feedback control over the channel.

As an intermediate step we first study the anytime reliability of packet erasure

channels where the erasures are i.i.d. and known to both the transmitter and receiver.

The packets are allowed to carry a variable number of bits within them although

only one packet may be transmitted at any given time step. These results provide

insight into the analysis of AWGN+erasure channel, and are of importance in their

own right. For any moment constraint on the size of the packets, we show that the

anytime reliability is constant at all rates up to the Shannon capacity of the channel

and that this constant is essentially the logarithm of the probability of erasure. For

cases where there is both a first moment constraint and a constraint on the maximum

number of bits that a packet can carry, we show that the optimum anytime reliability

is determined primarily by the peak-packet size, but drops abruptly to zero above

the Shannon capacity. We then proceed to show that the feedback anytime reliability
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of the AWGN+erasure channel is constant at all rates up to the Shannon capacity

of the channel and that this constant is essentially the logarithm of the probability

of erasure. In order to show achievability, we give a construction consisting of a

FIFO queue where the server can adjust its service rate based on the number of

bits awaiting transmission. In the AWGN+erasure case the schemes involve a hybrid

control system, where the server of the queue takes the data bits and uses them to

drive a scalar linear control system with continuous state where the dynamics can

switch between fast and slow based on the service rate.

Professor Anant Sahai
Dissertation Committee Chair
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Chapter 1

Introduction

Figure 1.1: The AWGN+erasure channel with feedback

In this thesis we study the anytime reliability of a discrete-time power-constrained

AWGN + erasure channel with noiseless feedback. The channel is shown in Figure 1.1.

First a white Gaussian noise N(0, σ2) is added to the real-valued channel input, then

this output is either erased with probability ε or conveyed to the channel output with

no additional error. The erasures across time steps are independent. The average

input power of the channel is constrained to be lower than P . We allow the encoder

to have access to noiseless feedback of channel output with delay of one unit of discrete
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Figure 1.2: Packet erasure channel with feedback, fed by a queue

time to avoid any causality issues.

We study this problem for the following two reasons:

1. The AWGN+erasure channel is an idealized model for a wide range of channels

in wireless communication systems.

2. The anytime reliability property of a channel is critical in the design of delay

sensitive applications over the channel.

The discrete-time power constrained additive white Gaussian noise channel is one

of the most useful idealizations in communication theory. It models communication

over a band-limited wireless channel. Real wireless channels are not so simple. They

can be subjected to fading, wherein the transmitted signal is attenuated more sub-

stantially at some times, possibly due to the interference from other transmitters.

One of the simplest models of fading has independent fades from time to time, where

the fade is either 1 or 0. To further simplify the model, we will assume knowledge

of the fade at the receiver. This model can be thought of as the AWGN+erasure

channel in that we can consider the output to be “erased” whenever the fade is 0.

Packet erasures emerge naturally in both wired and wireless communication sys-

tems where packet-oriented designs abound, often from an implicit desire to achieve

statistical multiplexing among many different users. Erasures generally model two

types of events: an unfortunate noise sequence that the underlying error correcting

code could not correct or “collisions” at either an intermediate node in a network
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(where it leads to a packet drop) or over the shared communication medium [14][3]

(where it leads to an undecodeable reception of the packet). Generally, interference

is reduced by Medium Access Control (MAC) protocols (e.g. the 802.11 MAC proto-

col [1]), which controls the transmitters so that they are not likely to transmit at the

same time. However, in our simplified model we can view a denial by the MAC layer

as an erasure since the packet was unable to be sent at the requested time. Knowledge

of the erasure can come back to the transmitter through either an acknowledgment

packet or by the transmitter observing the packet getting mangled over the link.

For the simplified AWGN+erasure model, rather than considering the erasures as

side information known at the receiver, we further simplify the model by viewing the

erasures as occurring after the additive noise. Since the channel noise in the model

is continuous, the fade is immediately apparent whenever the output is 0.

Since AWGN+erasure channel is a useful abstraction of the environment faced

by wireless communications, it is natural to consider using such a channel within

control systems. The topic of “control over communication channel” or equivalently

the design of “networked control systems” has become a hot topic in both control

and communication communities. The high level prospective overview of the prob-

lem can be found in [7], and some of the most recent progresses appear in a special

issue of IEEE Transactions on Automatic Control. [2] In such a integrated commu-

nication and control system, [8], [9], and [10] tell us that we require enough anytime

capacity to be able to meet our performance objectives. Essentially, to hold the η-

moment of the state of an unstable plant finite, it is necessary and sufficient for the

feedback channel’s anytime capacity evaluated corresponding to anytime-reliability

α = η log2 λ to be greater than log2 λ where λ is the unstable eigenvalue of the plant.

As such, understanding the anytime capacity under various models is essential for us

to evaluate engineering questions like whether or not we can have a control system

share the communication channel with an existing packet system or whether we need

to have a reserved channel for just the control application. Alternatively, sometimes

it is possible to schedule the transmissions from nodes in a multiple access network

such that interfering nodes share the channel and transmit in turn — e.g. in the

wireless token ring protocol [6] — but unless we can evaluate the anytime capacities,

it is hard to evaluate whether this additional complexity is justified.
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The anytime capacity of a channel relates the bit error with the delay in a system

where we require every bit to get through eventually. We review the definition of

anytime capacity: [9]

Definition 1.1. Canytime(α), the α-anytime capacity, is the maximum rate at which

the channel can be used to communicate with a bit error probability that drops with

delay exponentially at a rate of α.

Canytime(α) = sup{R|∃ER, K > 0, ∀N, ∃DR
N , Perror(ER,DR

N ) < K2−αN} (1.1)

In above definition ER is the anytime encoder, DR
N is the decoder, and N is the

delay that a bit experiences in units of channel uses. The parameter α is called the

anytime reliability.

Fundamentally, what we have is a region of achievable (α, R) pairs — the region

between the α axis and the anytime capacity curve. Whether we choose to look at

maximizing R as a function of α or as maximizing α as a function of R is a matter of

convenience for the problem at hand. Once we know the anytime capacity we know

the anytime achievable region, and vice versa.

In comparison let’s look at the definition of the classical Shannon capacity.

Definition 1.2. The Shannon classical capacity is the maximal rate at which the

channel can be used to transmit the data with an arbitrarily small probability of bit

error.

C = sup{R|∀ε∃N, ERN ,DR
N , Perror(ERN ,DR

N ) < ε}

Since the probability of error on every single bit goes to zero with increasing

delay, it is clear that the anytime capacity is always less than or equal to the classical

Shannon capacity.

The rest of the thesis is structured as follows. In the remaining part of this

chapter, we review the relevant previous work in 1.1, and summarize the main result

of the thesis in 1.2. In Chapter 2 we analyze the feedback anytime reliability of

packet erasure channels with different constraints on the packet size. In Chapter 3

we analyze the AWGN+erasure channel. We conclude the thesis in Chapter 4.
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1.1 Previous work

The concept of anytime capacity was first introduced by Sahai in his PhD thesis. [9]

The anytime capacity of the AWGN channel and binary erasure channel are separately

obtained in Chapter 7 of [9]. Both these results assume noiseless channel feedback.

In Chapter 6 of the thesis the lower bound of the anytime capacity of AWGN and

binary erasure channels without feedback are derived. But so far there is no exact

solution of the anytime capacity of these two channels without feedback. We list

relevant results of [9] below for completeness.

Theorem 1.3. For the binary erasure channel with encoders having access to noise-

less feedback

Canytime(α) =
α

α + log2

(
1−ε

1−2αε

) (1.2)

where ε is the erasure probability.1

Theorem 1.4. For the AWGN channel with power constraint P, noise variance σ2

and encoders having access to noiseless feedback

Canytime(α) =
1

2
log2(1 +

P

σ2
)

for any α > 0.

Further work on anytime capacity is presented by Sahai and Şimşek in [4] and [11].

They study the anytime channel coding problem for discrete-time channel with noise-

less feedback. An upper bound for the anytime exponent is derived, and a family of

“time sharing” codes to approach this bound is proposed. It is shown that for binary

erasure channel, the bound is achieved by (1.2). They also show that the anytime

capacity of the binary symmetric channel is increased with feedback.

In recent years, there are also many works on the control over wireless commu-

nication problem. Seiler and Sengupta study the feedback control of an LTI system

with the sensor and controller connected by a real erasure channel, i.e. in each time

step the feedback controller either receives the system output with no error, or does

1The form for the anytime capacity of binary erasure channel comes from solving explicitly the
parametric form given in [9].
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not receive anything. They derive the existence condition for a linear feedback con-

troller which stabilizes the system in the mean square sense, and the relevant H∞

results. [12] [13] They do not consider channel noise and the coding/decoding problem

of the channel. Elia studies the control of LTI system when the control command is

passed through fading channel to the plant. [5] Like in [13], the objective of controller

design is also mean square stability. They concentrate on the controller design and do

not consider the coding/decoding of the channel. The fading channel models studied

include an FIR channel with Gaussian coefficients and an erasure channel with delay.

To show achievability of the optimum anytime reliability, we use longer packets

when the queue is long and shorter packets when the queue is short. Similar in spirit,

Tse et.al. study the statistical multiplexing of multiple time-scale Markov streams. [15]

They model each stream with a singularly perturbed Markov-modulated process with

some state transitions occurring less frequently than others. They estimate the buffer

overflow probabilities in various asymptotic regimes in the buffer size, rare transition

probabilities, and the number of streams.

1.2 Main results of the thesis

The main results of this thesis are summarized in the following theorems. Theo-

rem 1.5 is the main results for the anytime reliability of the packet erasure channel

with constraints on various moment of packet size. Theorem 1.6 is the main result

when both the average and maximum size of the packet are constrained. The main

result for AWGN+erasure channel is summarized in Theorem 1.7.

Theorem 1.5. Let Xi be the packet at time i, and S(Xi) be the size of the packet.

When the j-th moment of packet size is constrained E{[S(Xi)]
j} ≤ S̄j, the anytime

capacity and reliability of the packet erasure channel depends on the value of j as

follows:

1. j ≥ 1

The anytime capacity of the packet erasure channel is
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Canytime(α) =

{
(1− ε) j

√
S̄j if 0 ≤ α ≤ − log2 ε

0 otherwise
(1.3)

Or when viewed in terms of anytime reliability:

α∗(R) =

{
− log2 ε if R < (1− ε) j

√
S̄j

0 otherwise

2. j < 1

The anytime capacity of the packet erasure channel is

Canytime(α) =

{
∞ if 0 ≤ α ≤ − log2 ε

0 otherwise
(1.4)

or equivalently for anytime reliability:

α∗(R) = − log2 ε (1.5)

Theorem 1.6. Let Xi be the packet at time i, and S(Xi) be the size of the packet. The

anytime capacity of the packet erasure channel, when both the average packet size and

the peak packet size are constrained, i.e., E{S(Xi)} ≤ S̄ and max(S(Xi)) < Smax, is

the following:

Canytime(α)

=





min

(
(1− ε)S̄, α

α+log2( 1−ε
1−2αε)

Smax

)
if 0 ≤ α ≤ − log2 ε

0 otherwise

(1.6)

Expressed in terms of anytime reliability,

α∗ = η − log2(1 + ε(2η − 1))

whenever R = Smax

(
1− 1

η
log2(1 + ε(2η − 1))

)
< (1− ε)S̄, and 0 otherwise.

Theorem 1.7. The anytime capacity of AWGN + erasure channel with average power

constraint P, erasure probability ε noise variance σ2, and encoder having access to

noiseless feedback, is
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Canytime(α) =

{
(1−ε)

2
log2

(
1 + P

σ2

)
if 0 ≤ α < − log2 ε

0 otherwise
(1.7)

α∗(R) =




− log2 ε if 0 < R < 1−ε

2
log2

(
1 + P

σ2

)

0 otherwise
(1.8)

As shown in Figure 1.3, basically the α-anytime capacity of the AWGN+erasure

channel is the same as the Shannon capacity of this channel for all 0 < α < − log2 ε,

and zero otherwise.

Figure 1.3: The anytime capacity of the AWGN+erasure channel

We compare the anytime capacity of the AWGN channel with feedback, binary era-

sure channel with feedback, and AWGN+erasure channel with feedback in Figure 1.4.

Clearly, erasures reduce the anytime capacity. The reduction is proportional to the

erasure rate. The erasures also limit the anytime reliability to be within − log2 ε.

The seemingly surprising result obtained in this thesis is that when the AWGN is

conjoined with erasures, the anytime capacity of the channel does not decay with

anytime reliability α, as it does for the binary erasure channel. For comparison we

also plot the anytime capacity of an AWGN channel scheduled to transmit only 80%
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of time (e.g. with the wireless token ring protocol [6]). We can see that the anytime

capacity is the same as an AWGM followed by erasures with probability 0.2. But the

erasures limit the anytime reliability, whereas scheduling does not. Hence scheduling

provides better anytime reliability performance than the uncontrolled probabilistic

erasures at the cost of more complex implementation.
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3, σ = 1, and ε = 0.2
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Chapter 2

Analysis of the Packet Erasure

Channel

In this chapter, we study the anytime reliability of packet erasure channels. We

hope to gain insight in the study the AWGN+erasure channel from this intermediate

step. At the same time the packet erasure channel is an important model itself as

has been discussed in the introduction.

We analyze the anytime capacity of the packet erasure channel with various con-

straints on the number of bits encoded in a packet, while keeping the transmission

of each packet to be one discrete time step. Variable size packets can occur in cases

where the transmitter has a choice of modulation to use in transmitting the packet.

For example, as shown in Figure 2.1, we can encode 1, 2, or 4 bits in one channel

symbol by using different constellations. The case where the packet is simply made

longer in time is not covered by the analysis given in this thesis since we assume that

the time between allowed packet transmissions is always constant.

The cases of unconstrained packets and fixed-size packets were discussed in [9].

We first review the results for the case of unconstrained packet sizes in 2.1. There,

it is obvious that the optimal transmission strategy is just to transmit all the bits

awaiting transmission. Next, we review the case of fixed-size packets in 2.2. For

this, the optimal strategy is a first-in first-out (FIFO) queue with bits being removed

from the queue when a packet is successfully received. With these results in hand,

we consider what happens if we impose a moment constraint on the packet size. We
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consider a general (possibly fractional) moment but show that there is something

fundamentally different about moments higher than 1 and those lower than 1. To

show achievability of the optimum anytime reliability, we use longer packets when

the queue is long. Then in 2.4 we consider what happens when we have a peak

packet-size constraint in addition to a first moment constraint. We summarize the

chapter in 2.5.

Figure 2.1: BPSK, QPSK, and 16-QAM constellation bit encoding, each carrying 1,
2, or 4 bits per symbol respectively

In all of our analyses, we use a FIFO queue to achieve the anytime capacity. Bits

enter the queue at a steady rate Rin. Whenever there is a non-erasure in the channel

in time step i, a packet Xi is transmitted with no error. By feedback, the queue

knows whether an erasure happened in the previous time step. The size of the packet

Xi is denoted as S(Xi).

2.1 Unconstrained packets

In this section we analyze the anytime capacity of packet erasure channels with

no constraint on the packet size. We assume that the channel noise is zero or the

transmit power is unbounded so we can encode arbitrarily large numbers of bits in
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one packet. When the packet is received, the bit error is negligible.

When there is no constraint on the packet size, the anytime capacity is easy to

obtain. At every time step, the channel attempts to transmit all the bits in the queue.

This channel is discussed as the real erasure channel in [9] and it is clear that the

encoding strategy is optimal.

Theorem 2.1. The anytime capacity of a packet erasure channel when the packet

size is unconstrained is

Canytime(α) =

{
∞ if 0 ≤ α ≤ − log2 ε

0 otherwise
(2.1)

or expressed in terms of the anytime reliability, we have for all rates R:

α∗(R) = − log2 ε (2.2)

Proof. There is a bit error only when there is a sequence of consecutive erasures from

time t through t + d, and the bit error probability is εd = 2d log2 ε. Therefore the

anytime reliability α must be less than or equal to − log2 ε, but the incoming rate

can be as high as we would like.

Figure 2.2 shows the anytime achievable region of the packet erasure channel

when the packet size is not constrained. Figure 2.3 depicts the Markov chain of the

queue when the packet size is not constrained. Any non-erasure clears the queue. We

simulate the packet size as a function of time. The result is shown in Figure 2.4.

2.2 Fixed packet size

When S(Xi) is fixed to be Rout, the channel is an Rout-bit erasure channel with

feedback. The feedback anytime capacity of the binary erasure channel was derived

in [8] and [9]. By a simple change of units argument, it is clear that the anytime

capacity of the Rout-bit channel is the anytime capacity of the binary symmetric

channel (1 bit) scaled by Rout.

Theorem 2.2. The anytime capacity of a packet erasure channel with packet size

constrained to be Rout bits, and encoder having access to noiseless feedback, is given
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Figure 2.2: The anytime achievable region when the packet size is unconstrained

Figure 2.3: Markov chain of queue length when the packet size is unconstrained:
Rin=1 bit
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Figure 2.4: Simulation result of packet size: unconstrained packets, Rin = 1 bit,
ε = 0.8

by:

Canytime(α) = Rout
α

α + log2

(
1−ε

1−2αε

) (2.3)

where ε is the erasure probability. Alternatively, the anytime reliability α∗ = η −
log2(1 + ε(2η − 1)) corresponds to the rate Rout

(
1− 1

η
log2(1 + ε(2η − 1))

)
, where η

is a positive parameter.

The anytime achievable region of the fixed-size packet erasure channel given by

equation (2.3) is shown in Figure 2.5,

Although the optimality proof for (2.3) involved a control system [9], it should be

clear that the optimal anytime encoder is just a FIFO queue with a server that tries

to make Rout sized packets and send them out. See Figure 2.6 for an example of the

resulting Markov chain.

2.3 Constraint on the j-th moment of packet size

The unconstrained packet size case in section 2.1 imposes no constraint while

in many applications, the packet-size constraint of section 2.2 is too rigid and does
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Figure 2.5: The anytime achievable region when packet size is fixed: Rout = 1 bit,
ε = 0.4

Figure 2.6: Markov chain of queue length when the packet size is fixed: Rin=1 bit,
Packet Size = 3 bits
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not adequately capture the flexibility that might exist. One way of constraining the

communication in a flexible way is to impose an average constraint on the j-th moment

of the packet size. This ensures that large packets are unlikely and by increasing j,

we increase the relative cost of larger packets as compared to smaller ones. j = 1

corresponds to the most natural constraint on the average packet size.

To prove achievability, we will use the following type of policy that changes the

packet sizes at a certain critical queue length Lc.

• When the queue length l is smaller than or equal to a critical length Lc, the

system attempts to transmit Rout = R1 bits in each packet.

• When the queue length l is larger than Lc, the system transmits a giant packet

to reduce the queue length back down to Lc upon successful reception. Note we

are using potentially unboundedly large packets.

To study the anytime capacity of this system we need the following lemma.

Lemma 2.3. Let the input rate be Rin and the system have this queuing rule:

• Short queue mode: When the queue length is smaller than Lc, the system trans-

mits packet of size R1 > Rin

(1−ε)

• Long queue mode: When the queue length is larger than Lc, the system transmits

packets of size larger than R1.

Then the probability of having a queue of length l > d bits is upper-bounded by

P (l > d) ≤ T12
−α∗1

⌊
d

Rin

⌋

where α∗1 is the feedback anytime reliability of the R1-sized packet erasure channel

corresponding to a rate of Rin from Theorem 2.2 and T1 is some positive constant.

Proof. The key is to realize that for all possible realizations of erasures, the queue

length can only be shorter than the queue length if we used packets of fixed size R1. So

we can bound the probability of a large queue length by the corresponding probability

for the fixed-size packet system. Whenever an erasure happens, the symbol is resent

until it is successfully received. The only possible bit error event is that the bit is still
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in the queue and has not been sent. The queue must therefore contain at least d bits

and the anytime reliability of this channel bounds the tail distribution of the queue.

How to calculate α∗1 graphically from the binary erasure channel anytime curve is

illustrated in Figure 2.7. The constant T1 is playing the role of the constant K in

(1.1).

Figure 2.7: Finding α∗1 for given R1 and Rin using the anytime capacity curve of
binary erasure channel

With Lemma 2.3, we can prove the following theorems for the anytime capacity

of the constrained packet erasure channel. It turns out that the anytime capacity for

the case when j ≥ 1 and j < 1 are quite different. We discuss them separately.

Theorem 2.4. Let Xi be the packet at time i, and S(Xi) be the size of the packet.

When the j-th (j ≥ 1) moment of packet size is constrained E{[S(Xi)]
j} ≤ S̄j, the

anytime capacity of the packet erasure channel is

Canytime(α) =

{
(1− ε) j

√
S̄j if 0 ≤ α ≤ − log2 ε

0 otherwise
(2.4)

Or when viewed in terms of anytime reliability:

α∗(R) =

{
− log2 ε if R < (1− ε) j

√
S̄j

0 otherwise
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Proof. Clearly we can only do worse for this channel than the unconstrained packet-

erasure channel and hence the upper bound on α is an immediate corollary to Theorem

2.1. Moreover, the anytime capacity can never exceed the Shannon capacity and

(1 − ε) j
√

S̄j is clearly the Shannon capacity of the constrained channel since j
√

S̄j is

the induced constraint on the average number of bits per packet that comes from the

moment constraint and the factor of (1 − ε) represents the independent probability

that a packet gets through.

For achievability, we use the following queuing rule illustrated in Figure 2.8.

• When the queue length l, in bits, is smaller than or equal to Lc bits, the system

takes out Rout = R1 bits for every non-erasure. We require R1 = j
√

S̄j−ε1, with

ε1 being an arbitrary small positive number. Notice to make the system stable

we need Rin < (1− ε)R1.

• When the queue length l is larger than Lc, the system transmits a giant packet

to reduce the queue length to Lc.

Figure 2.8: Markov chain of queue length when E{Sj} < S̄j and j ≥ 1: Lc=6,
Rin = 1 bit and Rout = 3 bits when l < Lc

We now bound the probability of error. A bit error implies the bit is not trans-

mitted. If the delay is larger than Lc

R1
and the bit is still not transmitted, the queue

must be longer than Lc bits. In such situations, any non-erasure will reduce the queue

length to Lc bits and so there must have been a string of consecutive erasures since the

instant the queue length grew longer than Lc bits. Thus Perror < εd−Lc = ε−Lc2−d log2 ε

as delay d goes large.
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We only need to show that the constraint on the j-th moment of queue length is

met. From Lemma 2.3 we know that the queue length distribution satisfies P (l >

Lc) ≤ T12
−α∗1

⌊
Lc

Rin

⌋
, with T1 and α1 being positive constants. Hence we have:

E{Sj} =
∞∑
i=0

Rj
out(i)P (l = i)

= P (l ≤ Lc)R
j
1 + P (l > Lc)

∞∑
i=Lc+1

(i− Lc)
j · P (l = i|l > Lc)

≤ Rj
1 + T12

−α1

⌊
Lc

Rin

⌋ ∞∑
i=Lc+1

(i− Lc)
j · εi−Lc

= Rj
1 + T12

−α1

⌊
Lc

Rin

⌋ ∞∑
i=1

ijεi (2.5)

Since
∑∞

i=1 ijεi converges and is independent of Lc, the second term is an expo-

nentially decreasing function of Lc. Furthermore, Rj
1 is selected to be smaller than

S̄j. Therefore we can always find Lc large enough such that the constraint on the

j-th moment of the packet size is met.

In effect, having a constraint on the high moments of the packet size just imposes

a bound on the anytime capacity, not the anytime reliability.

Figure 2.9 shows the anytime achievable region of the packet erasure channel when

the j-moment (j ≥ 1) of the packet size is constrained.

Figure 2.9: The anytime achievable region when the j−moment of packet size is
constrained (j ≥ 1)
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Figure 2.10 shows the simulated packet size changing with time with different

erasure realizations.
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Figure 2.10: Simulation result of packet size: constraint on the j−th moment of
packet size (j ≥ 1), Rin = 1 bit, Lc = 7, Packet Size = 6 bits when l ≤ Lc, ε = 0.8

Theorem 2.5. Let Xi be the packet at time i, and S(Xi) be the size of the packet.

When the j-th (j < 1) moment of packet size is constrained by E{[S(Xi)]
j} ≤ S̄j, the

anytime capacity of the packet erasure channel is

Canytime(α) =

{
∞ if 0 ≤ α ≤ − log2 ε

0 otherwise
(2.6)

or equivalently for anytime reliability:

α∗(R) = − log2 ε (2.7)

Proof. We now change the policy to be as illustrated in Figure 2.11:

• When the queue is shorter than a critical length Lc bits, no bits are sent: the

packet size is zero.

• When the queue is longer than Lc bits, empty the queue with every non-erasure.

As before, a bit error can happen when bit is held in the queue. When the delay

is d (large enough), the probability of bit error is the probability of the queue being

longer than d, which is upper-bounded as before by P (l > d) < εd−Lc .
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Figure 2.11: Markov chain of queue length when E{Sj} < S̄j and j < 1, labels in
units of Rin

To verify the queue length constraint, we look at stationary distribution of the

Markov chain in Figure 2.11. Obviously, π0 = π1 = · · · = πLc , and π0 = (1 −
ε)

∑∞
i=1 πLc+i. Therefore π0 = π1 = · · · = πLc = 1

Lc+1+(1−ε)
< 1

Lc
, and P (l > Lc) =

∑∞
i=1 πLc+i = π0

(1−ε)
< 1

Lc(1−ε)
.

Hence we have

E{Sj} <
1

Lc(1− ε)

∞∑
i=1

(Lc + i)jεi (2.8)

As is illustrated in Figure 2.12, due to the sub-linearity of the function f(x) = xj

when j < 1 and x > 0, we have

f(x) < Lj
c +

(
df(x)

dx

)

x=Lc

· (x− Lc)

= Lj
c + jLj−1

c (x− Lc)

Therefore continuing from equation (2.8) we have

E{Sj} <
1

Lc(1− ε)

∞∑
i=1

(Lj
c + jLj−1

c i)εi

=
Lj

cε

Lc(1− ε)2
+

jLj−1
c

Lc(1− ε)3

=
ε

L1−j
c (1− ε)2

+
j

L2−j
c (1− ε)3

(2.9)

Since j < 1, both terms in (2.9) decay to zero with Lc. Thus for every Rin, we can

choose a large enough Lc to satisfy the constraint on the j-th moment of the packet

size.
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Figure 2.12: Sub-linearity of function y = xj when j = 0.5, Lc = 3

So, having a constraint on a moment less than the first moment is as good as

having no constraint at all, at least when it comes to the anytime reliability!

Figure 2.13 shows the anytime achievable region of the packet erasure channel

when the j−moment (j < 1) of the packet size is constrained.

The simulation results for the packet size when the j−moment of packet size is

constrained with j < 1 is shown in Figure 2.14.

2.4 Constraints on both average and peak packet

sizes

Usually, it will be unrealistic to allow unboundedly large packet sizes. Seeing as

how having a higher moment constraint seems to only effect the anytime capacity

and reliability through the induced constraint on the first moment, it is natural to

consider the case where not only is E{S} ≤ S̄, but S < Smax as well where Smax > S̄

to avoid triviality. To study the anytime capacity we need the following lemma which

refines Lemma 2.3 further:

Lemma 2.6. Let the input rate be Rin and the system have this queuing rule:
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Figure 2.13: The anytime achievable region when the j−moment of packet size is
constrained (j < 1)
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Figure 2.14: Simulation result of packet size: constraint on the j−th moment of
packet size (j < 1), Rin = 1 bit, Lc = 12 bits, ε = 0.8
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• Short queue mode: When the queue length is not larger than Lc, the system

transmits packet of fixed size R1 > Rin

(1−ε)
bits.

• Long queue mode: When the queue length is larger than Lc, the system transmits

packet of the fixed size R2 > R1 bits.

Then when queue length l > Lc bits, the probability of having a queue of length

l > d is upper-bounded as

P (l > d) ≤ T ′
22
−α∗2

⌊
d

Rin

⌋

where α∗2 is the feedback anytime reliability corresponding to a rate of Rin of the

R2-size packet erasure channel from Theorem 2.2 and T ′
2 is some positive constant.

Proof. This is similar to the proof of Lemma 2.3. Since R2 > R1, we have α∗2 > α∗1.

When l > Lc, we consider the part of queue that is over Lc. In this part corresponding

to R2 we have anytime exponent α∗2. Let i = l − Lc, we can bound P (i ≥ d− Lc) by

T22
−α∗2

⌊
d−Lc
Rin

⌋
.

P (l > d) = P (l > Lc)P (l − Lc > d− Lc|l > Lc)

≤ T12
−α∗1

⌊
Lc

Rin

⌋
T22

−α∗2
⌊

d−Lc
Rin

⌋

≤ T12
−α∗1

(
Lc

Rin
+1

)
T22

−α∗2
(

d−Lc
Rin

+1
)

= 2α∗1+α∗2T1T22
(α∗2−α∗1) Lc

Rin 2
−α∗2

d
Rin

≤ T ′
22
−α∗2

⌊
d

Rin

⌋

since we can bound the queue length of this queuing system by Lc plus the length of

one where only R2 sized packets are used.

Using Lemmas 2.3 and 2.6 we can prove the following theorem on the anytime

capacity of the packet erasure channel when both the average packet size and the

peak packet size are constrained.

Theorem 2.7. Let Xi be the packet at time i, and S(Xi) be the size of the packet. The

anytime capacity of the packet erasure channel, when both the average packet size and

the peak packet size are constrained, i.e., E{S(Xi)} ≤ S̄ and max(S(Xi)) < Smax, is

the following:
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Canytime(α)

=





min

(
(1− ε)S̄, α

α+log2( 1−ε
1−2αε)

Smax

)
if 0 ≤ α ≤ − log2 ε

0 otherwise

(2.10)

Expressed in terms of anytime reliability,

α∗ = η − log2(1 + ε(2η − 1))

whenever R = Smax

(
1− 1

η
log2(1 + ε(2η − 1))

)
< (1− ε)S̄, and 0 otherwise.

The anytime capacity presented in equation (2.10) is illustrated in Figure 2.15.
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Figure 2.15: Anytime achievable region of packet erasure channel with both average
and peak packet size constraints

Proof. The anytime region of this system should be contained in the regions with only

one of the constraints: peak or average. Therefore the region lies in their intersection.

We achieve every (α, R) point in this intersection by using:

• When the queue length l is smaller than or equal to Lc, the system uses packets

of size Rout = R1 bits. We require R1 = S̄− ε1, with ε1 being an arbitrary small

positive number. Notice to make the system stable we need Rin < (1− ε)R1.

• When the queue length l is larger than Lc, the system transmits packets with

size Smax, until the queue is shorter than Lc again.
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This queuing rule is illustrated in Figure 2.16.

Similar to the proof of Theorem 2.4, a bit error implies the bit is still awaiting

transmission. If the delay is larger than
⌊

Lc

Rin

⌋
and the bit is still not transmitted, the

queue must be longer than Lc. From Lemma 2.6 we know that the queue distribution,

and therefore the probability of bit error, is bounded by T ′
22
−α∗2(Rin)d, where α∗2(Rin)

is the feedback anytime reliability for the Smax-size erasure channel corresponding

to anytime rate Rin. Since we can make ε1 arbitrarily small, we have the anytime

reliability as stated in the theorem. To check the average packet size constraint:

E{S} =
∞∑
i=0

Rout(i)P (l = i)

= R1P (l ≤ Lc) + SmaxP (l > Lc)

≤ R1 + T ′
2Smax2

−α∗2
⌊

Lc
Rin

⌋
(2.11)

Since R1 < S̄ and the second term is an exponential function of Lc, we can always

select large enough Lc such that E{S} ≤ S̄.

The simulated packet size of this case is shown in Figure 2.17.

2.5 Summary

By using variable sized packets, we can substantially increase the anytime relia-

bility of a packet erasure channel. This can be achieved by using bigger packets when

we have many bits awaiting transmission. When the constraint on the packet size

takes the form of a moment constraint, then the anytime reliability is effectively the

same as that of the unconstrained channel for all rates up to capacity. When there is

a peak-size constraint as well, then the peak-size constraint dominates the anytime

reliability at all rates up to the Shannon capacity of the channel.

In the next chapter, we extend this style of analysis to the AWGN channel with

erasures and noiseless feedback. There the doubly-exponential vanishing of the prob-

abilities of error with delay lets us effectively conceptualize the channel as a noiseless

packet erasure channel, though there are many technical steps along the way. One of
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the differences in the two system comes from the power constraint of the AWGN chan-

nel. In the analysis in section 2.3 we increase the packet size to arbitrarily large when

the queue is long, and we change the critical queue length Lc to meet the expected

packet size constraint. At first it seems the AWGN+erasure channel is similar to

this case, with the average power constraint analogous to the j-th moment of packet

size constraint. However the average power constraint is essentially a constraint on

E{eS(Xi)}, which is more demanding than the packet size j-th moment constraint

E{Sj(Xi)}. Hence the above techniques are not directly applicable.
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Figure 2.16: An example of Markov chain of queue length when both average packet
size and peak packet size are constrained: Lc = 5, Rin = 1, Rout = 3 when l ≤ Lc,
and Rout = Smax = 4 when l > Lc

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

10

11

Time Step

T
ra

ns
m

itt
ed

 P
ac

ke
t S

iz
e 

(b
it)

Figure 2.17: Simulation result of packet size: constraints on both the peak and average
packet size, Rin = 1 bit, packet size = 6 bits when l ≤ Lc,peak packet size = 10 bits,
Lc = 7 bits, ε = 0.8
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Chapter 3

Analysis of the AWGN+Erasure

Channel

Figure 3.1: The AWGN+erasure channel with feedback

In this chapter we study the anytime reliability of a discrete-time power-constrained

AWGN + erasure channel with noiseless feedback. The channel was shown in Fig-

ure 1.1, which we repeat in Figure 3.1 for presentation clarity. First a white Gaussian

noise N(0, σ2) is added to the real-valued channel input, then this output is either

erased with probability ε or conveyed to the channel output with no additional er-
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ror. The erasures across time steps are independent. The average input power of the

channel is constrained to be lower than P . We allow the encoder to have access to

noiseless feedback of channel output with delay of one unit of discrete time to avoid

any causality issues. The main result was summarized in Theorem 1.7 in Section 1.2.

Essentially the anytime capacity of the AWGN + erasure channel is the same as its

Shannon capacity, up to the fundamental limit on the anytime reliability posed by

the erasures.

To prove achivability, we combine the approach used in Chapter 2 with that taken

in Chapter 6 of [9]. The overall idea is to embed the data bits to be transmitted into

the disturbance driving a hybrid control system. The continuous state of the control

system will represent the uncertainty that the decoder has regarding the data bits

and will be used to generate the channel inputs. Because of the perfect feedback, the

encoder can keep track of this uncertainty at its end. The bits failed to be transmitted

are queued at the encoder. Similar as in Chapter 2, the discrete state of the hybrid

control system is the queue length compared to a critical length to be designed. The

channel outputs will be used by the decoder to construct its best estimate of the bits.

This will be accomplished by running a copy of the same hybrid system that the

encoder is running, only without access to the disturbance. Our design must ensure

the average transmission power constraint is not violated.

We first describe the detailed approaches we undertake to attack the problem

in 3.1. Then in 3.2 we present in detail the construction of the system we use to

analyze the anytime capacity and reliability. The analysis of the system is in 3.3. And

finally in 3.4 we prove the achievability of the anytime region shown in Figure 1.3.

3.1 Approaches

3.1.1 Use feedback control system to code

We use the same technique as in Chapter 7 of [9]. A simulated feedback control

system is used as the encoder, where the feedback is the last channel output. The

decoder of the channel is the re-scaled uncontrolled simulated system. We use different

encoders and decoders in the long-queue and short-queue mode. We design the system
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Table 3.1: Glossary

Rin = Constant input bit rate from source

P = Average power constraint of the system

ε = Erasure probability

nt = AWGN noise

yt = System output and channel input at simulation time t

zt = Channel output at simulation time t

xt = State of the linear system at simulation time t

a1 = Linear system dynamics in the short queue mode

C1 = Observer in the short queue mode

D1 = Estimator in the short queue mode

a2 = Linear system dynamics in the long queue mode

C2 = Observer in the long queue mode

n = “speeding up factor” for the encoder to take in the bits when queue is long

lt = Queue length at simulation time t

Lc = The critical queue length dividing long queue region and short queue region

R1 = Transmission bit rate when lt ≤ Lc

R2 = Transmission bit rate when lt > Lc

P1 = Target power when lt ≤ Lc

P2 = Target power when lt > Lc
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such that the encoders and decoders in the two modes produce the same mean square

error. The simulated system is advanced only when the channel output is not erased,

and is paused otherwise.

3.1.2 Real time, virtual time, and simulation time

One advantage of using simulated systems as encoder and decoder is the flexibility

to advance or pause the system. In the system we distinguish three time indices.

• Real time tr

The real time starts from 0 and always advances in step of size one, regardless

of the channel realization. In each real time step, Rin bits are generated by the

source. At real time tr there are Rintr bits that have been generated by the

source so far.

• Simulation time t

Simulation time is the index of the state of the simulated feedback control

systems in encoder and decoder. It advances by one if and only if the channel

output is not erased. If no erasure has happened since the start of time, the

simulation time and the real time are the same.

• Virtual time tv

The virtual time indicates the position of the last bit received and decoded

by the receiver. It is defined by
⌈
Number of bits received

Rin

⌉
. It starts from 0,

and advances by
⌈

Routi

Rin

⌉
with every reception not erased, where i ∈ {1, 2} and

Routi is the time-varying output rate depending on the queue length. Without

erasure the virtual time and real time should be the same. But erasures cause

bits being stored in the queue and the lag between the virtual time and real

time. This lag is the indication of how many bits are delayed due to erasures.

Hence the system works as follows. In each new real-time step, the encoder takes

out Routi bits from the queue, where i ∈ {1, 2} depends on the queue length. The

control system in the encoder “tentatively” evolves, with the simulation time “tenta-

tively” advancing by one. If the channel output is not erased, the tentative advance
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of simulation time is “confirmed” in the control systems in both the encoder and the

decoder, where the encoder uses the channel feedback in the next real time step. The

virtual time advances by dRouti

Rin
e in this case. If on the other hand, the channel output

is erased, the simulation time will not advance, and the simulated control systems in

both encoder and decoder are “paused”. The virtual time will not advance, with its

lag to real time increasing by Rin. The detail of the system construction is given in

the next section.

The goal of our system design is to reduce the lag between the virtual time and

the real time caused by the erasures and maintain small probability of error caused

by the white Gaussian noise, under the power constraint. The reader should notice

the contrast between our virtual/simulated control system and the idea of just using

a standard control system whose state evolves in real time like those in networked

control systems. [5] [13] We are using this hybrid queing/control system for ease of

analysis since we can use queuing arguments for the queue part and control arguments

for the continuous part.

3.2 System construction

To achieve arbitrary points within the achievability region shown in Figure 1.3,

we use the approach illustrated in Figure 3.2. Bits arrive into a FIFO queue. If the

queue is short (i.e. no bits have waiting for too long), then a certain number of bits

corresponding to a rate Rout1 = R1 are tentatively taken out of the queue. If the queue

is very long (i.e. many old bits are still awaiting a chance at transmission), then a

larger number of bits Rout2 = R2 = nR1 are tentatively taken out of the queue. This

adjustment of service rate is shown in Figure 3.3. The bits that are tentatively taken

out of the queue are used to drive a special simulated source connected to a joint

source/channel encoder. If the feedback comes back and shows that the transmission

was erased, the bits tentatively taken out are put back into the head of the queue

and the evolution of the simulated source is backed out as though discrete time had

not advanced at all. The reason that R2 = nR1 is so we can think of the long-queue

behavior as attempting to make the simulated time run n times faster.

Below in all the equations the time indices t and t + 1 stand for the simulation
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time. Thus in real time, t + 1 and t are two neighboring instants when the channel

output is not erased.

Figure 3.2: Encoding and decoding system overview

Figure 3.3: Queue controller: adjusting service rate based on queue length

3.2.1 Encoder

The state of the encoding system consists of two parts: The discrete valued state

of the queue and the continuous valued state within the simulated source. The goal
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of the continuous valued state is to provide appropriate continuous valued inputs into

the channel and taken together, to try and realize the packet-level abstraction shown

in Figure 3.4. The analysis of that abstraction alone has been given in Chapter 2.

Figure 3.4: Queue level abstraction: bits are removed from queue when a non-erasure
happens and n times larger packets are used when queue is long

Figure 3.5 shows the inside of the part that deal with the continuous valued state,

and Figures 3.6 and 3.7 show the open-loop dynamics and actions of the controllers

respectively. The open-loop dynamics are unstable with a2 = an
1 to effectively let it

take n time-steps all at once. The controllers apply the control designed to stabilize

the system over the noisy feedback link when time should advance. When there is an

erasure, the state is left unchanged.1

The following are the governing equations of each component.

When lt ≤ Lc: E1

• Linear system L1

xt+1 = 2R1+ε′1(xt + Ut) + WR1
t+1

= (2 + ε1)
R1(xt + Ut) + WR1

t+1

= a1(xt + Ut) + WR1
t+1

1In contrast to the “control over communication channel” systems studied in [13] and [5], here we
can pause and advance the evolution of the (simulated) control system based on channel feedback.
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Figure 3.5: Source simulator and joint source/channel encoder

Figure 3.6: Tentative evolution: unstable open-loop dynamics
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Figure 3.7: State update: advancing time and applying controls

where a1 = (2 + ε1)
R1 = 2R1+ε′1 , R1 > Rin

1−ε
to make the queue stable. WR1

t is

the input to the linear system, which is generated by the source encoder from

the bits to be transmitted. The control system attempts to track WR1
t . WR1

t

is required to be bounded in [−1, 1] when the queue is short, e.g. if Rin = 1,

Wt = 1 when the bit to be transmitted is 1, and Wt = −1 when the bit is 0.

Obviously, the second moment of the disturbance is upper-bounded by 1.

• Observer and input to the channel

yt = C1xt

• Channel Output when non-erasure

zt = yt + nt

where nt ∼ N (0, 1) and process {nt}t≥0 is white.

When lt > Lc: E2

• Linear system L2

xt+1 = 2R2+ε′2(xt + Ut) + WR2
t+1

= (2 + ε1)
R2(xt + Ut) + WR2

t+1

= a2(xt + Ut) + WR2
t+1
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where R2 = nR1 and a2 = an
1 , with n ∈ Z+ and n > 1. WR2

t is required

to be bounded in [−2n(R1+ε′1), 2n(R1+ε′1)] = [−a2, a2], and its second moment is

therefore upper-bounded by a2
2. For more discussions on the generation of Wt

see section 6.3 of [9].

• Observer and input to the channel

yt = C2xt

• Channel Output when non-erasure

zt = yt + nt

where nt ∼ N (0, 1) and process {nt}t≥0 is white.

3.2.2 Decoder

The decoder shown in Figure 3.8 does not have access to the exact input bits nor

the exact continuous state of the encoder. The discrete state (queue length) depends

only on the sequence of erasures so far and so the decoder does have access to that.

In response to a query asking the value of any particular bit, the decoder checks to

see if it is still waiting in the queue. If not, it gives its best estimate of that bit’s

value.

To extract an estimate of the bit from the received channel outputs so far, the

decoder maintains an internal state corresponding to how the encoder’s state would

have evolved if there have been no inputs Wt. By the linearity of the continuous state

evolution in the encoder, the sum of the response of the system to only the controls

to the response of the system to only the inputs would be the actual state of the

encoder. Although both of those terms individually represent the outputs of unstable

processes, their sum is stable. Thus the response to the controls alone has to track

closely the response to the inputs alone. The unstable state can be thought to consist

of an integer whose binary expansion is the desired data bits. [9] [10]

When lt ≤ Lc: D1

• Estimator

x̂t = D1zt



39

Figure 3.8: Decoder

Motivated by the MMSE estimator, we let C1D1 = P1

1+P1
, i.e. D1 = P1

C1(1+P1)

• Control input

Ut = −x̂t

When lt > Lc: D2

• Estimator

x̂t = D2zt

Motivated by the ML estimator, we let C2D2 = 1, i.e. D2 = 1
C2

.

• Control input

Ut = −x̂t

3.2.3 Target powers

In the short queue mode E{y2
t } ≤ P1, and in long queue mode E{y2

t } ≤ P2, such

that overall E{y2
t } ≤ P . Notice we only constrain the average transmission power,

while allowing instantaneous power to be as large as needed.
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3.2.4 The order of system evolution

xt−1 → yt−1 → zt−1 → Ut−1 → ai(xt−1 + Ut−1) + WRi
t → xt, where i ∈ {1, 2}.

In real time, the system first makes a tentative evolution with L1 and L2 in

parallel. Only when the previous output is not erased will the control be applied and

the newly observed state be transmitted. If the output is erased, the last tentative

state will be preserved, and the system goes through a null dynamics, to advance in

real time. However the simulation time is not advanced when the channel erases the

transmission.

This system works because once a bit is out of the queue, the decoder’s estimate of

it will converge doubly exponentially in the number of subsequent non-erased channel

outputs. As such, the dominant source of errors is the erasures. The average power

constraint is met by making the “long queue” behavior rare enough by choosing a

suitably large threshold Lc between the two behaviors.

3.3 Analysis of the system

In all the following discussion, time t is the simulation time, i.e., time steps advance

only when non-erasure happens in the channel. For presentation simplicity, we assume

the variance of the AWGN σ = 1. When σ 6= 1, we can scale the power obtained by

σ2, and all other results hold.

3.3.1 State evolution in the short queue mode

Proposition 3.1. As long as a1 < 1+P1, the state of the short queue mode is stable.

In such case, the last state of the system before the last long-short transition acts as

the initial condition in the short queue mode.

Proof. Suppose at simulation time t = τ , the queue length is lτ > Lc bits, then we

have

xτ = − a2

C2

nτ−1 + WR2
τ (3.1)
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and

Uτ = −x̂τ = − 1

C2

(C2xτ + nτ ) = −
(

xτ +
1

C2

nτ

)

Suppose at simulation time τ + 1, the queue length lτ+1 ≤ Lc, then

xτ+1 = a1(xτ + Uτ ) + WR1
τ+1

= WR1
τ+1 −

a1

C2

nτ

For later simulation time in the short queue mode, we have

xt+1 = a1(1− C1D1)xt + (WR1
t+1 − a1D1nt) (3.2)

To make the system stable we require

a1(1− C1D1) < 1 ⇔ a1

(
1− P1

1 + P1

)
< 1 ⇔ a1 < 1 + P1

In such a situation xτ+t+1 is:

xτ+t+1 = (a1(1− C1D1))
t xτ+1 +

t−1∑
j=1

WR1
τ+j+1 (a1(1− C1D1))

t−j

−
t−1∑
j=1

a1D1nτ+j (a1(1− C1D1))
t−j

= (a1(1− C1D1))
t a2

c2

nτ +
t−1∑
j=0

WR1
τ+j+1 (a1(1− C1D1))

t−j

−
t−1∑
j=1

a1D1nτ+j (a1(1− C1D1))
t−j (3.3)

The long queue mode provides the short queue mode with a initial state.

Remark 3.2. The power of the channel input during the mode transition is upper-

bounded by

P trans
1 , C2

1E{x2
τ+1} ≤ C2

1

(
1 +

a2
1

C2
2

)
(3.4)
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We will discuss the relation between P1 and P trans
1 later in 3.3.3, when all the

affecting parameters have been defined.

Proposition 3.3. When the system is stable, as long as a1 <
√

1 + P1 < 1 + P1,

there is a unique

C1 =

√
P1(1 + P1 − a1)(1 + P1 − a2

1)

(1 + P1)(1 + P1 + a1)

so that the average transmission power does not exceed P1 after the first simulation

time step following the long-short transition.

Proof. When the system is stable, (3.3) is a bounded zero mean disturbance plus a

zero mean Gaussian noise.

Since C1D1 = P1

1+P1
, the contribution of the bounded disturbance is also bounded

as follows

M ,
t∑

j=0

(a1(1− C1D1))
j <

∞∑
j=0

(a1(1− C1D1))
j =

P1 + 1

P1 + 1− a1

The second moment of the bounded noise is upper-bounded by M2 =
(

P1+1
P1+1−a1

)2

.

Since the channel noise is independent of the data to be transmitted, the power

of channel input in the short queue mode therefore is upper-bounded by

P1 = C2
1M

2 + C2
1

∞∑
j=0

a2
1D

2
1(a

2
1(1− C1D1)

2)j

=
C2

1(1 + P1)
2(1 + P1 + a1) + a2

1P
2
1 (1 + P1 − a1)

(1 + P1 − a1)2(1 + P1 + a1)

As long as a1 <
√

1 + P1 < 1 + P1, there is a unique solution of C1:

C1 =

√
P1(1 + P1 − a1)(1 + P1 − a2

1)

(1 + P1)(1 + P1 + a1)
(3.5)

Proposition 3.4. In the short queue mode, the tail of the distribution P
(∣∣∣Xt − X̂t

∣∣∣ ≥ x
)

dies at least as fast as

f1(x) , Ke
− x

2σ2
a1 (3.6)
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where K > 0 and x > 0, and

σ2
a1

=
P1(1 + P1)

(1 + P1 − a1)2(1 + P1 − a2
1)

Proof. The upper-bound of the variance of the Gaussian noise is

σ2
a1

=
∞∑

j=0

D2
1(a

2
1(1− C1D1)

2)j =
P1(1 + P1)

(1 + P1 − a1)2(1 + P1 − a2
1)

(3.7)

The tail of the total noise, P (X ≥ x), dies as follows

P (X ≥ x) <





1 if 0 < x ≤ M

1
2
e
− (x−M)2

2σ2
a1 if x > M

We discuss in two cases

1. x > M

In this case,

P (X ≥ x) <
1

2
e
− (x−M)2

2σ2
a1 ≤ 1

2
e
−x−(M+1)

2σ2
a1

for any x > M .

Therefore K = e
M+1

2σ2
a1 will meet our need.

2. 0 < x ≤ M

For K to achieve 1 ≤ Ke
− x

2σ2
a1 ,∀|x| ≤ M , we need Ke

− M

2σ2
a1 ≥ 1, i.e., K ≥ e

M

2σ2
a1 .

Combining the above two cases, we can always pick K = e
M+1

2σ2
a1 such that P (X ≥ x) ≤

Ke
− x

2σ2
a1 , ∀x ∈ R+.

3.3.2 State evolution in the long queue mode

Proposition 3.5. Except for the first step after short-long mode transition in the

simulation time, the system in the long queue mode has no memory of history before

the transition.
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Proof. Suppose at simulation time t = τ , the queue length is lτ ≤ Lc, we have

xτ = a1(1− C1D1)xτ−1 + (WR1
τ − a1D1nτ−1) (3.8)

and

Uτ = −(D1C1xτ + D1nτ )

Suppose at simulation time τ + 1, the queue length is lτ+1 > Lc, and the system

is switched to the long queue mode, then we have

xτ+1 = a2(xτ + Uτ ) + WR2
τ+1

= a2(1− C1D1)xτ − a1D1nτ + WR2
τ+1

For the later simulation time t in the long queue mode

xt = WR2
t − a2

C2

nt−1 (3.9)

Hence the system has no memory of the short queue mode behavior in the long

queue mode, except for the first time step after transition. This enforced forgetting

of the past in the long-queue mode is just a technical tool to simplify analysis such

that we can ignore speed of convergence issues after the queue transition.

Proposition 3.6. The expected power of xτ+1 at the transition can be bounded as

follows:

P trans
2 , C2

2E{x2
τ+1}

≤ a2
2C

2
2(1− C1D1)

2P1 + a2
1C

2
2D

2
1 + C2

2a
2
2

= a2
2C

2
2

(
(1− C1D1)

2P1 +
a2

1

a2
2

D2
1 + 1

)
(3.10)

There is no problem of stability in the long queue mode. Suppose that the power

constraint is satisfied with equality, then we have:

Proposition 3.7. When the system is in the long queue mode, and is not at the step

when the short-long mode transition happens, the expected power of the channel input

is upper-bounded by

P2 = a2
2(1 + C2

2) (3.11)
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Proof.

P2 = C2
2E{x2

t} ≤ C2
2a

2
2

(
1 +

1

C2
2

)
= a2

2(1 + C2
2)

Proposition 3.8. In the long queue mode, the tail of the error distribution P
(∣∣∣Xt − X̂t

∣∣∣ ≥ x
)

dies at least as fast as

f2(x) , 1

2
e
− x2

2σ2
a2 (3.12)

where σ2
a2

=
a2
2

P2−a2
2
.

Proof. The error is zero mean Gaussian with variance smaller than

σ2
a2

=
1

C2
2

=
1

P2

a2
2
− 1

=
a2

2

P2 − a2
2

(3.13)

It goes to infinity as a2 approaches
√

P2.

3.3.3 The relation between P1 and P trans
1

We hope to bound the power in the short queue mode by P1, hence we need to

study the relation between P1 and P trans
1 .

Proposition 3.9. The power in the short queue mode is bounded by P1, as long as

C2
2 ≥

a2
1C

2
1

P1 − C2
1

(3.14)

Proof. To bound P trans
1 by P1, using (3.4), we have:

P trans
1 ≤ P1 ⇔ C2

1

(
1 +

a2
1

C2
2

)
≤ P1 ⇔ C2

2 ≥
a2

1C
2
1

P1 − C2
1

Since from (3.5), the RHS of the last equation is positive, we can always select a

big enough C2 such that P trans
1 ≤ P1.
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3.3.4 Compatibility Results

From above results we can see the following two points:

1. Without noise nt, the un-controlled state of the system depends only on the

virtual time.

2. The controlled state depends on the virtual time, the data to be transmitted,

and the channel noise since the last queue mode transition.

The first point is true because without channel noise and control, the state of the

system is only driven by the bounded disturbance. The disturbance is generated by

taking bits out of the source coder at proper rate. The rate is determined by the

queue length, or equivalently, the virtual time.

The second point is true because in the long queue mode, the only channel noise

matters is the one in the immediately past time step.

Below we use these results to study the estimation error of the state, and therefore

the bit error probability. We obtain the relation between bit error probability and

delay thereafter. First we have the following proposition.

Proposition 3.10. The probability of bit error with delay d and queue length l bits,

denoted as Perror(d, l), is bounded by

Perror(d, l) ≤ f

(
ε1

2 + 2ε1

2(log2 a1)d−l

)

where f(·) , max(f1(·), f2(·)), with f1(x) , Ke
− x

2σ2
a1 as defined in proposition 3.4

and f2(x) , 1
2
e
− x2

2σ2
a2 as defined in proposition 3.8.

Proof. Suppose we only have the short queue mode. Then from the derivation of

Sahai’s thesis ([9], pg. 110), for a given queue length l when the bit is transmitted,

let d be the time delay, i be the number of bits received, ζ be the error, and ε1 be

defined as a1 = 2R1+ε′1 = (2 + ε1)
R1 , then we have:

Perror(d, l) ≤ P

(
|ζ| > ε1

2 + 2ε1

(2 + ε1)
−i

)

= P

(∣∣∣Xt − X̂t

∣∣∣ >
ε1

2 + 2ε1

(2 + ε1)
(log2+ε1

a1)d−l

)

= f1

(
ε1

2 + 2ε1

2(log2 a1)d−l

)
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Similarly, if we only have the long queue mode, then the bit error probability

satisfies the following inequality:

Perror(d, l) ≤ f2

(
ε1

2 + 2ε1

2(log2 a2)d−l

)

where a2 = 2R2+ε′2 = (2 + ε1)
R2 .

Below we write f(·) = max(f1(·), f2(·)). Function f(·) is a decreasing function.

For the short queue mode, the proposition is obviously true.

For the long queue mode, since

log2(a2) > log2(a1)

we have
ε1

2 + 2ε1

2(log2 a2)d−l ≥ ε1

2 + 2ε1

2(log2 a1)d−l (3.15)

Therefore in the long queue mode

Perror(d, l) ≤ f

(
ε1

2 + 2ε1

2(log2 a2)d−l

)

≤ f

(
ε1

2 + 2ε1

2(log2 a1)d−l

)

Let Ω′ = ε1
2+2ε1

. Now we remove the condition on l and get the probability of bit

error as the following:

Perror(d) ≤
Lc∑
j=0

P (l ≥ j)f
(
Ω′2(log2 a1)d−j

)
+

d−1∑

k=Lc+1

P (l ≥ k)f
(
Ω′2(log2 a1)d−k

)
+

P (l ≥ d) · 1

≤ L′
Lc∑
j=0

2−α1j exp

(
−Ω′2R1d−j

2σ2
a1

)
+ L′′

d−1∑

k=Lc+1

2−α2k exp

(
−Ω′2R1d−k

2σ2
a1

)

+ L′′′2−α2d (3.16)

with L′, L′′, and L′′′ being positive constants. We consider the three terms in turn

below. The goal is to prove there exist designs of the system such that Perror(d) goes

to zero with delay d at least exponentially at the desired rate α.

First look at the third term, the simplest one, in (3.16). For any given α < − log2 ε,

we can pick an α2 ∈ (α,− log2 ε) to make the third term decay fast enough with delay.
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Lemma 3.11. The first term in (3.16), denoted as G1(d), decays to zero at least

doubly exponentially with delay d.

Proof. The first term in equation (3.16) satisfies the following inequalities

G1(d) , L′
Lc∑
j=0

2−α1j exp

(
−Ω′2R1d−j

2σ2
a1

)

< L′
(

1− 2−α1Lc

1− 2−α1

)
exp

(
− Ω′

2σ2
a1

2−Lc2R1d

)

Hence the proposition is true.

Since a double exponential function of d decays to zero faster than any exponential

function of d, for any system design and α, G1(d) will decay faster than desired.

Lemma 3.12. The second term in equation (3.16), denoted as G2(d), can go to zero

with d at desired rate α < − log2 ε by selecting the long queue mode rate R2.

Proof. Denote the second term in (3.16) as

G2(d) = L′′
d−1∑

k=Lc+1

g(k)

where

g(k) , 2−α2k exp

(
−Ω′2R1d−k

2σ2
a1

)

We will show below that g(k) can be upper-bounded by an exponential function

of d. The value of k can only be integers between d − 1 and Lc + 1, but we assume

for now k ∈ R+ and Lc + 1 ≤ k ≤ d− 1 and differentiate g(k) to find its trend with

changing k, , then

dg

dk
= g(k) · ln 2 ·

(
−α2 +

Ω′

2σ2
a1

2R1d−k

)

Since g(k) > 0, ∀k ∈ [Lc + 1, d− 1], we look at the sign of

h(k) , −α2 +
Ω′

2σ2
a1

2R1d−k
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Obviously h(k) is a decreasing function of k. When

d > max


Lc + 1 + log2

(
2σ2

a1
α2

Ω′

)

R1

,
−1 + log2

(
2σ2

a1
α2

Ω′

)

R1 − 1


 (3.17)

h(k) is always positive in the interval [Lc + 1, d − 1], hence g(k) increases with

k. g(k) achieves its maximum value when k = d − 1. Therefore G2(d) satisfies the

following

G2(d) =L′′
d−1∑

k=Lc+1

2−α2k exp

(
−Ω′2R1d−k

2σ2
a1

)

≤L′′(d− Lc − 2)2−α2(d−1) exp

(
−Ω′2(R1−1)d+1

2σ2
a1

)
(3.18)

=L′′2α2 · (d− Lc − 2)2−α2d exp

(
−Ω′2(R1−1)d+1

2σ2
a1

)
(3.19)

G2(d) is the product of (d − Lc − 2)2−α2d with a doubly exponential function of

d. Hence ∀α < − log2 ε, there exists α2 lying between α and − log2 ε such that G2(d)

decays to zero at least exponentially at rate higher than α.

We have finished analyzing all three terms in (3.16) and proved the following

proposition.

Proposition 3.13. The probability of bit error (3.16) goes to zero exponentially with

d at any desired rate α < − log2 ε by properly designing the system.

3.4 Proof of achievability

In this section we prove Theorem 1.7, the main theorem of the thesis. For clarity

we repeat the theorem below.

Theorem 3.14. The anytime capacity of AWGN + erasure channel with average

power constraint P ′, noise variance σ2, and encoder having access to noiseless feedback

is

Canytime(α) =

{
(1−ε)

2
log2

(
1 + P ′

σ2

)
if 0 ≤ α ≤ − log2 ε

0 otherwise
(3.20)
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Proof. Now suppose that the power constraint P ′ is known, then the achievable data

rate is in
[
0, 1−ε

2
log2(1 + P ′

σ2 )
)

bits per channel use as shown in Figure 1.3. Below for

simplicity we denote P = P ′
σ2 , and all power values obtained will have to be scaled

by σ2 to get the real values. For any given point (Rin, α) in the achievable region

in Figure 1.3, the following is the procedure of system design to achieve it. Without

specific order, the parameters of the system to be determined are P1, R1, ε1, a1, C1,

D1, α1, α2, n, R2, a2, C2, D2, P2, and Lc. The system design can follow these steps

below in the indicated order.

1. P1

Select an arbitrary P1 such that 2
2Rin
1−ε − 1 < P1 < P . This is always possible

since the given Rin is in the achievable region.

2. R1 and ε1

R1 = Rin

1−ε
+δ1, where δ1 is an arbitrary small positive number. Select an arbitrary

ε1 which satisfies (2 + ε1)
R1 = (2 + ε1)

Rin
1−ε

+δ1 ≤ √
P1 + 1. These are enabled by

the selection of P1.

3. a1

Value of a1 comes from R1 and ε1 as a1 = (2 + ε1)
R1 = (2 + ε1)

Rin
1−ε

+δ1 .

4. C1 and D1

C1 =
√

P1(1+P1−a1)(1+P1−a2
1)

(1+P1)(1+P1+a1)
comes from equation (3.5). D1 = P1

C1(1+P1)
, moti-

vated by MMSE estimator.

5. α1

α1 is obtained by looking up the anytime capacity curve of the erasure channel

with noiseless feedback using Theorem 2.2 and Figure 2.7. The value of α1

corresponds to rate Rin

R1
.

6. α2

Choose α2 such that α < α2 < − log2 ε, and (3.18) decreases with d at rate

higher than α.
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7. n and R2

Choose n such that R2 = nR1, n ∈ Z+, n > 1. And n is selected such that on

the anytime capacity curve of the erasure channel with noiseless feedback, the

normalized rate Rin

R2
corresponds to anytime exponent α2 or larger.

8. a2

a2 = an
1 = (2 + ε1)

nR1

9. C2 and D2

C2 is selected to satisfy (3.14), and D2 = 1
C2

.

10. P2

P2 comes from equation (3.11), i.e. P2 = a2
2(1 + C2

2).

11. Lc

Select Lc such that the average power constraint is met. Formally, let P2,max ,
max(P2, P

trans
2 ). It is clear from equations (3.10) and (3.11) that P2,max does

not depend on Lc. We require

E{y2
t } = Prob(l ≤ Lc)P1 + Prob(l > Lc)P2,max

< P1 + Prob(l > Lc)P2,max

≤ P1 + 2
−α∗2

⌊
Lc

Rin

⌋
P2,max

where the first inequality comes from lemma 2.3.

Since P1 is selected to be smaller than P , there are always Lc large enough to

satisfy (3.21).

Now all the parameters are selected and the system is designed to achieve the given

(Rin, α).

Since we can always have a string of consecutive erasures between the time the bit

was sent and the current time, the bit error probability can never decay faster than

εd. Thus the anytime capacity of the AWGN+erasure channel is zero for α > − log2 ε.
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For 0 ≤ α < − log2 ε, we have proved above the anytime capacity of the channel is

larger than 1−ε
2

log2(1+P ). But the Shannon capacity of the AWGN+erasure channel

with power constraint P , either with or without feedback is 1−ε
2

log2(1 + P ), and

anytime capacity of a channel cannot be larger than its Shannon capacity. Therefore

Canytime(α) =
1− ε

2
log2(1 + P ), ∀0 ≤ α < − log2(ε)

3.5 Simulation results and discussions

Figures 3.9-3.14 show the simulation results for one realization of a particular

system. The input rate Rin is 1 bit. The erasure probability ε = 0.4. The output

rate in the short queue mode is Rshort = 2 bits. Notice that the system is stable even

when only short queue mode is applied. The bit rate for long queue mode, Rlong, is

3 bits. The two modes transit at the critical queue length Lc = 4 bits. In all these

figures, the horizontal axis is the real time.

Figure 3.9 shows an arbitrary realization of the erasure/non-erasure in the channel

in real time. Each filled dot means a successful transmission, and each empty dot

stands for a erasure. All the following figures in this section come from this same

realization of the channel.

0 10 20 30 40 50 60 70 80 90 100
Real Time

ε = 0.4, Realization of erasures

Figure 3.9: Successful transmission and erasure: ε = 0.4, filled dots are successes and
empty dots are erasures

Figure 3.10 shows the virtual time as a function of real time in this particular

channel realization. We compare the virtual times of a system with short-queue mode

only and of a system with two modes. As discussed above, erasures make the virtual
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time lag from the real time. System design should keep the lag small. In Figure 3.10

we can see when two modes are applied, the high data rate in the long queue mode

accelerates the reduction of the lag, hence the virtual time in the two-mode case is

closer to the real time than when only the short queue mode is applied.

Figure 3.11 explicitly shows the lag between virtual time and real time. We can see

that before the first non-erasure after the system enters the long queue mode for the

first time, the lags in the two cases are the same. But when a successful transmission

occurs when the queue is long, the two-mode system transmits more bits than the

one-mode system, and reduces the lag faster. Also notice since the system is stable

even only when the short queue mode is applied, the lag of the one-mode system

converges to zero eventually, although longer time has elapsed.
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Virtual time with two modes
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Figure 3.10: A realization of Virtual Time as a function of Real time: ε = 0.4, Rin = 1
bit, Rshort = 2 bits, Rlong = 3 bits, Lc = 4

Figure 3.12 is the indicator function of long queue mode, i.e., when the system is

in long queue mode, the function returns value 1, otherwise it returns 0.

Figure 3.13 shows the average power corresponding to the channel realization

in Figure 3.9. We can see that when the system stays in the short queue mode,

the average transmission power increases gradually and converges P1, and when the

system stays in the long queue mode, the average transmission power is P2 > P1 due to

the higher data rate. At the instant the system transits from the long queue to short

queue mode the average power is P trans
1 < P1 by design. As the system stays in the
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Figure 3.11: Lag between Real Time and Virtual Time with 1 mode and two modes:
ε = 0.4, Rin = 1 bit, Rshort = 2 bits, Rlong = 3 bits, Lc = 4
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Figure 3.12: Time period in short and long queue mode: ε = 0.4, Rin = 1 bit,
Rshort = 2 bits, Rlong = 3 bits, Lc = 4, Short queue: 0, Long queue: 1
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Figure 3.13: Average power: ε = 0.4, Rin = 1 bit, Rshort = 2 bits, Rlong = 3 bits,
Lc = 4
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Figure 3.14: A realization of the actual power: ε = 0.4, Rin = 1 bit, Rshort = 2 bits,
Rlong = 3 bits, Lc = 4
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short queue mode, the power increases from P trans
1 and converges to P1. Similarly the

average power changes to P trans
2 at the instant the system transits to the long queue

mode. Then the average power goes to P2 in the long queue mode until the system

transits back to the short queue mode. In contrast to the average power, Figure 3.14

shows the actual power for the realizations of the erasures shown in Figure 3.9, and an

arbitrary particular realization of the Gaussian noise. The correspondence between

the actual power in Figure 3.14 and average power in Figure 3.13 is obvious. Our

design limits the average power, while allows instant power to be high. But as we

have observed, it is rare for the actual power to be extremely high.
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Chapter 4

Conclusion and Future Work

We have constructively proved the anytime capacity of the AWGN+erasure chan-

nel, when the encoder has noiseless channel feedback, is the same as its Shannon

capacity. In Sahai’s Ph.D. thesis [9], the direct relation between the anytime capacity

of a channel with the stability of a control system over the channel is obtained. We

copy the relevant corollary here.

Corollary 4.1. A controlled scalar discrete-time unstable linear Markov process with

parameter A driven by a bounded noise can be η-stabilized across a noisy channel

with the observer having access to noiseless feedback if there is an ε > 0 for which

Canytime(η log2 A + ε) > log2 A for the channel with noiseless feedback. In particular,

if Canytime(2 log2 A + ε) > log2 A, then we can stabilize it in the mean-squared sense.

Therefore the anytime capacities we derived in the thesis all have their stability

implications in the feedback control over the corresponding channels.

We believe that this style of analysis can be extended to give us the anytime

reliabilities of many Gaussian channels with noiseless feedback and channel state

side information available at both the transmitter and receiver. We are interested in

anytime capacity of AWGN+erasure channel without feedback. Other two interesting

cases are shown in Figure 4.1 and 4.2. Figure 4.1 shows a channel in which the order of

erasure and AWGN are reversed from the channel we studied. In the channel studied

in this thesis (Figure 1.1), when the output and the feedback is 0, we know that an

erasure has happened. But in the channel shown in Figure 4.1, it is more difficult to

determine the occurrence of erasures. If we have side information from the erasure to
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both the encoder and decoder, then the channel is the same as the AWGN+erasure

channel we have studied. Figure 4.2 shows the case when the fading is governed by

more complex processes than Bernoulli process, e.g. a Markovian process. Another

interesting extension is the FIR channel with Gaussian parameters which is studied

by Elia in [5] in feedback control system.
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Figure 4.1: Erasure+AWGN channel with feedback

Figure 4.2: Fading+AWGN channel with feedback
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