
Sequential Decoding for Anytime Communication

by

Hari Palaiyanur

B.S. (Cornell University) 2004

A thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Anant Sahai, Chair
Professor Kannan Ramchandran

Spring 2006

The thesis of Hari Palaiyanur is approved.

Chair Date

Date

University of California, Berkeley

Spring 2006

Sequential Decoding for Anytime Communication

Copyright c© 2006

by

Hari Palaiyanur

Abstract

Sequential Decoding for Anytime Communication

by

Hari Palaiyanur

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anant Sahai, Chair

This thesis shows the applicability of sequential decoding to the problem of creating

practical codes for anytime communication. Anytime information theory is the study of the

fundamental limits on reliability with delay in information theory.

In the problem of control under communication constraints, anytime information theory

plays a crucial role. For a linear, unstable scalar plant with finite disturbance, the anytime

capacity of the channel with feedback gives precisely which moments of the plant can be

bounded away from infinity. The anytime capacity of a channel with feedback is not known

except in special instances. We propose a scheme that makes use of the anytime capacity of

the channel without feedback. A random tree encoder is used to communicate an appropri-

ately quantized version of the state to the decoder. The decoder runs the stack algorithm

to get a delay universal estimate of the state at current and past times. Using results of

Jelinek, we show that the control problem is served just as well by a sequential decoder

with bounded complexity as by a maximum-likelihood decoder. The stack algorithm has

a parameter called a ‘bias’ that allows for a tradeoff between reliability and computation.

The tradeoff is investigated with simulations and some analytical results.

The major contributions of the thesis are for the problem of delay-universal lossless

source coding, where we use a sequential random binning encoder with a stack algorithm

1

decoder to show how to achieve the same error exponent with delay as a maximum-a-

posteriori decoder. This scheme is not good compared to known schemes for point-to-point

source coding, but it easily extends to the case when side information is available only at

the decoder. Since the best schemes for lossless source coding have their complexity mostly

in the encoder, they do not translate well to source coding with side information. We prove

theorems about reliability and computation analogous to Jelinek’s [1] for channel coding

with a sequential decoder, essentially providing the source coding counterpart. We appeal

to a result of Arikan and Merhav [2] to show that the stack decoder is as ‘computationally

efficient’ as any sequential decoder can be. The strategy is finally simulated to verify its

practicality.

Professor Anant Sahai
Thesis Committee Chair

2

To my parents, Ravi and Sumathi

i

Contents

Contents ii

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Anytime communication . 1

1.2 Control over a noisy channel . 2

1.3 Convolutional codes and sequential decoding 4

1.4 Convolutional source coding with a sequential decoder 6

2 Control over a noisy channel 10

2.1 Problem definition . 10

2.2 Known results . 13

2.3 Main result . 14

2.3.1 Theorem and proof . 14

2.3.2 The random variable of computation 18

2.4 Simulations . 20

2.5 Tradeoff between computation and stability 25

2.5.1 Setting the bias for reliability . 26

2.5.2 Setting the bias for computation . 27

2.6 Comments . 30

3 Source coding with a stack decoder 32

ii

3.1 Problem definition . 32

3.2 A random binning scheme with a stack decoder 35

3.3 Bounds on computation and probability of error 38

3.4 Converse for computation in point-to-point sequential source coding 40

3.5 Simulations . 44

3.6 Lossless source coding with side information 48

4 Conclusion 54

Bibliography 56

References . 56

A Appendix 58

A.1 The probability of error with delay for channel coding with a sequential decoder 58

A.2 The probability of error with delay for a source coding scheme with sequential
decoding . 63

A.3 Computation bound for source coding with a sequential decoder 70

A.4 Probability of error for source coding with side information using a sequential
decoder . 73

iii

List of Figures

1.1 Control over a noisy communication channel without any explicit feedback
path from controller to observer. 3

1.2 Distributed source coding, sometimes called the Slepian-Wolf problem. . . . 8

1.3 Source coding with side information. 9

2.1 A regular trellis . 16

2.2 A sample path of the controlled plant state 22

2.3 An example of running the encoder/decoder at a rate R and the exponent
guaranteed by the theorem. 23

2.4 A zoomed-in look at the state’s deviation from zero for a sample path. . . . 23

2.5 Power laws for state and computation . 24

2.6 Computation and reliability tradeoff example 25

2.7 Another way of looking at the computation and reliability tradeoff 28

2.8 Typical plots of E′
0(ρ) and E0(ρ)/ρ. 29

2.9 Reliability exponent when the bias is set to minimize computation for a
binary symmetric channel with crossover probability 0.1. 29

2.10 Channel coding exponents . 31

3.1 Point to point source coding . 33

3.2 The ith incorrect subtree for a binary source. 35

3.3 A ternary tree . 36

3.4 The random coding exponent and block coding exponent Eb(R). 39

3.5 Rate required to have finite γth moment of computation. The source is
ternary with probabilities (.95, .025, .025). 40

3.6 The joint source channel coding problem. 42

3.7 The functions of interest associated with a ternary source with probability
vector (.95, .025, .025). 45

iv

3.8 Experimentally determining Er(R), R = 1 bit per symbol, for example 3.5.1. 46

3.9 Experimentally determining the Pareto exponent for example 3.5.1. 46

3.10 Functions of interest associated with a binary source with PMF (0.9, 0.1). . 47

3.11 An example of point-to-point source coding that can be compared to source
coding with side information at the decoder 48

3.12 Estimating E(R) for example 3.5.2. 49

3.13 Estimating the Pareto exponent for computation for example 3.5.2. 49

3.14 Source coding with side information. X and Y are related through some
known correlation structure. 51

3.15 An example of lossless source coding with side information 51

3.16 Determining E(R) for example 3.6.1. 53

3.17 Determining the Pareto exponent for computation for example 3.6.1. 53

A.1 An example of when Ed(k) occurs. 59

A.2 Examples of when Ad(k) occurs, illustrating the difference with Ed(k). . . . 59

A.3 A ternary tree. The true source sequence is shown above. The condition
y1 6= x1 selects a portion of the tree containing paths that could potentially
cause the error event F3. 65

v

List of Tables

2.1 Parameters for simulation. 20

3.1 Comparison of theoretical and experimental performance in example 3.5.1. . 45

3.2 Comparison of theoretical and experimental performance in example 3.5.2. . 48

3.3 Comparison of theoretical and experimental performance in example 3.6.1. . 52

vi

Acknowledgements

I thank my advisor Anant Sahai very much for his inspiration, patience and encouragement.

The work presented in this thesis was motivated by a desire to describe and simulate a

practical anytime decoder for anytime communication problems. I also thank Cheng Chang

and Dr. Stark Draper for conversations about different anytime communication problems.

In the past two years, I have had the love and support of friends and family members. I

especially thank my parents for their wisdom and guidance. Among my classmates, I have

have received plentiful help and friendship from Sameer Vermani, Anand Sarwate, Bobak

Nazer and many others. Financially, I am very grateful to have been supported by the

Vodafone US Foundation on fellowship for two years, allowing me to focus on research.

vii

viii

Chapter 1

Introduction

This thesis is divided into two main parts, where sequential decoding is applied to the

problems of anytime channel coding and anytime source coding for discrete memoryless

channels and discrete memoryless sources respectively. In the introduction, we describe the

main areas of emphasis of this work and detail our contributions to the subject.

1.1 Anytime communication

Anytime communication was coined by Anant Sahai [3] and refers to the concept that

delay is a fundamental price that can and, in most cases, must be paid to gain reliability in

communication problems. Different applications will have differing requirements on latency.

For example, voice applications like cellular telephony have a maximum latency around

100 milliseconds, while deep space applications have latency requirements that are many

orders of magnitude larger. For point-to-point (P-P) source or channel block codes, these

latency requirements put stringent conditions on the length of the code used. In general,

the longer the length of the code we are allowed to use, the more reliable we can make it.

Alternatively, different applications may have differing reliability requirements, as measured

in probability of error. Providing the same reliability for a shorter delay can dramatically

1

enhance the performance of many applications, particularly interactive ones like gaming

and video conferencing.

From the early days of information theory, the idea of using long block lengths to

increase reliability has been used and studied in terms of error exponents. The probability

of error is generally exponentially decaying in block length or decoding delay, and the

rate of decay is referred to as the error exponent. However, there has been one metric of

performance for reliable communication over a noisy channel. The capacity of the channel

divides achievable and unachievable rates of communication. When the application solely

calls for P-P communication without reference to latency, this is a perfectly acceptable

performance criterion. Many applications, like control over a communication link, do have

latency constraints that make reliability with latency the important performance criterion.

Roughly speaking, ‘anytime capacity’ is the parametrization of this capacity with a desired

reliability.

An ‘anytime encoder’ must allow the decoder to select a target delay without knowledge

beforehand. Hence, a block encoder is not an anytime decoder. An ‘anytime decoder’ is

a decoder that gives (exponentially) decaying probability of error with decoding delay,

therefore allowing the application to choose how and when to use the decoded information

in real time. In Chapter 2, we give precise definitions and state a few results of Sahai and

Mitter [4] that make clear the relationship of anytime capacity with the problem of control

over a noisy channel.

1.2 Control over a noisy channel

One of the two main contributions of this thesis is to the problem of controlling an

unstable system over a noisy channel1. Figure 1.1 shows the diagram of an unstable plant

in a feedback loop with an observer/encoder, noisy channel and controller/decoder. The

scalar plant is described in Equation 1.1 and has a state X(t) that evolves in discrete

time as a linear system with unstable eigenvalue λ. At each time, a random but bounded
1Much of section 1.2 and Chapter 2 is taken from our publication at Allerton 2005 [5], written jointly

with my advisor Anant Sahai.

2

1 Step

Delay

'

&

$

%
Channel

Noisy

Encoder/

Observer

Decoder/

Controller

'

&

$

%

-
?

?

6

-

U(t)

Control Signals

O

C

X(t)

W (t− 1)

U(t− 1)

Scalar
System

¾

Figure 1.1. Control over a noisy communication channel without any explicit feedback path
from controller to observer.

disturbance W (t) is added to the state and the controller is allowed to input a U(t) that will

bring the state close to 0 again. The challenge in the problem is to control the system when

the observer and controller are separated by a discrete memoryless channel. In this thesis,

the goal is to maximize the value of η for which the ηth moment of the state E[|X(t)|η] is

finite.

X(t + 1) = λX(t) + W (t) + U(t) (1.1)

This is a problem of cooperative distributed control in that there are two different

boxes that need to be designed: the observer/encoder that has access to the plant state and

generates an input to the noisy channel, and the controller which has access to the channel

outputs and applies a control to the plant. The reader is referred to two resources to get the

appropriate background. The first is the classic 1978 paper by Ho, Kastner, and Wong [6]

in which they summarize the then known relationships among team theory, signaling, and

information theory from the perspective of automatic control. The more recent interest in

the subject is best understood by reading the September 2004 special issue of Transactions

on Automatic Control and the references contained therein.

Here, we focus exclusively on the case shown in Figure 1.1 where the information pat-

terns [7] are non-nested in that the observer does not know everything the controller knows.

This means that there is no explicit feedback of the channel outputs to the observer. Sahai’s

3

previous work [8] showed that in the case of finite alphabet channels, the plant itself could

be used as a “feedback channel” for communication. The controller can make the plant

dance so as to noiselessly communicate the channel output to the encoder/observer. This

showed that in principle, the non-nested information pattern did not increase the difficulty

of the stabilization problem. [8] further showed that the problem of stabilization over a noisy

channel was equivalent to a problem of anytime communication using the noisy channel with

perfect feedback.

While this equivalence certainly illuminates the structure of distributed control problems

(see [4] for more details), it does not actually allow us to solve any particular problem. This

is especially true since the previously known generic constructions for anytime codes are

based on infinite random trees with maximum-likelihood decoders. As such, they require

growing complexity at both the encoder and decoder. This contrasts in spirit with the idea

of stabilization making a system behave in a nice “steady-state” manner that returns to the

same few safe states over and over again. If the closed-loop system is behaving nicely, why

should the observer and controller have a steadily increasing workload?

In Chapter 2, we begin by introducing the relevant definitions and give some known

results for this problem. The rest of the chapter is devoted to describing and analyzing

a simple scheme making use of an random, time-varying, infinite constraint length con-

volutional code and a sequential decoder. The scheme is shown to be practical through

simulations.

1.3 Convolutional codes and sequential decoding

Convolutional codes, trellis codes and tree codes offer relatively simple encoding schemes

for both channel and source coding. Infinite constraint length convolutional codes can claim

to yield exponentially decaying probability of error with decoding delay. For block codes on

the other hand, probability of error can only decrease exponentially with block length, and

not decoding delay. In a traditional view of information theory, this is of little importance

since we always allow ourselves block lengths as large as required. In applications like control

4

over a noisy channel, however, this is crucial because they require that the probability of

error go to zero exponentially with delay. Once the output of a block code has no dependance

on an input symbol, it is impossible for the output to reduce our uncertainty of the input.

Hence, block length is a harsh barrier after which the decoder simply cannot reduce the

probability of error.

In channel coding and source coding, maximum likelihood (ML) and maximum a pos-

teriori (MAP) decoding respectively serve as the optimal decoding strategies. For random

tree channel coding with ML decoding, the probability of error with delay is bounded by

Pd ≤ K1 exp(−dEr(R)) (1.2)

where Er(R) is Gallager’s random coding error exponent [9] and K1 is a finite constant that

doesn’t depend on delay.

Unfortunately, ML and MAP decoding suffer from exponential growth in complexity

when decoding infinite constraint length convolutional codes. A solution to this issue was

proposed in the late 1950’s and early 1960’s and it falls under the general heading of sequen-

tial decoding. One can imagine ML and MAP decoders as stepping through an expanding

tree and examining every single node; hence the exponential growth in computation because

the tree is growing exponentially. The essential feature of a sequential decoder is that it

searches through the code tree, examining nodes sequentially (in an order) and selecting a

subset to further examine, in a manner that does depend on nodes further into the tree.

The comparison between ML or MAP and sequential decoding is similar to the comparison

of breadth-first and depth-first search algorithms on trees. Because of this search nature, it

is possible for sequential decoders to have reasonable complexity properties under certain

conditions and yet be comparable to ML and MAP in terms of reliability. That is, for any

ε > 0, with sequential decoding, it is possible to have a probability of error with delay

bounded by

Pd ≤ Kε exp(−d(Er(R)− ε)), (1.3)

where Kε is a finite constant. Also, a sequential decoder serves as a practical anytime

decoder because its outputs are not targeted to any particular delay.

5

The computation, measured in nodes searched, performed by a sequential decoder is a

random variable that depends on the code tree and realizations of channel noise or source

sequence. Jacobs and Berlekamp [10] showed that the distribution of computation of any

sequential decoder used for channel coding can have at best a power-law tail, meaning some

of its moments will be infinite. Achievability results by Savage and Jelinek ([11], [12]) show

that a power-law tail for computation is tight and hence the distribution of computation

is asymptotically Paretian. The parameter of the Pareto distribution is called the Pareto

exponent of computation, and it gives the polynomial rate of decay in the probability of

a large number of computations. A particularly nice property of sequential decoders is

that they offer flexibility (via the ‘bias’ parameter) in trading off the finite moments of

computation for reliability with delay. We use the results of Jelinek [1] to make several

statements about computation or reliability when the bias is not appropriately set. For a

thorough review of sequential decoding, see Forney [13].

The main contribution of Chapter 2 of the thesis is a simple scheme for control over

a noisy channel (first published in [5]). The solution uses a random coding argument on

trellis codes and a sequential decoder. The sequential decoder has a bounded complexity

on average and can be considered to be ‘stable’ if certain properties of the bias are satisfied.

To prove the validity of the solution, we make heavy use of results of Jelinek on sequential

decoding [1].

1.4 Convolutional source coding with a sequential decoder

Lossless source coding is the problem of representing data efficiently in order to store

or communicate it and recover with little or no error. The source coding problem is an

old one with solutions such as Huffman coding and arithmetic coding. There are more

robust solutions such as Lempel-Ziv ([14], [15], [16]) coding and the Burrows-Wheeler

Transform ([17]) that can efficiently compress sources with memory and more complicated

internal structure. The second half of this thesis is concerned with compressing a stream

of incoming discrete source symbols that are modelled to be independent and identically

6

distributed into a bit stream for lossless recovery with exponentially decaying probability

of error with decoding delay.

In Chapter 3, we analyze a scheme for lossless P-P source coding that uses a convolu-

tional encoder and a sequential decoder. We prove and verify by simulation the analogous

properties of Chapter 2. Just like before, the decoder has a variable bias parameter that

can be used to tradeoff performance for complexity. We show the error exponent with de-

lay using a sequential decoder is the same as the error exponent with delay using a MAP

decoder. Hence an ‘anytime source code’ is produced with a simple encoder and a decoder

having bounded complexity for all time.

The motivation of this chapter is not to propose a scheme for P-P source coding, because

the scheme has in fact been proposed before in various forms. Hellman [18] proposed using

convolutional codes for source coding to shift complexity from the encoder to the decoder.

Independently, Koshelev [19] suggested using convolutional codes and sequential decoding

together for source coding. He gave a computational cutoff rate for source coding with

sequential decoding, analogous to the computation cutoff rate of Savage, Jelinek, etc. In

the lossy compression setting, Jelinek [20] used a random tree coding argument to show

that one could achieve the rate-distortion bound with tree codes. This was followed with

work by Mohan and Anderson [21] pairing a stack decoder with a tree encoder for encoding

of speech.

Our contribution in the area is in extending the results of Jelinek [1] to a source coding

setting. We use an ‘anytime source encoder’ and the stack algorithm ’anytime decoder’

to give exponentially decreasing probability of error with delay. The stack algorithm once

again has a tunable bias parameter that allows for a tradeoff between reliability and com-

plexity. We prove a theorem showing that a stack algorithm decoder can achieve an error

exponent with delay equal to the source coding counterpart of Gallager’s random coding

error exponent. Next, we show that if the rate R is at least Es(ρ)/ρ, ρ ∈ [0, 1], where Es

is the source counterpart to Gallager’s E0 function, then the ρth moment of computation

can be finite. For ρ = 1, this gives a sufficient condition on the rate to achieve a finite

mean in computation. This is a result parallel to Koshelev’s [19]. A theorem of Arikan and

7

Merhav in [2] is used to prove that the sufficient condition on rate is in fact necessary for

any reliable sequential decoder.

The motivation here is to eventually generalize the P-P source tree code and sequential

decoder to be used for lossless distributed source coding, the Slepian-Wolf problem shown

in Figure 1.2. The encoders are separate and hence each has access to only one source. For

two discrete correlated sources, X and Y , Slepian and Wolf [22] showed that it is possible

to losslessly recover the source pair if the rates of the two distributed encoders satisfy the

following conditions, where H denotes the appropriate entropy.

Rx + Ry > H(X, Y) (1.4)

Rx > H(X|Y) (1.5)

Ry > H(Y |X) (1.6)

-

-

-

-

-

Ex

Ey

D
Y

X

(X̂, Ŷ)

Rx

Ry

Figure 1.2. Distributed source coding, sometimes called the Slepian-Wolf problem.

If we wish to achieve a good reliability with decoding delay in the Slepian-Wolf problem,

variable length codes are in general not a good idea. This is because the distributed encoders

do not know when the source is behaving jointly atypically. This is easily seen in the case

when X is a random coin toss and Y is X passed through a binary symmetric channel with

low crossover probability. Both encoders see random coin tosses, so there is no advantage

to assigning longer codewords to any particular source sequences. So the question remains

of how to get good reliability with delay in distributed lossless compression.

8

As a step towards this ultimate goal, we consider the problem of lossless source coding

with side information as shown in Figure 1.3. In this problem, the decoder has access to

side information Y that is correlated with the source X, while the encoder has access to

X but not Y . It is well known that it is possible to losslessly recover X if the rate R is

at least H(X|Y). Again, the encoder does not know when the source is behaving jointly

atypically with the side information, so variable-length codes do not provide a general

solution. Instead, we consider the random binning scheme used in the point-to-point portion

of the chapter. In section 3.6, by a minor modification to the sequential decoder in our P-P

source coding scheme, we show that MAP reliability can be achieved by the stack algorithm.

This shows that our encoder with stack decoder achieves that same error exponent with

delay as the lower bound of Chang, et.al. [23]. In [23], it is shown that this error exponent is

tight in the low rate regime for a source with uniform marginals and symmetric connection

to the side information. Finally, we again verify the theory by simulating the encoder and

decoder.

-- -

6

EX
R D

Y

X̂

Figure 1.3. Source coding with side information.

9

Chapter 2

Control over a noisy channel

This chapter details our work on the subject of control over a noisy channel, with the

observer and controller being separated by a communication channel. We start by defining

the problem and goals of the solution. Then, we review some known results linking anytime

capacity with control, and set the stage for our proposed solution. The contribution of this

chapter is in showing how to use the stack decoder for the problem of distributed control.

Then we state and prove the main result of the chapter by giving an achievable scheme

using simple encoders and decoders and conditions for the scheme to work. We also define

the notion of complexity that is considered and the conditions under which it is kept low.

Next, simulation results are shown to verify that the proposed scheme is not impractical.

The last section explores the tradeoff between performance and complexity in our scheme

and is followed by concluding remarks.

2.1 Problem definition

At the heart of the stabilization problem is a scalar plant that is unstable in open loop.

Expressed in discrete-time, we have:

X(t + 1) = λX(t) + U(t) + W (t), t ≥ 0 (2.1)

10

where {X(t)} is a real-valued state process. {U(t)} is the real-valued control process that

our controller generates and {W (t)} is an external, bounded noise/disturbance process

s.t. |W (t)| ≤ Ω
2 almost surely. Also, λ ≥ 1 so the system is unstable, while X(0) = 0 for

convenience.

The distributed nature of the problem comes from having a noisy communication chan-

nel in the feedback loop. We assume that the channel is discrete and memoryless with a

finite1 input alphabet A and finite output alphabet B. The channel is described probabilis-

tically with a transition matrix P (y|x).

We require an observer/encoder system O to observe X(t) and generate inputs A(t) to

the channel. We also require a decoder/controller system C to observe channel outputs B(t)

and generate control signals U(t). In general, we could allow both O, C to have arbitrary

memory and to be nonlinear. In this thesis, we will aim for a nearly memoryless O, which

restricts the encoder to be fairly simple.

Definition 2.1.1 A closed-loop dynamic system with state X(t) is η-stable if there exists

a constant K s.t. E[|X(t)|η] ≤ K for all t ≥ 0.

Holding the η-moment within bounds is a way of keeping large deviations rare.2 The larger

η is, the more strongly we penalize very large deviations.

Now we define anytime capacity, which is a concept separate of control under communi-

cation constraints. Let Mi be the R bit message that a channel encoder takes in at time i.

Based on all the messages received so far, and any additional information (e.g. past channel

output feedback) that it might have, the channel encoder emits the i-th channel input. An

anytime decoder provides estimates M̂i(t), the best estimate for message i at time t. If we

are considering a delay d, the probability of error we are interested in is P (M̂t−d(t) 6= Mt−d).

Definition 2.1.2 The α-anytime capacity Canytime(α) of a channel is the least upper

bound of the rates at which the channel can be used to transmit data so that there exists a
1For convenience, we have assumed finite alphabets, but we really only require countable alphabets.
2 [4] shows how to map this sense of stability to almost-sure stabilization in the undisturbed case when

W (t) = 0.

11

uniform constant K such that for all d and all times t we have

P (M̂t−d(t) 6= Mt−d(t)) ≤ K2−αd

The probability is taken over the channel and any randomness that we deem the encoder

and decoder to have access to. Due to the fast convergence of an exponential, it is equivalent

to requiring that the probability of error for all messages sent upto time t − d is bounded

by K ′2−αd. Below, we define several standard error exponents, which can be found in [9].

Definition 2.1.3 Gallager’s function, E0(ρ), for a discrete memoryless channel P (y|x)

is

E0(ρ) = sup
Q(x)

− log2

∑
y

(∑
x

Q(x)P (y|x)
1

1+ρ

)1+ρ

(2.2)

where the maximization is over distributions Q(x) on the input alphabet.

Gallager’s random coding exponent, Er(R), at a rate R for the channel without

feedback is

Er(R) = sup
0≤ρ≤1

E0(ρ)− ρR (2.3)

The sphere packing exponent, Esp(R), at a rate R for the channel without feedback

is

Esp(R) = sup
ρ≥0

E0(ρ)− ρR (2.4)

Gallager’s random coding exponent is achievable with random codes as its name sug-

gests. The sphere packing exponent serves as an upper bound to the error exponent for

arbitrary block codes. Hence, for random, time-varying infinite constraint length convolu-

tional codes, the anytime capacity of the channel without feedback satisfies:

Canytime(Er(R)) ≥ R (2.5)

Canytime(Esp(R)) ≤ R (2.6)

12

2.2 Known results

In the paper of Sahai and Mitter [4], a matching achievability and converse result is

given for this problem of distributed control in terms of the anytime capacity of the noisy

channel with feedback.

Theorem 2.2.1 ([4], [8]) For a given noisy channel, bound Ω, and η > 0, if there exists an

observer/encoder O and controller/decoder C for the unstable scalar system that achieves

E[|X(t)|η] < K for all bounded driving noise −Ω
2 ≤ W (t) ≤ Ω

2 , then Canytime(η log2 λ) ≥
log2 λ bits per channel use for the noisy channel considered with noiseless feedback.

And for the non-nested information pattern case:

Theorem 2.2.2 ([4], [8]) It is possible to control an unstable scalar process driven by a

bounded disturbance over a noisy finite output-alphabet channel so that the η-moment of

X(t) stays finite for all time if the channel with feedback has Canytime(α) ≥ log2 λ for

some α > η log2 λ if the observer is allowed to observe the state X(t) exactly.

The encoders and decoders used in the proofs of these theorems were far from simple.

Next we define the class of simplified encoders and decoders we wish to restrict ourselves

to.

By nearly memoryless observers, we mean O functions that sample the plant state every

T time units (for some T > 0), and then apply a channel input that depends only on the

last such sample.

Definition 2.2.3 A random nearly memoryless observer is a sequence of maps Ot

such that there exist O′t so that:

Ot(Xt
0, Z

t
0) = O′t(X(T b t

T
c), Zb t

T
c)

where the Zi are the iid continuous uniform random variables on [0, 1] that represent the

common-randomness available at both the observer/encoder and the controller/decoder.

13

Definition 2.2.4 A sequential decoder for a trellis code is one that searches paths

through the trellis in a sequential and causal manner. A thorough summary on sequen-

tial decoders can be found in Forney’s survey paper [13].

The following result will guide us in our approach and can be found in [4].

Theorem 2.2.5 We can η-stabilize an unstable scalar process driven by a bounded dis-

turbance over a discrete memoryless channel if the channel without feedback has random

block-coding error exponent Er(R) > η log2 λ for some R > log2 λ and the observer is only

allowed access to the plant state where Er(R) is Gallager’s random coding error exponent.

Furthermore, this can be achieved with a nearly memoryless random encoder/observer.

The difference between theorems 2.2.5 and 2.2.2 is subtle. The first asks for the random

coding exponent without feedback to be at least η log2 λ, while the other asks for the η log2 λ-

anytime capacity of the channel with feedback to be at least log2(λ). Recently, there have

been results [24] showing that the error exponents for a channel with feedback can be much

higher than the random coding exponent and even the sphere packing exponent for the

channel without feedback.

The scheme we use in the next section will adapt from the proof of this theorem, using

exactly the same encoder. However, the prior proof required ML decoding over a growing

trellis at the controller. It does not take long for this scheme to become impractical due

to the exponential growth in required computation. This provides the motivation for us to

consider using a sequential decoder at the controller.

2.3 Main result

2.3.1 Theorem and proof

Theorem 2.3.1 We can η-stabilize an unstable scalar process driven by a bounded dis-

turbance over a discrete memoryless channel if the channel without feedback has random

block-coding error exponent Er(R) > η log2 λ for some R > log2 λ. Furthermore, this can be

14

achieved with the same nearly memoryless encoder/observer used in [4] and a stack-based

sequential decoder/controller.

Proof: Pick a rate R > log2 λ for which Er(R) > η log2 λ. Pick (T, ∆) large enough so

that:

TR > log2(λ
T +

∑∞
i=0 λT−iΩ

∆
)

This means that if X(t) is known to be within any given box of size ∆, then with no controls

applied, the plant state X(t + T) can be in no more than 2TR adjacent boxes each of size

∆. It is clear that such a T, ∆ pair always exists as long as R > log2 λ.

Our quantizer Q will look at the plant state X uniformly with a coarseness of ∆. It is

clear that we satisfy the following:

a. Knowing that X(t) is in a given bin of width ∆ and assuming that no controls are

applied, there are at most 2TR possible bins which could contain X(t + T).

b. The descendants of a given bin dT time units later are all in contiguous bins and

furthermore, there exists a constant K such that the total length covered by these

bins is ≤ KλdT .

Properties [a] and [b] above easily extend to the case when the control sequence between

time X(t) and X(t + T) is known exactly since linearity tells us that the impact of these

controls is just a translation of all the bins by a known amount. Thus, we have:

c. Conditioned on actual past controls applied, the set of possible paths that the states

X(0), X(T), X(2T), . . . could have taken through the quantization bins is a subset of

a trellis that has a maximum branching factor of 2TR. Furthermore, the total length

covered by the d-stage descendants of any particular bin is bounded above by KλdT .

Not all such paths through the trellis are necessarily possible, but all possible paths do

lie within the trellis. Figure 2.1 illustrates the trellis. The observer/encoder independently

assigns symbols from AT as time-varying labels to the bins. The probability measure used

15

6

?

6

?

PPPq
-³³³1

PPPq
-³³³1-³³³1

PPPq

-³³³1
½

½
½>³³³1

½
½

½>
¶

¶
¶¶7

¶
¶

¶¶7

Á

-PPPqZ
Z

Z~
PPPqZ

Z
Z~

S
S

SSw

Z
Z

Z~
S

S
SSw

J
J

J
JĴ

6

?

PPPq
-³³³1

PPPq
-³³³1-³³³1

PPPq

-³³³1
½

½
½>³³³1

½
½

½>
¶

¶
¶¶7

¶
¶

¶¶7

Á

-PPPqZ
Z

Z~
PPPqZ

Z
Z~

S
S

SSw

Z
Z

Z~
S

S
SSw

J
J

J
JĴ

6

?

PPPq
-³³³1

PPPq
-³³³1-³³³1

PPPq

-³³³1
½

½
½>³³³1

½
½

½>
¶

¶
¶¶7

¶
¶

¶¶7

Á

-PPPqZ
Z

Z~
PPPqZ

Z
Z~

S
S

SSw

Z
Z

Z~
S

S
SSw

J
J

J
JĴ

6

?

PPPq
-³³³1

PPPq
-³³³1-³³³1

PPPq

-³³³1
½

½
½>³³³1

½
½

½>
¶

¶
¶¶7

¶
¶

¶¶7

Á

-PPPqZ
Z

Z~
PPPqZ

Z
Z~

S
S

SSw

Z
Z

Z~
S

S
SSw

J
J

J
JĴ

PPPq
-³³³1

PPPq
-³³³1-³³³1

PPPq

-³³³1
½

½
½>³³³1

½
½

½>
¶

¶
¶¶7

¶
¶

¶¶7

Á

-PPPqZ
Z

Z~
PPPqZ

Z
Z~

S
S

SSw

Z
Z

Z~
S

S
SSw

J
J

J
JĴ

?6

t=0 t=1 t=2 t=3 t=4

∆

R = log2 3

Figure 2.1. A short segment of the randomly labeled regular trellis from the point of view
of the controller that knows the actual control signals applied in the past. The example has
R = log2 3 and λ ≈ 2.4 with ∆ large.

to draw the symbols should be the Er(R) achieving distribution. Thus, the labels on each

bin are iid through both time and across bins.

We call two paths through the trellis disjoint with depth d if their last common node

was at depth d and the paths are disjoint after that. We immediately observe:

d. If two paths are disjoint in the trellis at a depth of d, then the channel inputs corre-

sponding to the past dT channel uses are independent of each other.

In decoding, the controller creates its trellis with the knowledge of past control inputs.

Then, it decodes the channel outputs at times which are multiples of T using a version of

the Stack or Zigangirov-Jelinek Algorithm that is referred to as ‘Algorithm A’ in [13]. This

version is simple and does not consider merging of paths on the trellis. It is given below for

reference.

1. Insert the root of the trellis on the stack, with a metric of 0. Let x′ denote the partial

path on the top of the stack.

16

2. For each of the successors of x′, compute their metrics as the sum of the metric of x′

and the metric of the branch that extends x′. Place each of these successors on the

stack, remove x′ and sort the stack by metric so that the partial path with the best

metric is at the top.

3. Let x′ be the new partial path on top of the stack. If x′ extends up to the current time,

then declare x′ to be the decoded path and the last node of x′ to be the bin in which

X(t) resided when the first of the T most recent channel symbols were transmitted.

Otherwise, return to step 2.

It has been shown that if x is a channel input symbol and y is a channel output symbol,

the optimal metric associated with this symbol pair is of the form m(x, y) = log2
p(y|x)
p(y) −G,

where G is a real parameter of the algorithm. For a branch with T symbols, the metric of

the branch would then be
∑T−1

i=0 log2
p(yi|xi)
p(yi)

−G. The parameter G will be used to tradeoff

complexity and performance of the controller. If G > maxx,y log2
p(y|x)
p(y) , then the stack

algorithm reverts to an ML decoder as every extension of a path lowers the path’s metric.

Fix a time t and consider an error event at depth d. This represents the case that the

sequential decoder’s declared path last intersected with the true path dT time steps ago.

By property [c] above, our control will be based on a state estimate that can be at most

KλdT away from the true state. Thus, we have:

e. If an error event at depth d occurs at time t, the state |X(t + T)| is smaller than

K ′λ(d+1)T for some constant K ′ that does not depend on d or t.

By property [c], there are no more than 2dTR possible disjoint false paths that last

intersected the true path d stages ago. By the memorylessness of the channel, the log-

likelihood of each path is the sum of the likelihood of the “prefix” of the path leading up

to d stages ago and the “suffix” of the path from that point onward. Property [d] tells us

that the channel inputs corresponding to the false paths are pairwise independent of the

true inputs for the past dT channel uses. For a path that is disjoint from the true path at

a depth of d to beat all paths that end up at the true final state, the false path must have a

17

final log-likelihood that at least beats the metric of the true path at the point of divergence

or beyond, until the current time. With this observation and some techniques developed by

Jelinek extending the random coding error exponent arguments, we have:

Theorem 2.3.2 ([1]) A detailed proof is located in A.1. For a decoder using the Stack

Algorithm with bias parameter G, let Ed denote the event that some false path that diverged

with the true path d branches ago is declared the decoded path. Then, if G satisfies the

condition below for ρ such that R = E′
0(ρ) and E0(ρ) is Gallager’s function, P (Ed) <

L exp2(−dTEr(R)), L < ∞.

G >
1 + ρ

ρ

[
E0(ρ) + f(ρ)

]
where f(ρ) , log2

∑
y

p(y)
[∑

x

[
p(y|x)
p(y)

] 1
1+ρ

p(x)
]ρ

This result is the reason for why a sequential decoder can stabilize the same moments

as an ML decoder. Now we finish proving stability of the η-th moment by applying a union

bound over error depths, using the stated theorem, and observation [e].

E[|X(t + T)|η] =
bt/T c∑

d=0

P (Ed) · E[|X(t + T)|η|Ed]

<
∞∑

d=0

L2−dTEr(R) · (Kλ(d+1)T)η

= LKηλTη
∞∑

d=0

2−dT (Er(R)−η log2 λ)

= K ′ < ∞

The final geometric sum converges because we assume Er(R) > η log2 λ. ¤

For sequential decoding, the decoder has to perform a random amount of computation

at each time step. The random variable of computation is of practical interest in this

scenario and we explore it next.

2.3.2 The random variable of computation

To explain the classical view of computation for sequential decoding, consider an infinite

trellis being partitioned by the true path through the trellis and a sequential decoder running

for eternity to decode the true path.

18

Definition 2.3.3 The ith incorrect subtree is defined by the set of paths that have their

last common node with the true path at depth i into the trellis. The random variable of

computation Ni is defined to be the number of nodes in the ith incorrect subtree that are

ever visited by the sequential decoder.

Theorem 2.3.4 ([13], [1]) If G = R and ρ is defined parametrically by the equation

R = E0(ρ)/ρ, then the γ-th moment of Ni is finite for γ < ρ. In particular, if R < E0(1),

the expected mean of computation is finite.

This result, combined with the converse of Jacobs and Berlekamp [10] and Arikan [25],

shows that the random variable of computation is asymptotically Paretian, with parameter

ρ. This theorem applies to our sequential decoder, but in the context of stabilization one

would like to say something about the number of computations performed at any given

time.

Definition 2.3.5 The random variable C(k) is defined to be the number of nodes visited

by the sequential decoder at time k. The r.v. Ci(k) is the number of nodes in the ith

incorrect subtree visited at time k.

We note the following relation between these two notions of computation. Suppose

E[Ni] = K < ∞. Then, we have

lim
k→∞

E[C(k)] = lim
k→∞

E[
k−1∑

i=1

Ci(k)]

≤ lim
k→∞

k−2∑

n=0

sup
l>0

E[Cl(n + l)]

There are more partial paths on the stack as time increases, and the metrics of the incorrect

subtree relative to the correct path are the same regardless of i, so the expected value of

Cl(n+ l) should be insensitive to l since the averaging is performed over all possible random

19

Parameter Description
∆ Size of bins the state is quantized to.
T Time between observations of the state.
Ω Absolute bound on noise, |W (t)| ∈ [−Ω/2, Ω/2].
λ Unstable eigenvalue of the plant.
G Per symbol bias value used in stack algorithm metric.
R ‘Rate’ of code: branch factor is 2TR.
ε Crossover probability of binary symmetric channel.

Table 2.1. Parameters for simulation.

codes and channel noise. Thus, we have

lim
k→∞

E[C(k)] ≤
∞∑

n=0

E[C1(n + 1)]

= E[
∞∑

n=0

C1(n + 1)]]

= E[N1] < ∞

Having shown that the mean of C(k) stays bounded, we conjecture that if a moment of

Ni exists for all i, the same moment of C(k) will exist for all k.

2.4 Simulations

The main advantage of using sequential decoding over ML decoding, as we have claimed,

is that the complexity of the decoder does not grow unboundedly as time goes on, except

for the requirement of memory that grows roughly linearly with time. By simulating the

strategy described in Theorem 2.3.1, we show that complexity is reduced to such an extent

as to make the scheme practical. The simulations were performed with a binary symmetric

channel with crossover probability ε, although they have also been verified with other DMCs.

Also, we note that the rate is defined to be log2(B)/T where B is the branching factor of

the decoding trellis over a block of T symbols.

Since the overall system ‘operates’ at a resolution of ∆, it is not interesting to look at

both the state and the bin of the state, and so we focus on the actual and decoded bins,

rather than the state. Figure 2.2 shows a sample path of the actual bin, and a sample

20

path of the decoded bin along with a sample path of C(k). The sample path shows that

large deviations of the state from 0 are rare. Figure 2.4 looks at the sample path during

one of these rare deviations. As expected, the decoder completely loses track of the state

for several blocks, all the while applying erroneous control inputs, and in one step finally

catches up with the errors.

By applying Markov’s inequality using a moment η that we know can be stabilized, we

have

P (|X(t)|η ≥ xη) ≤ Ksx
−η

Similarly, P (C(k) ≥ N) ≤ KcN
−γ if we know the γ-th moment of computation to be

finite. Viewed on a log-log plot, both these quantities should decay linearly with a slope

equal to the supremum of finite moments. In Figure 2.5, we see that with a bias that is

optimized to achieve the random coding exponent for probability of error, the computation3

does not have the moment stability guaranteed by Theorem 2.3.4 if we had the bias equal

to the rate. Soon, we will give two results on what can be said about the power laws if the

bias is optimized for computation or reliability.

In Figure 2.3, a plot of the random coding exponent and sphere packing exponent is given

for the example simulation used. It shows that the two exponents, which are respectively

lower and upper bounds on the error exponent with delay for coding without feedback, agree

at rate R = 0.317. The power law for the state translates to Er(R)/ log2(λ) = 1.2. In

Figure 2.5, we see the power law for the state in this example is 1.7, significantly better

than 1.2. This suggests that there is some looseness in the bounds we have derived in the

main result. Specifically, there is likely some hidden merging occurring in the trellis due to

the noise in the plant.

3In all plots, computation refers to C(k). We have made the assumption of ergodicity as well as that the
moments of the two computations are equal asymptotically. Although this hasn’t been proven, it is plausible
because the simulations show that C(k) is not growing unbounded over time.

21

Simulation Parameters:
λ = 1.1
ε = 0.05
Ω = 2.0
∆ = 5000.0
Bias = 0.55
T = 10
100,000 Blocks
17 seconds to run

Rate = 0.317
Capacity = 0.71

0 2 4 6 8 10

x 10
4

−1000

−500

0

500

Block Number

B
in

Sample Path of State Bin

0 200 400 600 800 1000
−40

−20

0

20

40

Block Number

D
ec

od
ed

 B
in

Sample Decoded Bin Path and Number of Computations for each block

0 200 400 600 800 1000
0

50

100

150

200

250

Block Number

N
um

 o
f C

om
pu

ta
tio

ns λ = 1.1
 ε = 0.05
Ω = 2.0
∆ = 5000.0
Rate = 0.317

Figure 2.2. Top: A sample path of the actual bin the state lies in over 100,000 branches of
length 10. Bottom: A sample path of the decoded bin and C(k). Note that large deviations
in the decoded bin from 0 generally occur near high periods of computation.

22

Simulation Parameters:
λ = 1.1
ε = 0.05
Rate = 0.317
log

2
(λ) = 0.1375

Capacity = 0.71

log
2
λ

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rate

Random Coding Exponents

E
r
 − Reliability Exponent

E
sp

 − Sphere Packing Exponent

R

Figure 2.3. An example of running the encoder/decoder at a rate R and the exponent
guaranteed by the theorem.

Simulation Parameters:
λ = 1.1
ε = 0.05
Ω = 2.0
∆ = 5000.0
Bias = 0.55
T = 10
100,000 Blocks
17 seconds to run

Rate = 0.317
Capacity = 0.71

1674 1676 1678 1680 1682 1684 1686

−100

0

100

200

300

400

500

Block Number

B
in

Decoded Bin
Actual Bin

Figure 2.4. A zoomed-in look at the state’s deviation from zero for a sample path.

23

0 1 2 3 4 5 6

−14

−12

−10

−8

−6

−4

−2

log
2
(M)

lo
g 2(P

(|B
in

(X
)|>

=M
))

Log−Log Plot Showing Power Law for Distribution of State Magnitude

Simulation Data
Linear Fit

λ = 1.1
 ε = 0.05
∆ = 10
Ω = 2

Rate = 0.317
Bias = 0.6
Slope of Fit = −1.7
Slope of RC exp.
Bound = −1.2

0 1 2 3 4 5 6 7

−14

−12

−10

−8

−6

−4

−2

0

log
2
(N)

lo
g 2(P

(C
>=

N
))

Log−Log Plot Showing Power Law for Distribution of Computation

Simulation Data
Linear Fit

λ = 1.1
 ε = 0.05
∆ = 10
Ω = 2

Rate = 0.317
Bias = 0.6
Slope of Fit = −1.5
Slope Predicted
if (Bias = 0.317) = −2.3

Figure 2.5. Top: Log-log plot of the complementary cdf of the state. Bottom: Log-log plot
of the random variable of computation.

24

2.5 Tradeoff between computation and stability

As noted in [1], it is not possible in general to optimize both probability of depth d error

and computation simultaneously with a single choice of bias. For the BSC, the bias required

to achieve the random coding exponent is always greater than the rate of the trellis code.

−2.2 −2 −1.8 −1.6 −1.4 −1.2

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Slope of Log−Log State Bin Plots

S
lo

pe
 o

f L
og

−L
og

 C
om

pu
ta

tio
ns

 P
lo

ts

Computation and State Tradeoff for varying bias

Data
Smoothed Data

λ = 1.1
ε = 0.05
∆ = 10
Ω = 2.0
T = 5

Rate = 0.317
Capacity = 0.71

log
2
(λ) = 0.1375

Bias ∈ [0.3, 0.6]

Figure 2.6. An example of the computation and state tradeoff. The value of bias is hidden
in this plot, with each mark representing a different value of the bias.

Figure 2.7 shows the tradeoff between these two metrics of performance as a function

of the bias parameter. Another way of looking at this tradeoff is shown in figure 2.6. As

expected, increasing the bias always improves state stability. However, decreasing the bias

does not always improve the moments of computation. By decreasing the bias below the

rate, we run the risk of forging ahead into the trellis along paths that are not correct, only

to have to return to the nodes we passed over later on. 4

It should be noted that the only difference between the two plots in Figure 2.7 is λ.
4It is possible to reduce the bias enough so that the decoder never backs up, but this is uninteresting as

the state will diverge almost surely.

25

It is not surprising that a smaller λ leads to better state stability, but it is interesting to

note that the computation fares better too. Even though we search the same number of

descendants of every bin, the true path is restricted to a smaller range of paths through

the trellis. This indicates that paths can ‘accidentally’ remerge with the true path more

often when λ is small. That is, when the decoder does not realize it is wrong, the noise in

the plant can push the false path into the true one. As Ω/∆ goes to 0, one expects this

phenomenon to dissipate.

2.5.1 Setting the bias for reliability

As mentioned before, it is in general not possible to choose the bias so as to simultane-

ously optimize the probability of error with delay and the Pareto exponent for computation.

For the problem of control, we may wish to maximize the moments of the state that are

stabilized. This objective translates to choosing the bias to optimize the probability of error

with delay. We now see what can be said about the Pareto exponent when the bias is set

to optimize reliability.

For a rate R ∈ (E′
0(1), C), let η satisfy the equation E′

0(η) = R. If R ∈ [0, E′
0(1)],

let η = 1. Let G = E0(η)
η . From the conditions of Thoerem 2 in [1], this choice of G

guarantees that the probability of error decays exponentially with delay, with exponent

equal to Gallager’s random coding exponent evaluated at rate R.

A separate theorem from Forney [13] tells us that if γ and G satisfy G = E0(γ)/γ, and

the rate R = G, then the Pareto exponent of computation is γ. This holds regardless of

whether γ > 1 or not.

Now, returning to the assumption that G is set for reliability, let G = E0(η)/η where

E′
0(η) = R. The concave nature of E0 implies that G > R, as depicted in Figure 2.5.1.

The rate of the code is less than R′ = G = E0(η)/η, so the Pareto exponent must be at

least η, because the Pareto exponent for computation is monotonically decreasing in rate.

If R = E0(γ)/γ, the maximum possible Pareto exponent at rate R is γ, hence η < γ.

In particular, if R ∈ [0, E′
0(1)], and G = E0(1), then the mean of the random variable of

26

computation is finite. This tells us that if our rate is low enough, we can get the reliability

of an ML decoder with a finite mean of computation.

2.5.2 Setting the bias for computation

Historically, the usual choice of bias G for the stack algorithm is G = R, which always

maximizes the Pareto exponent of computation. In general, if G∗ is the minimum value of

bias to guarantee that the decoder achieves the random coding exponent, then G∗ > R. So

if we set the bias for computation, we are not guaranteed, and generally will not attain the

random coding exponent. Let P (Fd) denote the probability of a decoding error by the stack

decoder of depth d. From the proof of Theorem 3 of [1], we know that if G = R < G∗,

P (Fd) ≤ K exp
(
− d(g(σ, δ) + δ(σ − 1)R)

)
(2.7)

δ ∈ [0, 1], σ ≥ 0 (2.8)

g(σ, δ) , ln
∑

y

w(y)
[∑

x

Q(x)
(

w(y|x)
w(y)

)σ]δ

(2.9)

We can set σ = 1/(1 + δ) and optimize over δ to get

P (Fd) ≤ K exp
(
− d

(
sup

δ∈[0,1]
−g(1/(1 + δ), δ)− δ2

1 + δ
R

))
(2.10)

≤ K exp
(
− dEc(R)

)
(2.11)

Ec(R) , sup
δ∈[0,1]

−g

(
1

1 + δ
, δ

)
− δ2

1 + δ
R (2.12)

Figure 2.5.2 shows an example of a comparison between Ec(R) and Er(R). We see that

Ec is positive for rates up to capacity, but much less than Er(R). By setting the bias for

computation, we can still get exponentially decaying probability of error and hence there

will be some moments of the state that are stabilized.

27

0 0.1 0.2 0.3 0.4 0.5 0.6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Bias

P
o

w
e

r
L

a
w

 E
xp

o
n

e
n

t

λ = 1.05, Power Law Comparison for State Bin and Computations

Computation

State

Ω = 2.0
∆ = 10.0
T = 5
Rate = 0.317

E
r
(R)

−−−−−−−−−
Log

2
(λ)

ρ s.t.
R is
E

0
(ρ)/ρ

0 0.1 0.2 0.3 0.4 0.5 0.6

−2.5

−2

−1.5

−1

−0.5

Bias

P
o

w
e

r
L

a
w

 E
xp

o
n

e
n

t

λ = 1.1, Power Law Comparison for State Bin and Computations

State

Computation

Ω = 2.0
∆ = 10.0
T = 5
Rate = 0.317

E
r
(R)

−−−−−−−−−
log

2
(λ)

−ρ s.t.
R is
E

0
(ρ)/ρ

Figure 2.7. Top: Plot of the computation and state stability tradeoff for λ = 1.05. Bottom:
Plot of the computation and state stability tradeoff for λ = 1.1.

28

ρ

E ′
0(ρ)

E0(ρ)
ρ

γ

R

G = R′

η 1

Figure 2.8. Typical plots of E′
0(ρ) and E0(ρ)/ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Rate

Error exponents for two choices of bias

Random coding exponent
G = R error exponent with delay bound

Figure 2.9. Reliability exponent when the bias is set to minimize computation for a binary
symmetric channel with crossover probability 0.1.

29

2.6 Comments

An implicit assumption made is that the controller/decoder has unlimited computational

speed so that no matter how many computations must be performed at one time, the decoder

can finish them and apply the control to the plant before the next time step. Suppose instead

that no more than L− 1 computations may be performed within any T time steps. If there

are more than NL computations required at one time, the controller takes no action for N

blocks, leaving the state to wander until it can decode. It is known that the distribution of

computation can be lower bounded by a Pareto distribution [10] with some parameter γ.

So even in the case that the noise is negligible, assuming |X(t)| = x, we have

E

[
|X(t + NT)|

∣∣∣∣|X(t)| = x

]
≥ E

[
|X(t + NT)|

∣∣∣∣|X(t)| = x,C(t) > NL

]
P (C(t) > NL)

≥ xKc · λNT N−γ

Letting N go to infinity, we see that expected value of the state diverges. Clearly, this applies

to any moment of the state. So this scheme fails to stabilize the state if the controller has

limited computational speed, regardless of how large that limit. However, for the binary

erasure channel, one can use a finite speed decoder and essentially memoryless encoder to

control the state. [26] This leads us to wonder whether there is a way stabilize with finite

speed decoding for arbitrary DMCs.

In this chapter, a simple encoding and decoding scheme was given for the problem of

control over a noisy channel. The observer was nearly memoryless and the channel encoder

was an infinite constraint length convolutional code. The decoder was a stack algorithm

sequential decoder that had a bounded complexity keeping in line with the idea that a

stable system should not be increasingly difficult to control. We showed simulation results

to verify the theory and show practicality of the concept. Finally we attempted to analyze

the tradeoff between complexity and reliability of the scheme. Future work in this topic

can be focused on using the feedback inherent in the communication channel through the

plant in a simple manner to boost performance. The room for improvement is large, as the

‘focusing bound’ of Sahai [24] shows that there is a large gap between the error exponents

with delay for channels with and without feedback.

30

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rate

Channel Coding Exponents

Random Coding
Sphere Packing
Coding with Feedback

Figure 2.10. Channel coding exponents. There is much room for improvement between the
sphere packing bound and the best known upper bound for channel coding with perfect
feedback.

The control problem was the path along which this research started, but in retrospect

perhaps the more logical starting point would have been channel coding with access to

noiseless feedback. There is an intimate relationship between these two problems as dis-

cussed in [4]. If we had taken the feedback coding approach initially, we would think of

our encoder with access to feedback and stack decoder as achieving an error exponent with

delay equal to Er(R). This is not particularly interesting since this can be achieved without

the feedback, but the advantage here is that we can drop the assumption of oracle access to

the code at both encoder and decoder. That is, the encoder and decoder both need to know

the code being used, and hence must perform some computation to get it. Since the codes

have infinite constraint length, this means an increasing amount of computation with time

at both encoder and decoder. If we think of the encoder as actually performing a convolu-

tion to obtain the code symbols, then encoding the error sequence would be preferable as

we expect the probability of a 1 to decrease exponentially in delay. So after a short amount

of time, the encoder need not calculate the convolution anymore since all remaining error

bits are 0. Thus, an anytime feedback code is produced with low complexity encoding and

decoding, although it does not come close to achieving the anytime capacity with feedback.

31

Chapter 3

Source coding with a stack decoder

In this chapter, a P-P source coding scheme using time-varying, random, infinite con-

straint length convolutional codes is described for which a sequential decoder is used. The

sequential decoder is a stack algorithm that has a tunable bias parameter allowing for a

tradeoff between reliability and computation, just as in Chapter 2. We then extend these

results to the problem of lossless source coding with side information available at the de-

coder.

3.1 Problem definition

The source is modelled as a sequence of identical and independently distributed random

variables Xi that take on values from a finite alphabet X . Each Xi is drawn according to

a probability mass function Q(x).

Our goal is to code the symbols causally into a fixed rate bit stream so that the symbols

can be recovered losslessly by a decoder in the sense that a symbol Xi is recovered with

probability 1 in the limit of large decoding delay. This is a weaker requirement than the

notion of zero-error lossless coding achieved by Huffman coding, Lempel-Ziv coding, etc.

32

-- -En
1 DnXn

1 X̂n
1 (n)

BnR
1

Figure 3.1. Point to point source coding. The encoder is causal if Bi depends only on
X
bi/Rc
1 . The decoder is causal if X̂i(n) is a function of B

bnRc
1 for n ≥ i.

Figure 3.1 shows the setup of our ‘streaming’ source coding problem. At a discrete

time instant n, the encoder has access to the source realization up through time n, which

is denoted Xn
1 . Let the rate of the encoder be R in bits per source symbol. The encoder at

time n outputs bnRc− b(n− 1)Rc bits that are a function of Xn
1 . Based on the bits B

bnRc
1 ,

the decoder at time n gives its estimate of the source symbols up through time n, denoted

as X̂nR
1 . We will use Xj

i to denote the vector (Xi, Xi+1, . . . , Xj) if i ≤ j and the null string

if i > j.

En : X n → {0, 1}bnRc−b(n−1)Rc (3.1)

B
bnRc
b(n−1)Rc = En(Xn

1) (3.2)

Dn : {0, 1}nR → X n (3.3)

X̂n
1 (n) = Dn(BbnRc

1) (3.4)

From now on, we assume that R is an integer so we need not worry about integer effects 1 in

the exposition, but the results hold for non-integer rates as well. Also, the only interesting

values of R lie in the interval [H(Q), log2(|X |)] since we need a rate of at least the entropy to

losslessly encode the source, and if R > log2(|X |), we could just index the source sequences

on a per-letter basis and losslessly recover them with no delay.

There are two measures of performance that we will evaluate. First is the probability

of error with delay.

Definition 3.1.1 The probability of error with delay d, Pe(d), is

Pe(d) = sup
n

P (X̂n
1 (n + d) 6= Xn

1) (3.5)

1For a non-integer rate, the encoder outputs either bRc or dRe bits at every time instant. The integer
effect is not important asymptotically, and for convenience we have used the assumption in proofs. In
simulations, we have used non-integer rates.

33

The probability is a measure over the randomness in the source and any randomness that

may be present in the encoder or decoder. The error exponent with delay, or reliability

exponent E(R), at the rate R where the encoder/decoder is operating is

E(R) = lim inf
d→∞

−1
d

log2 Pe(d) (3.6)

The second measure of performance lies in the random variable of computation. The moti-

vation for developing sequential decoders has always been the opportunity to have a nearly

optimal decoder without complexity that is exponentially growing in block length or de-

lay. The amount of computation performed by our source decoder will be measured in the

number of source sequences that are considered or compared against others.

We do not count the amount of ‘internal’ computation the decoder must do to determine

the codewords of the source sequences. This is the same as the computation the encoder

must perform to determine the codewords for the source sequences. That is, we assume

an oracle gives the decoder any source codeword it wants. This is somewhat significant

in our random tree code construction since the encoder is causal and its output depends

on all previous source symbols. This means that as time increases, there is an increasing

complexity to determining the bits assigned to a source symbol 2. Note that this is not a

problem in the control problem, because there we have used a quantizer, and all the trellis

structure of the code as viewed by the decoder was in fact due to the control problem itself

and not specific to the encoder.

Definition 3.1.2 If xn is the true source realization at time n ≥ 1, the ith incorrect

subtree, Ci, is

Ci =
{

yn
1 ∈ X n : n ≥ i, yi−1

1 = xi−1
1 and yi 6= xi

}
(3.7)

This definition of incorrect subtree is well defined regardless of whether the encoder uses

a tree code or not. The ith random variable of computation, Ni, is the number of

sequences in Ci that are ever examined by the decoder.
2This effect could perhaps be mitigated with a specific encoder construction, but we have not considered

this yet.

34

The definition of Ni is a bit vague for arbitrary decoders but becomes concrete for sequential

decoders. We now discuss the coding strategy used for this chapter and evaluate it.

..

.....................
...............
...............
............
...........
..........
............
............
............
...........
............
...........
............
..................
......................

Depth i− 1

· · ·

· · ·
· · ·

Depth i

True Path

· · ·
6

6

""""

bbbb

Z
Z

ZZ""""

Z
Z

ZZ½
½

½½Z
Z

ZZ
Z

Z
ZZ

½
½

½
½

½
½

½
½

½
½

½
½

½
½½

ith incorrect subtree

s

ss

s

s

s

s

s

s

s

s

s

s

Figure 3.2. The ith incorrect subtree for a binary source.

3.2 A random binning scheme with a stack decoder

In this section, the encoder and decoder for the coding strategy of this chapter is intro-

duced. The encoder used is the same as that in the sequential source coding paper of Sahai,

Chang and Draper [27]. The bit sequence is arrived at by the use of a random tree code,

which can be thought of as a time-varying, infinite constraint length convolutional code.

Figure 3.3 shows an example of such a code. The tree begins with a root node from which

|X | branches emanate, each branch corresponding to one of the symbols in the alphabet.

The tree grows from each node in the same manner, with |X | branches going out of every

node. On each branch in the tree are the R bits to be sent to the decoder if the source

symbol corresponding to the branch occurred at the time which is the depth of the branch

in the tree. Equivalently, we can think of every node in the tree being labelled with R bits

35

and the source sequence tracing a path through the tree and passing to the decoder the bits

of the nodes the path goes through. The tree code is naturally a causal encoder.

¡
¡

¡
¡

¡
¡

¡¡

@
@

@
@

@
@

@@

• ©©©©©©©©

HHHHHHHH

•

%
%

%
%

%
%

%
%%

""""""""

•

bbbbbbbb

e
e

e
e

e
e

e
ee

•

((((((((
hhhhhhhh
•
((((((((
hhhhhhhh
•
ÃÃÃÃÃÃÃÃ
hhhhhhhh
•
((((((((
hhhhhhhh
•
((((((((
hhhhhhhh
•
ÃÃÃÃÃÃÃÃ
```````̀
•
((((((((
hhhhhhhh
•
((((((((
hhhhhhhh
•
ÃÃÃÃÃÃÃÃ
```````̀
•

0

1

0

0

1

1

0

0

1

0

1

1︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

B1

B2
B3

· · ·

· · ·

· · ·

Figure 3.3. An example of a tree code for a source with ternary alphabet. Here the rate R
is one bit per source symbol.

The random binning scheme we use is an ensemble of tree codes, with every bit on every

branch drawn identically and independently as Bernoulli 1/2 (B(1/2)) random variables.

This means that if source sequences xn
1 and yn

1 are the same until time n − d + 1, i.e.

xn−d
1 = yn−d

1 , but xn−d+1 6= yn−d+1, the probability that xn
1 and yn

1 are placed in the same

‘bin’ is 2−dR. This is because the last dR bits of the codewords for xn
1 and yn

1 are drawn iid

B(1/2). We refer to the bits in the codewords of source sequences as ‘parities’ because we

think of them as coming from a time-varying, infinite constraint length convolutional code.

36

Decoding will be done by a stack algorithm, and hence is also sequential. We initialize

the stack with the root node with a metric of 0. The following is the specific stack algorithm

used.

1. Let xl
1 denote the (partial) source sequence at the top of the stack. Remove xl

1 from

the stack and consider each of its |X | extensions by one symbol from X , i.e. (xl
1, u),

∀u ∈ X . Let x̃l+1
1 be one of these extensions, and do the following for each of the

extensions. If the parities of x̃l+1
1 match the parities received, update the metric of

x̃l+1
1 and add it to the stack in a sorted way (highest metric on top). Otherwise discard

x̃l+1
1 . Note that the parities of x̃l+1

1 will match those received if and only if the label

on the branch extending xl
1 to x̃l+1

1 match the R parities received in the last time

step.

2. Let xk
1 denote the sequence on top of the stack after all the relevant extensions have

been added. If the length of xk
1, k, is up to the current time, declare x as the decoded

source sequence so far. Otherwise repeat 1.

The metrics are updated in an additive manner, with the metric of x̃l+1
1 being Γ(x̃l+1

1) =

Γ(x̃l
1) + Γ(x̃l+1). For x ∈ X , the metric for the source symbol x is

Γ(x) = G + log2(Q(x))

The parameter G is the ‘bias’ and controls to a large extent the amount of searching through

the tree the algorithm performs. The reason for the log2(Q(x)) of course is that we want

to have a near-MAP estimate of the source sequences whose parities agree with the source

sequence received so far. The bias is used as a normalizer so that the true path through

the tree has a metric that is slowly increasing in time. In contrast with the channel coding

situation, false paths have metrics that may or may not be decreasing in time, but false paths

are also knocked out of consideration by the parities. For example, if a source is B(1/3), the

most probable sequence (the one with the highest metric) is the all-zero sequence, but it is

highly atypical. Therefore, we count on the parities to cut these paths off. A bias equal to

0 is equivalent to MAP decoding because log2(Q(x)) ≤ 0 for all x ∈ X , hence all paths will

have a decreasing metric in time, forcing the stack decoder to search the entire tree.

37

3.3 Bounds on computation and probability of error

In this section, we state two results regarding the computation and probability of error

for our scheme. The theorems give conditions on the bias for which we can guarantee

‘nearly-optimal’ performance. The proofs are very similar to the proofs found in Jelinek’s

paper [1] on sequential decoding bounds for channel coding.

Theorem 3.3.1 Using the encoder and decoder of 3.2, we can achieve asymptotically the

same probability of error as with MAP decoding. Define Es(ρ) as below, for ρ ≥ 0.

Es(ρ) , (1 + ρ) log2

(∑

x∈X
Q(x)

1
1+ρ

)
(3.8)

Let ρ∗ be defined so that rate R in bits per source symbol of the code satisfies R =

d
dρEs(ρ)|ρ=ρ∗. However, if ρ∗ > 1, replace it with ρ∗ = 1. If the bias of the sequential

decoder, G, satisfies

G <
Es(ρ∗)

ρ∗
(3.9)

then for any ε > 0, the probability of error with delay, Pe(d), is at most

Pe(d) ≤ K̃ε2−d(Er(R)−ε) (3.10)

where Er(R) = supρ∈[0,1] ρR − Es(ρ), and K̃ε is a finite constant independent of d. This

shows that the error exponent with delay of this scheme is at least Er(R). The proof is given

in A.2.

Figure 3.4 shows an example of the exponent Er(R) for a ternary source with proba-

bilities (.95, .025, .025) and entropy .34 bits per symbol. Along with Er(R), a plot of the

block source coding exponent is provided.

Eb(R) , sup
ρ≥0

ρR− Es(ρ) (3.11)

As mentioned by Csiszar and Körner [28], the exponent Eb(R), is an upper bound on the

error exponent for block codes. The error event for our scheme for a delay d is essentially the

same as an error event for a block code with block length d. For low rates, Er(R) = Eb(R),

38

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Rate in bits

E
xp

on
en

t

Error exponents for ternary source with prob. vector (.95, .025, .025)

Random Coding Exponent
Block Coding Exponent

Achievable with finite mean of computation

Figure 3.4. The random coding exponent and block coding exponent Eb(R).

but at high rates Er(R) < Eb(R), with Eb(R) going to infinity as the rate approaches

log2 |X |. As noted by Chang, et.al. [29], Eb(R) is in general much less than the error

exponent with decoding delay achievable with arbitrary codes.

Theorem 3.3.2 For the source coding scheme of section 3.2, if γ ∈ [0, 1], and the bias G

satisfies

Es(γ)
γ

< G <
1 + γ

γ

[
γR−G(γ)

]
(3.12)

G(γ) , γ log2

∑

x∈X
Q(x)1/(1+γ) (3.13)

the γth moment of Ni, E[Nγ
i], averaged over the source and encoder randomness, is finite

for all i if

R >
1
γ

Es(γ) (3.14)

The proof is given in the appendix, section A.3.

The range of bias values allowed for theorem 3.3.2 is always a nonempty interval if R >

Es(γ)/γ. Figure 3.5 shows the required rate as a function of γ for an example source. If

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

γ

R
at

e
in

 b
its

Required rate to have a finite γth moment

E
s
(γ)/γ

Source Entropy

Figure 3.5. Rate required to have finite γth moment of computation. The source is ternary
with probabilities (.95, .025, .025).

we want a finite mean for the computation, we would require the rate to be at least Es(1).

Then for a source with pmf Q, we have a source coding computation cutoff rate of

Rcomp , Es(1) = 2 log2

(∑

x∈X

√
Q(x)

)
(3.15)

The next section shows that if the rate is less than Rcomp, then it is impossible for a

sequential decoder to decode with exponentially decaying probability of error and still have

a finite mean of computation.

3.4 Converse for computation in point-to-point sequential

source coding

The work of Jacobs and Berlekamp [10] shows that when sequential decoding is used

for communication over a noisy channel, the distribution of computation is at best a Pareto

distribution. This implies that there will always be moments of the random variable of

computation that are infinite. We will use a result of Arkian and Merhav from [2] to deduce

40

that a similar result holds for point-to-point source coding with sequential decoders. The

result applies more generally, and we first state the point-to-point source coding problem

as an instance of one in their class of problems.

Consider the problem of guessing the outcome of a source U from a finite alphabet U ,

which has a pmf P . A guessing strategy is an ordering of the elements of U . We guess the

value of U by going down our list until we have guessed it correctly, at which point we stop.

Let G(U) be the number of guesses required to guess U , which is a function of U . Clearly,

to minimize E[G(U)ρ], the ρth moment of G(U), for any ρ > 0, we just guess elements of U
in decreasing order of their probability.

Now suppose (U, Y) are drawn according to PU,Y , we are given the realization Y , and

we want to guess the realization of U based on our knowledge of Y . We let G(U |Y) denote

the number of guesses to identify U when Y has occurred. This is a function of both U

and Y . The strategy to minimize moments of G(U |Y) is of course to guess U in order of

decreasing probability PU |Y .

Figure 3.6 shows an abstraction of a joint source-channel communication system. A

discrete memoryless source outputs symbols from a finite alphabet U at a rate of one per

second, according to a PMF P . For a fixed N , an encoder maps N source symbols to

NR channel input symbols from a finite alphabet X . A discrete memoryless channel with

probability law W (Y |X) corrupts the input to produce one output symbol Y from a finite

alphabet Y for every channel input symbol. The decoder is a guessing decoder, in that it

makes guesses on the source block UN
1 until it gets it correct. Let GN be a guessing decoder

for the source with N symbols drawn iid according to P. We now define Esc(ρ) to be

Esc(ρ) , lim
N→∞

min
EN ,GN

1
N

log2 E[GN (UN
1 |Y NR

1)ρ]

if the limit exists, where EN and GN are respectively the source-channel encoder and the

guessing decoder. We now define some quantities that appear in the bound of Esc(ρ).

Definition 3.4.1 The Renyi entropy of order α, α > 0, α 6= 1 of a source is

Hα(P) =
1

1− α
log2

∑

u∈U
P (u)α

41

Let E0(ρ) be the Gallager function of the channel W as defined in Chapter 2, that is

E0(ρ) = max
Q
− log2

∑
y

[∑
x

Q(x)W (y|x)
1

1+ρ

]1+ρ

Then Theorem 1 of Arikan and Merhav’s paper [2] proves that for any ρ > 0.

Esc(ρ) = [ρH1/(1+ρ)(P)−RE0(ρ)]+ (3.16)

where [x]+ = max(0, x). We note that if RE0(ρ) < ρH1/(1+ρ)(P), then the ρth moment of

- - - -
P

DMS U E X Y DDMC
W

Û

Figure 3.6. The joint source channel coding problem.

guesses for any guessing strategy goes to infinity exponentially with N . This will be used to

get a condition on the rate of source encoding in our point to point source coding problem

that is necessary (but not necessarily sufficient) to have a finite ρth moment of computation

per time.

Now going back to our stack decoding scheme for P-P source coding, we have seen

that the probability that the stack decoder makes an error on UN
1 at time N + d goes to

0 exponentially with d. Hence, the stack decoder will identify the first N source symbols

with probability 1 as time goes on indefinitely. We can thus use the stack decoder to induce

a guessing decoder. The guessing decoder is well defined because the stack decoder is a

sequential decoder. Hence, its final determination (as d goes to infinity) of ÛN
1 depends

only on the portion of the received bits up until time N , i.e. BNR
1 . If we let Bi = Yi for all i,

we note that G(UN
1 |Y NR

1) gives us the number of nodes in the N th level of the encoding tree

that are ever visited by the sequential decoder, which we define to be DN . Therefore, DN

can be taken as a lower bound to the number of nodes visited in order to correctly decode

the first N symbols. We want bounds on the moments of DN as they give approximations

to the moments of Ni. In particular, we don’t want E[Dρ
N] to increase exponentially as N

goes to ∞. Of course, this will only hold for certain ρ. We can evaluate equation 3.16 for

this situation as follows.

42

Let the channel input alphabet and output alphabet be X = Y = {0, 1}. Let the channel

be noiseless, so W (y|x) = δ(x− y), where δ is the Kronecker delta function. Hence, we are

guaranteed that Xi = Yi = Bi. We can now calculate H1/(1+ρ)(P) and E0(ρ).

H1/(1+ρ)(P) =
1

1− 1
1+ρ

log2

∑

u∈U
P (u)1/(1+ρ)

=
1 + ρ

ρ
log2

∑
u

P (u)1/(1+ρ)

E0(ρ) = max
Q
− log2

∑
y

[∑
x

Q(x)W (y|x)1/(1+ρ)

]1+ρ

= max
q
− log2(q

1+ρ + (1− q)1+ρ)

= − log2(2 · 2−(1+ρ))

= ρ

Now by the theorem, the condition for the ρth moment of DN to go to infinity exponentially

with N is ρH1/(1+ρ)(P)−RE0(ρ) > 0. This simplifies to (1+ρ) log2

∑
u P (u)1/(1+ρ)−ρR > 0.

Hence, the ρth moment of DN goes to infinity exponentially with N if R < Es(ρ)/ρ.

If the ρth moment of DN goes to infinity exponentially with N , since the decoder

eventually visits all these nodes it follows that E[Nρ
i] is infinite for some i as well. In order

for there to be any hope of having the ρth moment of computation be finite, the rate must

be at least Es(ρ)/ρ. This is analogous to the requirement that the rate can be at most

E0(ρ)/ρ in the channel coding case for a sequential decoder to have a finite ρth moment of

computation. The following is a concise statement of the contents of this section.

Theorem 3.4.2 For any γ > 0, if a sequential decoder is used to decode a source code and

the probability it will correctly determine every source symbol is exponentially decreasing

in decoding delay, then the γth moment of Ni, is infinite if

R <
Es(γ)

γ
(3.17)

43

3.5 Simulations

Just as in Chapter 2 we use Monte-Carlo simulation methods to verify the theoretical re-

sults of section 3.3, and to get a handle on some of the quantities related to the performance

of the scheme.

Example 3.5.1 Consider a ternary iid source Xi ∈ {0, 1, 2}. For this example we choose

the probability mass function of the source to be (.95, .025, .025). This source has an entropy

of 0.34 bits per symbol.

In the simulation, the rate R is 1 bit per source symbol. Figure 3.7 shows the relevant

functions described in the bounds for reliability and computation. The probability of error

with delay, Pe(d) is the first quantity that we will look at experimentally. Since probability

of error decays exponentially with delay, the logarithm of the probability of error decays

linearly with delay. That is,

log2 Pe(d) ∼ −E(R)d

Hence the slope of the line is exactly the negative of the error exponent achieved by this

scheme. This is shown in Figure 3.8. By simulating the system with pseudo-random number

generators, we have collected data on the probability of error with delay achieved by the

sequential binning encoder with stack decoder. In 3.7, we see that at rate R = 1, the bias

can be at most 0.6 to achieve the random coding exponent Er(1) = 0.27. We have simulated

with a bias equal to 0.5, and the linear fit in 3.8 shows that the experimentally obtained

E(1) is roughly 0.3. Since the linear fit is somewhat subjective, the value of 0.3 is close

enough to 0.27 to show that they are roughly the same.

Further, if we assume that the moments of computation at any time are the same as

the moments of computation in any incorrect subtree, we can compare the Pareto exponent

of the simulation to the theory. In Figure 3.9, the logarithm of probability of the random

variable of computation is plotted against the logarithm of the number of computations.

Since the rate is 1, and Es(1) < 1 in this case, theorem 3.3.2 tells us that it should be

possible to have a Pareto exponent of at least 1. We conjecture that theorem 3.3.2 holds for

44

Theoretical Experimental
Error exponent with delay 0.27 ∼ 0.3

Pareto exponent of computation > 1 ∼ 1.4
Maximum Pareto exponent 2.1

Table 3.1. Comparison of theoretical and experimental performance in example 3.5.1.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

ρ

E
s(ρ

)

0.5 1 1.5
0

0.5

1

1.5

2

Rate in bits
E

xp
on

en
t

0.5 1 1.5
0

0.2

0.4

0.6

0.8

Rate in bitsm
ax

im
um

 b
ia

s
to

 a
ch

ie
ve

 E
r(R

)

0 0.5 1
0.3

0.4

0.5

0.6

0.7

0.8

γ

R
at

e
in

 b
its

Required rate to have a finite γth moment

E
s
(γ)/γ

Source Entropy

Random Coding Exponent
Block Coding Bound

Figure 3.7. The functions of interest associated with a ternary source with probability
vector (.95, .025, .025).

moments greater than 1 as well. Since the bias is not set to maximize the Pareto exponent,

we do not expect to achieve this conjectured Pareto exponent in this example. In Figure

3.9, the experimentally determined Pareto exponent is 1.2. So in this case, we have achieved

the random coding error exponent with a finite mean in computation, as summarized in

Table 3.1.

45

0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

depth d

lo
g 2 (

P
(E

rr
or

 d
ep

th
 =

 d
))

Probability of error with delay

Ternary Source
PMF: (.95, .025, .025)

Bias = 0.5
Rate = 1 bit/symbol

Averaged over 50 trials,
100,000 symbols each

E
r
(1) = 0.27

Experimental E
r
(1) ~ 0.3

Linear Fit
Slope = −0.3

Simulation Data

Figure 3.8. Experimentally determining Er(R), R = 1 bit per symbol, for example 3.5.1.

0 2 4 6 8 10 12

−20

−15

−10

−5

0

log
2
(N)

lo
g 2 P

r(
N

um
be

r
of

 c
om

pu
ta

tio
ns

 >
=

 N
)

Random variable of computation

Ternary Source
PMF: (0.95, 0.025, 0.025)
Entropy = 0.34 bits/symbol

Rate = 1 bit/symbol
Bias = 0.7

Averaged over 50 trials,
100,000 symbols each

E
s
(1) = 0.9

Estimated Pareto Exponent = 1.4

Simulation Data

Linear fit
Slope = −1.4

Figure 3.9. Experimentally determining the Pareto exponent for example 3.5.1.

46

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

ρ

E
s(ρ

)

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Rate in bits

E
xp

on
en

t

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Rate in bitsm
ax

im
um

 b
ia

s
to

 a
ch

ie
ve

 E
r(R

)

0 0.5 1
0.45

0.5

0.55

0.6

0.65

0.7

γ

R
at

e
in

 b
its

Required rate to have a finite γth moment

Random Coding Exponent
Block Coding Bound

E
s
(γ)/γ

Source Entropy

Figure 3.10. Functions of interest associated with a binary source with PMF (0.9, 0.1).

Example 3.5.2 Now we explore an example that will be comparable to the case when side

information is available at the decoder only. The source Xi is a sequence of iid Bernoulli one-

half random bits. Yi are generated by passing Xi through a BSC with crossover probability

ε. In this example, we consider the case when the side information is available at both the

encoder and decoder. The situation is diagrammed in Figure 3.11. It is clear that since Y is

available at both the encoder and decoder, compressing X ⊕ Y is the same as compressing

X. Figure 3.10 shows the relevant source coding functions for the error random variable

X ⊕ Y . Since we are just encoding the noise, the rate must be at least H(X|Y) = Hb(ε)

where Hb is the binary entropy function.

Again, we experimentally estimate the Pareto exponent of computation and the error

exponent with delay. These are shown in Figures 3.13 and 3.12 respectively. Again, we see

that we can achieve the random coding error exponent and the Pareto exponent guaranteed

by theorem 3.3.2 holds. Since the bias value (0.7) is actually too high to achieve Er(R)

at rate R = 0.7, the error exponent in the experiment is somewhat surprising. However,

47

-

-½
½

½
½

½½>Z
Z

Z
Z

ZZ~

1− ε

ε
ε

1− ε

-

6 6

- - -.......................E D

Y

Rate R
X̂

0

1

0

1

X

Figure 3.11. An example of point-to-point source coding that can be compared to source
coding with side information at the decoder. Xi are Bernoulli (1/2) random bits, Y is X
passed through a BSC with crossover probability ε. The encoder bins the error sequence
X ⊕ Y .

Theoretical Experimental
Error exponent with delay 0.05 ∼ 0.06

Pareto exponent of computation > 1 ∼ 1.2
Maximum Pareto exponent 1.2

Table 3.2. Comparison of theoretical and experimental performance in example 3.5.2.

we stress again that the fitting of a line to the curve is somewhat arbitrary and we cannot

expect to have precise values of the slope beyond the first digit.

3.6 Lossless source coding with side information

Now we consider source coding with side information available at the decoder. That is,

two sources (Xi, Yi) are generated iid according to a joint distribution PXY , {Yi} is available

at the decoder, {Xi} is available causally at the encoder and we want to encode Xi into

a bit stream to be recovered with the help of {Yi}. Figure 3.6 shows the situation. The

rate must be at least H(X|Y) to recover X losslessly, even though Y is not available at the

encoder.

We will use exactly the same encoder as in section 3.2. The decoder will still be the stack

decoder, but the metric assignments now will change. If Yi is the side information at time

i, the decoder assigns a symbol x ∈ X at time i the metric log2 P (x|Yi) + G. There is not

48

0 50 100 150
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

depth d

lo
g 2 P

r(
E

rr
or

 d
ep

th
 =

 d
)

Probability of error with delay

Binary Source
PMF: (0.9, 0.1)
Entropy = 0.47 bits/symbol

Rate = 0.7 bits/symbol
Bias = 0.7

Averaged over 100 trials,
100,000 symbols each

E
r
(0.7) = 0.05

Experimental E(0.7) = 0.06

Linear Fit
Slope = −0.06

Simulation Data

Figure 3.12. Estimating E(R) for example 3.5.2.

0 1 2 3 4 5 6 7 8 9
−15

−10

−5

0

log
2
(N)

lo
g 2 P

r(
N

um
be

r
of

 c
om

pu
ta

tio
ns

 >
=

 N
)

Random variable of computation

Binary source
PMF: (0.9, 0.1)
Entropy: 0.47 bits/sym

Rate = 0.7 bits/sym
Bias = 0.7

Averaged over 100 trials,
10,000 symbols each

E
s
(1) = 0.678

Experimental Pareto Exponent = 1.2

Simulation Data

Linear Fit
Slope = −1.2

Figure 3.13. Estimating the Pareto exponent for computation for example 3.5.2.

49

much difference between this setup and point-to-point lossless source coding. Using exactly

the same techniques as before, we can prove that the stack decoder with side information

achieves the same error exponent as the MAP decoder with side information. This theorem

is the side information analog of Theorem 3.3.1.

Theorem 3.6.1 Let the source pair (Xi, Yi) be generated iid according to a distribution

Q(x, y) on a finite set X × Y. Using the encoder of 3.2 and the modified stack decoder

just described, we can achieve asymptotically the same probability of error as with MAP

decoding. Define Esi(ρ) as below, for ρ ≥ 0.

Esi(ρ) , log2

∑

y∈Y

(∑

x∈X
Q(x, y)

1
1+ρ

)1+ρ

(3.18)

Let ρ∗ be defined so that rate R in bits per source symbol of the code satisfies R =

d
dρEsi(ρ)|ρ=ρ∗. However, if ρ∗ > 1, replace it with ρ∗ = 1. If the bias of the sequential

decoder, G, satisfies

G ≤ 1 + ρ∗

ρ∗

[
Esi(ρ∗)− Fsi(ρ∗)

]
(3.19)

Fsi(ρ) , log2

∑

y∈Y
Q(y)

(∑

x∈X
Q(x|y)

1
1+ρ

)ρ

(3.20)

then for any ε > 0, the probability of error with delay, Pe(d), is at most

Pe(d) ≤ K̃ε2−d(Er(R)−ε) (3.21)

where Er(R) = supρ∈[0,1] ρR − Esi(ρ), and K̃ε is a finite constant independent of d. This

shows that the error exponent with delay of this scheme is at least Er(R). The proof is

completely parallel to the proof in A.2, and the last few steps are shown in A.4.

Example 3.6.1 We go back to the binary source example, where the side information

is generated by passing the source bit through a BSC. The side information this time is

only available at the decoder, as is shown in Figure 3.15. In this case, the function Esi(ρ)

50

- --

6

-

6

X̂iDXi
BiE

Yi

correlation

Figure 3.14. Source coding with side information. X and Y are related through some known
correlation structure.

-

-½
½

½
½

½½>Z
Z

Z
Z

ZZ~

1− ε

ε
ε

1− ε

-

6

- - -.......................E D

Y

Rate R
X̂

0

1

0

1

X

Figure 3.15. An example of lossless source coding with side information. Xi are Bernoulli
(1/2) random bits, Y is X passed through a BSC with crossover probability ε. The encoder
bins its observations of X.

51

Theoretical Experimental
Error exponent with delay 0.05 ∼ 0.08

Pareto exponent of computation > 1 ∼ 1.2
Maximum Pareto exponent 1.2

Table 3.3. Comparison of theoretical and experimental performance in example 3.6.1.

simplifies as below,

Esi(ρ) = log2

∑

y∈Y

(∑

x∈X
p(x, y)1/(1+ρ)

)1+ρ)
(3.22)

= log2

∑

y∈Y
p(y)

(∑

x∈X
p(x|y)1/(1+ρ)

)1+ρ)
(3.23)

= log2

1∑

y=0

1
2

(
ε1/(1+ρ) + (1− ε)1/(1+ρ)

)1+ρ

(3.24)

= (1 + ρ) log2

(
ε1/(1+ρ) + (1− ε)1/(1+ρ)

)
(3.25)

This Esi(ρ) is the same as the Es(ρ) function that appears if the side information Y is

available at both the encoder and decoder, i.e. point-to-point coding of the error sequence.

To compare to the case when Y is available at the encoder as well, we estimate the error

exponent with delay and the Pareto exponent for computation through simulation in Figures

3.16 and 3.17 respectively. In this simulation, the rate is once again 0.7 bits per symbol,

and the bias is 0.7. Again we see nearly identical values for the error exponent and Pareto

exponent, as we should. In theory, they should be exactly identical, but we have simulated

with differing randomness in the two simulations.

52

0 50 100 150
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

depth d

lo
g 2(P

(D
ep

th
 o

f f
ai

lu
re

 =
 d

))

Probability of error with delay

Binary Source
with Side Information
ε = 0.1
H(X|Y) = 0.47 bits/symbol

Rate = 0.7 bits/symbol
Bias = 0.7

Averaged over 100 trials,
10,000 symbols each

E
s
(0.7) = 0.05

Experimental E(R) = 0.08

Simulation Data

Linear Fit
Slope = −0.08

Figure 3.16. Determining E(R) for example 3.6.1.

0 1 2 3 4 5 6 7 8 9 10
−16

−14

−12

−10

−8

−6

−4

−2

0

log
2
(N)

lo
g 2(

P
r(

C
om

ps
 ≥

 N
))

The Random Variable of Computation

Binary Source
with Side Information
ε = 0.1
H(X|Y) = 0.47 bits/symbol

Rate = 0.7 bits/symbol
Bias = 0.7

Averaged over 100 trials,
10,000 symbols each

E
si

(1) = 0.6

Experimental Pareto Exponent = 1.2

Simulation Data

Linear Fit
Slope = −1.2

Figure 3.17. Determining the Pareto exponent for computation for example 3.6.1.

53

Chapter 4

Conclusion

Two problems were considered for this thesis. The aim of each was to take the first steps

towards practical anytime coding strategies. This was done by using the well-developed

theory of convolutional codes and sequential decoding. Sequential decoding offers near ML

or MAP reliability for a reasonable computational cost.

The first problem was stabilization over a discrete memoryless channel. We considered

a scalar linear system with unstable eigenvalue and bounded disturbances. The nature of

the problem fundamentally calls for anytime coding. We chose to restrict the observer to

be essentially memoryless, and constructed an anytime code from an infinite constraint

length convolutional code, i.e. a tree code. The encoder was left to be random so that

the performance could be averaged for analytical tractability, as is generally the case in

information theory.

The significant contribution of this half of the thesis was the application of the stack

algorithm, a sequential decoder, to the decoder located in the controller. We used results

showing that sequential decoding can achieve the same error exponent with delay as ML

decoding. The decoder had a parameter, called the bias, that could be used to tradeoff

performance with complexity. Results of Jelinek were then used to state a few analytical

results about the tradeoff. We showed through simulation that the encoding and decoding

strategy was indeed practical and the analytical results were verified by the Monte-Carlo

54

method. Thus, we have shown a baseline scheme for comparison with strategies proposed

in the future. It is clear that we have paid quite a lot for the practicality of our scheme.

There is much room for improvement and future work should key in on how to properly use

feedback in a simple manner, so as to improve reliability. It would seem that focus should

shift to designing better observer/encoders to monitor the state in a non-uniform way, both

in time and scale.

The second half of the thesis focused on the anytime analog for source coding. We mod-

elled a source sequence as being made of iid symbols and again used an infinite constraint

length convolutional code to encode. The decoder was again a stack algorithm sequential

decoder with a variable bias. Several results were then proved about this decoder. First,

that it could achieve the same error exponent as MAP decoding, and second, that it could

also have computation that was not growing on average with time. Then, we saw that the

computational bound was essentially as good as we could do with any sequential decoder

that had an exponentially decaying probability of error with delay. This followed as an ap-

plication of a theorem of Arikan. Next, we showed simulations of this strategy and verified

the theory.

The motivation of the point-to-point anytime source coding strategy was to arrive at a

practical anytime source code for lossless source coding with side information at the decoder.

We used the same sequential binning encoder as in the point-to-point problem, and verified

by simulation that the stack decoder gives exponentially decreasing probability of error with

delay. We proved a theorem showing that the stack decoder is asymptotically as reliable as

a MAP decoder when side information is available at the decoder. If time had permitted,

we would have further explored the use of a sequential decoder for fully distributed lossless

source coding, sometimes called the Slepian-Wolf problem. It would seem that the approach

used in the side information case provides a stepping stone to the Slepian-Wolf problem.

The main contributions of this thesis have been in using the stack algorithm to get

delay-universal sequential decoders for the problems of control over a noisy channel and

sequential lossless source coding.

55

References

[1] F. Jelinek, “Upper bounds on sequential decoding performance parameters,” IEEE Transactions on

Information Theory, vol. 20, pp. 227–239, Mar. 1974.

[2] E. Arikan and N. Merhav, “Joint source-channel coding and guessing with application to sequential

decoding,” IEEE Transactions on Information Theory, vol. 44, Sept. 1998.

[3] A. Sahai, “Anytime information theory,” Ph.D. dissertation, Massachussetts Institute of Technology,

Cambridge,MA, 2001.

[4] A. Sahai and S. Mitter, “The necessity and sufficiency of anytime capacity for control over a noisy

communication link: Part 1,” To appear in IEEE Transactions on Information Theory, Aug 2006.

[5] A. Sahai and H. Palaiyanur, “A simple encoding and decoding strategy for stabilization discrete mem-

oryless channels,” in Forty-third Allerton Conference on Communication, Control, and Computing,

Monticello, IL, Sept. 2005.

[6] Y. Ho, M. Kastner, and E. Wong, “Teams, signaling, and information theory,” IEEE Transactions on

Automatic Control, vol. 23, pp. 305–312, Apr. 1978.

[7] H. Witsenhausen, “Separation of estimation and control for discrete timne systems,” Proceedings of the

IEEE, vol. 59, Nov. 1971.

[8] A. Sahai, “The necessity and sufficieny of anytime capacity for control over a noisy communication

link,” in Proceedings of the 43rd IEEE Conference on Decision and Control, Dec. 2004.

[9] R. Gallager, Information Theory and Reliable Communication. New York,NY: John Wiley and Sons,

1971.

[10] I. Jacobs and E. Berlekamp, “A lower bound to the distribution of computation for sequential decoding,”

IEEE Transactions on Information Theory, vol. 13, pp. 167–174, Apr. 1967.

[11] J. Savage, “The distribution of sequential decoding computation time,” IEEE Transactions on Infor-

mation Theory, vol. 12, Apr. 1966.

[12] F. Jelinek, “An upper bound on moments of sequential decoding effort,” IEEE Transactions on Infor-

mation Theory, vol. 15, pp. 140–149, Jan. 1969.

[13] G. Forney, “Convolutional codes 3. sequential decoding.” Information and Control, vol. 25, pp. 267–297,

1974.

[14] T. Cover and J. Thomas, Elements of Information Theory. New York, NY: John Wiley and Sons,

1991.

[15] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on

Information Theory, vol. 23, pp. 337–343, May 1977.

[16] ——, “Compression of individual sequences by variable rate coding,” IEEE Transactions on Information

Theory, vol. 24, pp. 530–536, Sept. 1978.

56

[17] M. Burrows and D. Wheeler, “A block-sorting lossless data compression algorithm,” Digital Equipment

Corporation, Tech. Rep. 124, 1994.

[18] M. Hellman, “Convolutional source encoding,” IEEE Transactions on Information Theory, vol. 21, pp.

651–656, Nov. 1975.

[19] V. Koshelev, “Direct sequential encoding and decoding for discrete sources,” IEEE Transactions on

Information Theory, vol. 19, pp. 340–343, May 1973.

[20] F. Jelinek, “Tree encoding of memoryless discrete-time sources with a fidelity criterion,” IEEE Trans-

actions on Information Theory, vol. 15, pp. 584–590, Sept. 1969.

[21] S. Mohan and J. Anderson, “Speech encoding by a stack algorithm,” IEEE Transactions on Commu-

nications, vol. 28, pp. 825–830, June 1980.

[22] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE Transactions on

Information Theory, vol. 19, pp. 471–480, July 1973.

[23] C. Chang and A. Sahai, “Upper bound on error exponents with delay for lossless source coding with

side-information,” in Proc. Int. Symp. Inform. Theory, Seattle, WA, USA, July 2006.

[24] A. Sahai, “Why block length and delay are not the same thing,” Submitted to IEEE Transactions on

Information Theory. [Online]. Available: www.eecs.berkeley.edu/∼sahai/Papers/FocusingBound.pdf

[25] E. Arikan, “An inequality on guessing and its application to sequential decoding,” IEEE Transactions

on Information Theory, vol. 42, pp. 99–105, Jan. 1996.

[26] A. Sahai, “Evaluating channels for control: capacity reconsidered,” in Proceedings of the 2000 American

Control Conference, Chicago, IL, June 2000.

[27] C. Chang, S. Draper, and A. Sahai, “Random sequential binning for distributed source coding,” in

Proc. Int. Symp. Inform. Theory, Adelaide, Australia, Sept. 2005.

[28] I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems,

2nd ed. New York, NY: Academic Press, 1997.

[29] C. Chang and A. Sahai, “The error exponent with delay for lossless source coding,” in IEEE Information

Theory Workshop, Punta del Este, Uruguay, 2006.

57

Appendix A

Appendix

A.1 The probability of error with delay for channel coding

with a sequential decoder

The sequential decoder (using the Stack Algorithm) decides on the bin of X(kT) at

time kT + T − 1 having received all channel outputs through time kT + T − 1. Let the

sequential decoder’s decoded path for time kT be denoted as s(k). Let the true path taken

by the state be denoted as x. We will use u to denote any path in the trellis other than

the true path. We note that s(k) can change drastically as time evolves. That is, s(k) and

s(k + 1) may or may not be merged for a large portion of time. This is because the Stack

Algorithm is allowed to back up and try different paths in the trellis if for some reason the

best available paths have extending branches with very low metrics.

In order to prove the theorem, we will bound the probability that s(k) diverged from the

true path d time branches in the past. We will show this probability decays exponentially

with an exponent of at least the random block-coding error exponent to within a constant.

This result was proved by Jelinek in [1], and we will provide a somewhat detailed proof.

First, we define the error event to be analyzed.

Ed(k) , {s(k) and x have their last common node at time (k − d)T }

58

time ktime k − d

true path

s(k)

Figure A.1. An example of when Ed(k) occurs.

s(k)

true path

time k − dtime k − d time ktime k

Figure A.2. Examples of when Ad(k) occurs, illustrating the difference with Ed(k).

Ad(k) , {s(k) and x are merged at time (k − d)T}

The error events are depicted in Figures A.1 and A.2. We note that the only difference

between the two is that an s(k) that causes Ad(k) to occur may merge with the true path

after time k − d while one the causes Ed(k) to occur may not. With these definitions, it is

clear that Ed(k) ⊂ Ad(k).

⇒ P (Ed(k)) = P (Ed(k)|Ad(k)) · P (Ad(k))

≤ P (Ed(k)|Ad(k))

From now on, we only refer to time in multiples of T . Now, given that Ad(k) occurs, s(k)

and x have the same metric at time (k − d) (meaning at time up til the node at time

(k−d)T). For s(k) to beat x at time k, we must have that the metric of s(k)k
k−d+1 is better

than the minimum of the partial path metrics of the true path starting from k − d + 1 and

59

going on until k − d + j, j = 1, 2, . . . , d. That is, we must have the following event:

Fd(k) ,
{
∃uk

k−d+1 disjoint with xk
k−d+1 such that Γ(uk

k−d+1) ≥ min
1≤j≤d

Γ(xk−d+j
k−d+1)

}

Given Ad(k), Ed(k) ⊂ Fd(k), so we have

P (Ed(k)) ≤ P (Ed(k)|Ad(k))

≤ P (Fd(k))

Now, let Fd , Fd(d). Since the code is i.i.d. across time, P (Fd(k)) = P (Fd), if k ≥ d.

Hence we can assume that the last common node between s(k) and the true path is the

’root’ of the trellis. We give a few more definitions to further break down the proof into

smaller pieces.

Cd ,
{

ud
1 in trellis: ud

1 is disjoint with xd
1

}

Fd ,
{
∃ud

1 ∈ Cd : Γ(ud
1) ≥ min

1≤j≤d
Γ(xj

1)
}

Fd,j ,
{
∃ud

1 ∈ Cd : Γ(ud
1) ≥ Γ(xj

1)
}

⇒ Fd =
d⋃

j=1

Fd,j

P (Fd) ≤
d∑

j=1

P (Fd,j)

Now, suppose Γ(ud
1) ≥ Γ(xj

1), j ≥ 1. With G as the bias used by the stack decoder, this

implies
[

dT−1∑

i=1

ln
p(yi|ui)
p(yi)

−G

]
−

[
jT−1∑

i=1

ln
p(yi|xi)
p(yi)

−G

]
≥ 0

ln
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

+ (j − d)TG ≥ 0

⇒ ln
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)
· exp((j − d)TG) ≥ 1

[
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

]s

· exp(s(j − d)TG) ≥ 1

for s ≥ 0

60

Now, consider the quantities τd,j and κd,j defined below.

τd,j ,
(∑

ud
1∈Cd

[
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

]s

· exp(s(j − d)TG)
)ρ

= exp(sρ(j − d)TG)
(∑

ud
1∈Cd

[
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

]s)ρ

= exp(sρ(j − d)TG)κd,j

with ρ ∈ [0, 1] and s ≥ 0.

κd,j ,
(∑

ud
1∈Cd

[
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

]s)ρ

By the construction of τd,j , if Fd,j occurs, τd,j ≥ 1. Since P (Fd,j) = E[1(Fd,j)] and τd,j ≥
1(Fd,j), P (Fd,j) ≤ E[τd,j]. Hence, P (Fd) ≤

∑d
j=1 E[τd,j].

E[τd,j] =
∑

xd
1

∑

yd
1

p(xd
1)p(yd

1 |xd
1)E[τd,j |xd

1, y
d
1] (A.1)

= exp(sρ(j − d)TG)
∑

xd
1

∑

yd
1

p(xd+1
1)p(yd

1 |xd
1)E[κd,j |xd

1, y
d
1] (A.2)

E[κd,j |xd
1, y

d
1] = E

[(∑

ud
1∈Cd

[
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

]s)ρ∣∣∣∣xd
1, y

d
1

]
(A.3)

≤ |Cd|ρE
[(

p(yd
1 |ud

1)p(yj
1)

p(yj
1|xj

1)p(yd
1)

)s∣∣∣∣xd
1, y

d
1

]ρ

, ud
1 ∈ Cd (A.4)

≤ exp(ρdTR) · E
[(

p(yd
1 |ud

1)p(yj
1)

p(yj
1|xj

1)p(yd
1)

)s∣∣∣∣xd
1, y

d
1

]ρ

(A.5)

Equation A.3 follows from Jensen’s inequality because ρ ∈ [0, 1]. Equation A.4 is due to

the fact that the channel symbols along all the branches of paths in the set Cd are generated

iid, so the expectation of the sum is the expectation of one multiplied by the number of

items in the sum. Finally, because the trellis branches at a rate R, the size of Cd is at most

exp(dTR), which yields Equation A.5. Now we average over the random codeword symbol

generation.

E

[(
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

)s∣∣∣∣xd
1, y

d
1

]
=

∑

ud
1∈X dT

p(ud
1)

(
p(yd

1 |ud
1)p(yj

1)

p(yj
1|xj

1)p(yd
1)

)s

(A.6)

=
∑

ud
1

p(ud
1)

(
p(yj

1|uj
1)p(yd

j+1|ud
j+1)

p(yj
1|xj

1)p(yd
j+1)

)s

(A.7)

61

The change in Equation A.7 is that we have cancelled some terms and split p(yd
1 |ud

1) into

two terms.

P (Fd,j) ≤ exp(ρdTR + sρ(j − d)TG)

·
∑

xd
1

∑

yd
1

p(xd
1)p(yd

1 |xd
1)

[∑

ud
1

p(ud
1)

(
p(yj

1|uj
1)p(yd

j+1|ud
j+1)

p(yj
1|xj

1)p(yd
j+1)

)s]ρ

let αd,j , exp(ρdTR + sρ(j − d)TG)

let ζd,j ,
∑

xd
1

∑

yd
1

p(xd
1)p(yd

1 |xd
1)

[∑

ud
1

p(ud
1)

[
p(yj

1|uj
1)p(yd

j+1|ud
j+1)

p(yj
1|xj

1)p(yd
j+1)

]s]ρ

P (Fd,j) ≤ αd,j · ζd,j

Now we simplify ζd,j using the iid nature of the encoder and the memorylessness of the

channel.

ζd,j =
∑

xd
1

∑

yd
1

p(xd
1)p(yd

1 |xd
1)

[∑

ud
1

p(ud
1)

(
p(yj

1|uj
1)p(yd

j+1|ud
j+1)

p(yj
1|xj

1)p(yd
j+1)

)s]ρ

=
∑

xd
1

∑

yd
1

p(xd
1)p(yd

1 |xd
1)p(yj

1|xj
1)
−sρp(yd

j+1)
−sρ

[∑

ud
1

p(ud
1)

(
p(yj

1|uj
1)p(yd

j+1|ud
j+1)

)s]ρ

= exp(jTfc(s, ρ) + (d− j)Tgc(s, ρ)}

where fc(s, ρ) and gc(s, ρ) are defined below

fc(s, ρ) , ln
∑

y

(∑
x

p(x)p(y|x)1−sρ

)(∑
x

p(x)p(y|x)s

)ρ

= ln
∑

y

p(y)
(∑

x

[
p(y|x)
p(y)

]1−sρ

p(x)
)(∑

x

[
p(y|x)
p(y)

]s

p(x)
)ρ

gc(s, ρ) , log2

∑
y

p(y)
(∑

x

[
p(y|x)
p(y)

]s

p(x)
)ρ

ρ ∈ [0, 1], s ≥ 0

The above equations follow from alternating the order of sums and products in the usual

manner of proofs using the Gallager style bound. Combining everything for a bound on

P (Fd), we have the following.

P (Fd) ≤
d∑

j=1

P (Fd,j)

≤
d∑

j=1

exp(dTRρ + sρ(j − d)TG + (d− j)Tgc(s, ρ) + jTfc(s, ρ))

62

= exp
(
dT (Rρ− sρG + gc(s, ρ))

) d∑

j=1

exp
(
jT (sρG− gc(s, ρ) + fc(s, ρ))

)

Now suppose sρG− g(s, ρ) + f(s, ρ) ≥ 0, that is if G > 1
sρ(g(s, ρ)− f(s, ρ)). Then,

d∑

j=1

exp2(jT (sρG− gc(s, ρ) + fc(s, ρ))) ≤ d · exp(dT (sρG− gc(s, ρ) + fc(s, ρ)))

⇒ P (Fd) ≤ d exp
(− dT (−ρR− f(s, ρ))

)

The value of s = 1
1+ρ maximizes −f(s, ρ) for a fixed ρ. Now we note that −f(1

1+ρ , ρ) =

E0(ρ) where E0 is Gallager’s function. Now, by choice of the channel input distribution PA,

we have the following.

P (Fd) ≤ d exp
(− dT (−ρR + E0(ρ))

)

≤ exp
(
− dTEr(R) + ln d

)

Asymptotically, ln d is insignificant compared to dTEr(R), so we can precisely state

lim sup
d→∞

− ln
1

dT
P (Fd) ≥ Er(R) (A.8)

A.2 The probability of error with delay for a source coding

scheme with sequential decoding

In this section, we prove Theorem 3.3.1 which we state here again for reference. In

Chapter 3, we used log2 and rate in bits. For convenience in the proof, we switch to rate in

nats and use ln, the natural logarithm.

Theorem A.2.1 Using the stack decoding algorithm with the sequential binning encoder

of Chapter 3, we can achieve asymptotically the same probability of error as with MAP

decoding. Let Q(x) be the probability of the source on a finite alphabet X . Define Es(ρ) as

below, for ρ ≥ 0.

Es(ρ) , (1 + ρ) ln
(∑

x∈X
Q(x)

1
1+ρ

)
(A.9)

63

Let ρ∗ be defined so that rate R in nats per source symbol of the code satisfies R = E′
s(ρ

∗).

However, if ρ∗ > 1, replace it with ρ∗ = 1. If the bias of the sequential decoder, G, satisfies

G <
Es(ρ∗)

ρ∗
(A.10)

then for any ε > 0, the probability of error with delay, P (x̂n
1 (n + d) 6= xn

1), for n ≥ 1 is at

most

P (x̂n
1 (n + d) 6= xn

1) ≤ K̃εe
−d(Er(R)−ε) (A.11)

where Er(R) = supρ∈[0,1] ρR− Es(ρ), and K̃ε is a finite constant independent of d.

Proof: First let us set up the notation. Denote the vector of (true) realized source symbols

(xi, xi+1, . . . , xj) as xj
i , for i ≤ j. If j < i, xj

i will refer to the null string. For simplicity,

xi denotes just the ith source symbol. Let x̂j
i (n) be the decoders ith through jth recovered

symbols at time n. We will reserve yj
i to denote source symbols along a path in the encoding

tree that are not necessarily the true source symbols. In particular, a path that may cause

an error will be denoted with the letter y and the letter x will be reserved for the true

source symbols. The letter B will be reserved for the bits received by the decoder, which

will be referred to as ‘parities’.

The probability measure for the source symbols is Q, which takes on non-zero values on

a finite alphabet X . The probability measure P will refer to all randomness in the source

as well as the randomly generated encoder. When no confusion arises, Q will be applied

to multiple symbols like xk
1 with the meaning that Q(xk

1) =
∏k

l=1 Q(xl). The encoding and

decoding schemes used are the same as described in Chapter 3. Let G denote the bias of the

sequential decoder so that the metric of a source symbol is Γ(x) = ln(Q(x)) + G, ∀x ∈ X .

The error event of interest is defined in equation A.12 and we will relate it to the theorem

at the end of the proof. Figure A.2 shows paths that may lead to an error event of depth

3 occuring, i.e. F3. Just as when the stack algorithm is used for channel decoding, Fd can

only occur if there is a false path yd
1 , with y1 6= x1, that has a metric at least the minimum

of the metrics along the true path, xk
1, for k = 1, . . . , d.

Fd ,
{
∃ yd

1 , y1 6= x1

∣∣∣∣ Γ(yd
1) ≥ min

1≤k≤d
Γ(xk

1) and parities of yd
1 match BdR

1

}
(A.12)

64

Á

- ³³³³³³³1

J
J

J
J

J
J

J
J

J
JJ

¡
¡

¡
¡

¡
¡

¡

HHHHHHH

©©©©©©©

HHHHHHH

©©©©©©©

@
@

@
@

@
@

@

³³³³³³³

PPPPPPP

³³³³³³³

.XXXXXXX

XXXXXXX

.»»»»»»

.»»»»»»»

XXXXXXX

»»»»»»»

XXXXXXX

»»»»»»

XXXXXXX

»»»»»»»

XXXXXXX

»»»»»»»

XXXXXXX

³³³³³³³

PPPPPPP

¾

³³³³³³³

?

︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

Potentially F3 causing paths

True Source Sequence

Time 1

Time 2

Time 3

Figure A.3. A ternary tree. The true source sequence is shown above. The condition
y1 6= x1 selects a portion of the tree containing paths that could potentially cause the error
event F3.

65

The event Fd can be subdivided into events Fd,k so that Fd =
⋃d

k=1 Fd,k, where

Fd,k ,
{
∃ yd

1 , y1 6= x1

∣∣∣∣ Γ(yd
1) ≥ Γ(xk

1) and parities of yd
1 match BdR

1

}
(A.13)

By conditioning on the source sequence and applying the union bound, we get

P (Fd) =
∑

xd
1∈X d

Q(xd
1)P (Fd|Xd

1 = xd
1) (A.14)

≤
∑

xd
1

Q(xd
1)

d∑

k=1

P (Fd,k|Xd
1 = xd

1) (A.15)

=
d∑

k=1

∑

xd
1

Q(xd
1)P (Fd,k|Xd

1 = xd
1) (A.16)

Suppose yd
1 is a false path that causes Fd,k to occur. This means its parities match the

received bits and its metric Γ(yd
1) is at least Γ(xk

1). Therefore,

0 ≤ Γ(yd
1)− Γ(xk

1) (A.17)

=
d∑

l=1

(
ln(Q(yl)) + G

)
−

k∑

l=1

(
ln(Q(xl)) + G

)
(A.18)

=
k∑

l=1

ln
(

Q(yl)
Q(xl)

)
+

d∑

l=k+1

lnQ(yl) + (d− k)G (A.19)

Now, denoting 1(·) as the indicator function of its argument, and using a Gallager-style

union bound, for ρ ∈ [0, 1], we have

P (Fd,k|Xd
1 = xd

1) ≤ E

[(∑

yd
1 : y1 6=x1

1(yd
1 causes Fd,k to occur)

)ρ
∣∣∣∣∣X

d
1 = xd

1

]
(A.20)

≤
(∑

yd
1 , y1 6=x1

E

[
1(yd

1 causes Fd,k to occur)
∣∣∣∣Xd

1 = xd
1

])ρ

(A.21)

,
(∑

yd
1 , y1 6=x1

Ak(yd
1 , xd

1)

)ρ

(A.22)

Here equation A.21 follows from Jensen’s inequality because for ρ ∈ [0, 1], the function aρ is

concave. Continuing with the bounding, we use the fact that the parity generation process

66

is independent1 of everything else to get

Ak(yd
1 , x

d
1) = E

[
1(parities of yd

1 match BdR
1) · 1(Γ(yd

1) ≥ Γ(xk
1))

∣∣∣∣Xd
1 = xd

1

]
(A.23)

= E

[
1(parities of yd

1 match BdR
1)

]
E

[
1(Γ(yd

1) ≥ Γ(xk
1))

∣∣∣∣Xd
1 = xd

1

]
(A.24)

= e−dRE

[
1(Γ(yd

1) ≥ Γ(xk
1))

∣∣∣∣Xd
1 = xd

1

]
(A.25)

≤ exp(−dR) · exp
(

s(Γ(yd
1)− Γ(xk

1))
)

(A.26)

= exp(−dR) · exp
(

s

[
ln

Q(yk
1)

Q(xk
1)

+ ln Q(yd
k+1) + (d− k)G

])
(A.27)

for any s ≥ 0 (A.28)

Substituting for Ak(yd
1 , xd

1), and removing the restriction that y1 6= x1,

P (Fd,k|xd
1) ≤

(∑

yd
1

exp(−dR) exp
(

s

[
ln

Q(yk
1)

Q(xk
1)

+ lnQ(yd
k+1) + (d− k)G

]))ρ

(A.29)

≤ exp(−dρR + (d− k)sρG)

(∑

yd
1

(
Q(yk

1)
Q(xk

1)

)s

Q(yd
k+1)

s

)ρ

(A.30)

= exp(−dρR + (d− k)sρG)

(∑

yk
1

(
Q(yk

1)
Q(xk

1)

)s
)ρ(∑

yd
k+1

Q(yd
k+1)

s

)ρ

(A.31)

Equation A.31 follows from the standard algebra of interchanging sums and products. Fi-

nally, we are ready to complete the bound of P (Fd).

P (Fd) ≤
d∑

k=1

e−dρR+(d−k)sρG
∑

xk
1

∑

xd
k+1

(A.32)

Q(xk
1)Q(xd

k+1)
(∑

yk
1

(
Q(yk

1)
Q(xk

1)

)s)ρ(∑

yd
k+1

Q(yd
k+1)

s

)ρ

(A.33)

=
d∑

k=1

e−dρR+(d−k)sρG (A.34)

∑

xk
1

Q(xk
1)

1−sρ

(∑

yk
1

Q(yk
1)s

)ρ ∑

xd
k+1

Q(xd
k+1)

(∑

yd
k+1

Q(yd
k+1)

s

)ρ

(A.35)

=
d∑

k=1

e−dρR+(d−k)sρG

(∑

xk
1

Q(xk
1)

1−sρ

)(∑

yk
1

Q(yk
1)s

)ρ(∑

yd
k+1

Q(yd
k+1)

s

)ρ

(A.36)

=
d∑

k=1

e−dρR+(d−k)sρG

(∑

xk
1

Q(xk
1)

1−sρ

)(∑

xk
1

Q(xk
1)

s

)ρ(∑

xd
k+1

Q(xd
k+1)

s

)ρ

(A.37)

1Note that we need only pairwise independence of the parities along two paths.

67

We get equation A.37 by noting that the y’s are just dummy variables and we are free to

replace them with x’s. Next, we use the iid property of the source along with standard

algebra to get to an exponential form. For example, we have

∑

xk
1

Q(xk
1)

1−sρ =
∑
x1

∑
x2

· · ·
∑
xk

k∏

l=1

Q(xl)1−sρ (A.38)

=
k∏

l=1

∑
xl

Q(xl)1−sρ (A.39)

=
(∑

x∈X
Q(x)1−sρ

)k

(A.40)

Similarly,

(∑

xk
1

Q(xk
1)

s

)ρ

=
(∑

x1

∑
x2

· · ·
∑
xk

k∏

l=1

Q(xl)s

)ρ

(A.41)

=
(k∏

l=1

∑
xl

Q(xl)s

)ρ

(A.42)

=
k∏

l=1

(∑
xl

Q(xl)s

)ρ

(A.43)

=
(∑

x∈X
Q(x)s

)kρ

(A.44)

Now define the exponent functions f(s, ρ) and g(s, ρ) as

f(s, ρ) , ln

[(∑

x∈X
Q(x)1−sρ

)(∑

x∈X
Q(x)s

)ρ
]

(A.45)

g(s, ρ) , ln
(∑

x∈X
Q(x)s

)ρ

(A.46)

With these definitions and a bit more algebra, we have

P (Fd) ≤
d∑

k=1

exp
(
− dρR + (d− k)sρG + kf(s, ρ) + (d− k)g(s, ρ)

)
(A.47)

= exp
(

d
(
sρG + g(s, ρ)− ρR

)) d∑

k=1

exp
(

k
(
f(s, ρ)− g(s, ρ)− sρG

))
(A.48)

Suppose the following condition holds.

f(s, ρ)− g(s, ρ)− sρG ≥ 0 (A.49)

68

Then, we can simplify the bound to

P (Fd) ≤ exp
(

d
(
sρG + g(s, ρ)− ρR

)) d∑

k=1

exp
(

k
(
f(s, ρ)− g(s, ρ)− sρG

))
(A.50)

≤ exp
(

d
(
sρG + g(s, ρ)− ρR

)) · d exp
(

d
(
f(s, ρ)− g(s, ρ)− sρG

))
(A.51)

= d exp
(
− d(ρR− f(s, ρ))

)
(A.52)

Now this holds for all ρ ∈ [0, 1] and s ≥ 0, so we can let s = 1/(1 + ρ) and minimize over

ρ. So, now we have for any ε > 0,

P (Fd) ≤ Kε exp
(
− d(Er(R)− ε)

)
(A.53)

Er(R) , sup
ρ∈[0,1]

ρR− Es(ρ) (A.54)

Es(ρ) , (1 + ρ) ln
(∑

x∈X
Q(x)

1
1+ρ

)
(A.55)

Kε , max
{

d :
ln d

d
≥ ε

}
< ∞ (A.56)

Note that Kε < ∞ and is independent of d because ln(d)/d goes to 0. We note that Es(ρ)

is a differentiable function for all ρ ≥ 0, with E′
s(0) = H(Q), that is the slope at 0 is the

entropy of the source. Es(ρ) is the source coding counterpart for Gallager’s function E0(ρ).

While Gallager’s function may be non-differentiable at points because it is the maximization

of a function over probability distributions, Es(ρ) doesn’t suffer from this problem. It can

be shown that Es(ρ) is strictly increasing and convex for non-deterministic sources. Hence

the optimizing ρ to achieve Er(R) is parametrically defined as ρ∗ = E′
s(ρ

∗). Going back to

our condition on the bias, the bound is true if the bias G satisfies

G ≤ (1 + ρ∗)
ρ∗

[
Es(ρ∗)− g(1/(1 + ρ∗), ρ∗)

]
(A.57)

=
Es(ρ∗)

ρ∗
(A.58)

where ρ∗ satisfies d
dρEs(ρ)

∣∣∣∣
ρ=ρ∗

= R.

Finally, we can prove the statement of the theorem. In order for a depth d or greater

error to occur it must be that x̂i(n + d) 6= xi for some 1 ≤ i ≤ n. Now, assuming the bias

69

satisfies the required condition, we have

P (x̂n
1 (n + d) 6= xn

1) =
n−1∑

k=0

P (x̂k
1(n + d) = xk

1, x̂k+1 6= xk+1) (A.59)

≤
n−1∑

k=0

P (Fd+n−k)P (x̂k
1(n + d) = xk

1) (A.60)

≤
∞∑

k=0

P (Fd+k)P (x̂n−k
1 (n + d) = xn−k

1) (A.61)

≤
∞∑

k=0

P (Fd+k) (A.62)

≤
∞∑

k=0

Kεe
−(d+k)(Er(R)−ε) (A.63)

= e−d(Er(R)−ε)
∞∑

k=0

Kεe
−k(E(R)−ε) (A.64)

The critical step is in equation A.60, which says that if the decoded path and true path

agree until time k, the error event can be thought of as ‘rooted’ at time k+1. Hence, we are

reduced to the error event Fd+n−k. Since we can choose ε arbitrarily small, the geometric

series converges and we have

P (x̂n
1 (d + n) 6= xn

1) ≤ Kε

1− e−(E(R)−ε)
e−d(Er(R)−ε) (A.65)

= K̃εe
−d(Er(R)−ε) (A.66)

K̃ε , Kε

1− e−(E(R)−ε)
(A.67)

We have concluded that the probability of error with delay attained by the sequential

decoder is asymptotically close to the probability of error with delay attained by a MAP

decoder.¤

A.3 Computation bound for source coding with a sequential

decoder

We now prove Theorem 3.3.2, stated again for reference. Once again, for convenience,

we switch to rate in nats and use the natural logarithm ln instead of log2.

70

Theorem A.3.1 For the source coding scheme of Chapter 3, let Ni denote the number of

nodes the sequential decoder visits in the ith incorrect subtree. For a γ ∈ [0, 1], if the bias

G satisfies

1 + γ

γ
H(γ) =

Es(γ)
γ

< G <
1 + γ

γ

[
γR−G(γ)

]
(A.68)

H(γ) , ln
∑

x∈X
Q(x)1/(1+γ) (A.69)

G(γ) , γ ln
∑

x∈X
Q(x)1/(1+γ) (A.70)

the γth moment of Ni, averaged over the source and encoder randomness, is finite for all i

if

R >
1
γ

Es(γ) (A.71)

Proof: Let Ni denote the number of nodes within the ith incorrect subtree that are ever

visited by the stack algorithm. A path in the ith incorrect subtree and the true path have

the same first i symbols. In bounding a moment of Ni, we need only consider the portion

of the tree after the ith symbol, so let N = N1. Going through analysis very similar to that

found in [1], we start with the definition of the γth moment of N as

E
[
Nγ

]
= E

[(∞∑

l=1

∑

yl
1, y1 6=x1

1(yl
1 is visited)

)γ]
(A.72)

If we think of the algorithm running forever, a required condition for a node yl
1 to be visited

is

Γ(yl
1) ≥ min

1≤k<∞
Γ(xk

1) (A.73)

Also, the node yl
1 can be only be visited if its parities match the bits BlR

1 . So we have,

E
[
Nγ

] ≤ E

[(∞∑

l=1

∞∑

k=1

∑

yl
1, y1 6=x1

1(Γ(yl
1) ≥ Γ(xk

1) and parties of yl
1 match BlR

1)
)γ]
(A.74)

≤
∞∑

l=1

∞∑

k=1

E

[(∑

yl
1

1(Γ(yl
1) ≥ Γ(xk

1) and parities of yl
1 match BlR

1)
)γ]

(A.75)

=
∞∑

k=1

∞∑

l=1

∑

xk
1

Q(xk
1)E

[(∑

yl
1

1(Γ(yl
1) ≥ Γ(xk

1) and parities match)
)γ∣∣∣∣xk

1

]
(A.76)

≤
∞∑

k=1

∞∑

l=1

∑

xk
1

Q(xk
1)

(
E

[∑

yl
1

1(Γ(yl
1) ≥ Γ(xk

1) and parities match)
∣∣∣∣xk

1

])γ

(A.77)

71

Equation A.75 is true because of the inequality (a + b)γ ≤ aγ + bγ if a, b ≥ 1 and

γ ∈ [0, 1]. Equation A.77 follows from Jensen’s inequality. Using the independence of the

parity generation process, we get

E
[
Nγ

] ≤
∞∑

k=1

∞∑

l=1

∑

xk
1

Q(xk
1)e

−lγR
∑

yl
1

exp
(

s(Γ(yl
1)− Γ(xk

1))
)γ

(A.78)

for any s ≥ 0 (A.79)

=
∞∑

k=1

∞∑

l=1

∑

xk
1

Q(xk
1)e

−lγR+(l−k)γG

(∑

yl
1

(
Q(yl

1)
Q(xk

1)

)s)γ

(A.80)

=
∞∑

k=1

∞∑

l=1

e−lγR+(l−k)γG
∑

xk
1

Q(xk
1)

(∑

yl
1

(
Q(yl

1)
Q(xk

1)

)s)γ

(A.81)

Now define the quantity βl,k as

βl,k ,
∑

xk
1

Q(xk
1)

(∑

yl
1

(
Q(yl

1)
Q(xk

1)

)s)γ

(A.82)

If l ≥ k, we know

βl,k = exp
(

kf(s, γ) + (l − k)g(s, γ)
)

(A.83)

where f and g are defined in equations A.45 and A.46 respectively. Now if l ≤ k, we can

simplify to get

βl,k =
∑

xl
1

Q(xl
1)

1−sγ

(∑

yl
1

Q(yl
1)

s

)γ ∑

xk
l+1

Q(xk
l+1)

1−sγ (A.84)

= exp
(

lf(s, γ) + (k − l)h(s, γ)
)

(A.85)

f(s, γ) , ln
(∑

x∈X
Q(x)1−sγ

)(∑

x∈X
Q(x)s

)
(A.86)

h(s, γ) , ln
∑

x∈X
Q(x)1−sγ (A.87)

Now we set s = 1/(1+γ) and define the functions G(γ) and H(γ) to equal g(1/(1+γ), γ)

and h(1/(1+γ), γ) respectively. Of course we already have defined Es(γ) to equal f(1/(1+

72

γ), γ). Now we can plug all of this into the bound for the γth moment of computation.

E
[
Nγ

] ≤
∞∑

l=1

∞∑

k=l

exp
(
− lγR + (l − k)sγG + lEs(γ) + (k − l)H(γ)

)
+ · · · (A.88)

∞∑

k=1

∞∑

l=k

exp
(
− lγR + (l − k)sγG + kEs(γ) + (l − k)G(γ)

)
(A.89)

=
∞∑

l=1

exp
(

l(Es(γ)− γR)
) ∞∑

k=1

exp
(

(k − l)(H(γ)− sγG)
)

+ · · · (A.90)

∞∑

k=1

exp
(

k(Es(γ)− γR)
) ∞∑

l=k

exp
(

(l − k)(sγG + G(γ)− γR)
)

(A.91)

The two double sums converge if the following conditions hold:

0 > Es(γ)− γR (A.92)

0 >
γ

1 + γ
G + G(γ)− γR (A.93)

0 > H(γ)− γ

1 + γ
G (A.94)

These conditions can be equivalently stated concisely in terms of R and the bias G as

1
γ

Es(γ) < R (A.95)

Es(γ)
γ

=
1 + γ

γ
H(γ) < G <

1 + γ

γ

[
γR−G(γ)

]
= (1 + γ)R− Es(γ) (A.96)

Now we note that γR −G(γ) −H(γ) = γR − Es(γ) > 0 if condition A.95 holds. So given

that R > Es(γ)/γ, then there is an interval of positive length consisting of bias values for

which E[Nγ] < ∞. ¤

A.4 Probability of error for source coding with side informa-

tion using a sequential decoder

Again we switch from rate in bits to rate in nats and switch from using log2 to using

ln. The theorem is stated again here for reference.

Theorem A.4.1 Let the source pair (Xi, Yi) be generated iid according to a distribution

Q(x, y) on a finite set X × Y. Using the encoder of 3.2 and the modified stack decoder of

73

3.6, we can achieve asymptotically the same probability of error as with MAP decoding.

Define Esi(ρ) as below, for ρ ≥ 0.

Esi(ρ) , ln
∑

y∈Y

(∑

x∈X
Q(x, y)

1
1+ρ

)1+ρ

(A.97)

Let ρ∗ be defined so that rate R in nats per source symbol of the code satisfies R =

d
dρEsi(ρ)|ρ=ρ∗. However, if ρ∗ > 1, replace it with ρ∗ = 1. If the bias of the sequential

decoder, G, satisfies

G ≤ 1 + ρ∗

ρ∗

[
Esi(ρ∗)− Fsi(ρ∗)

]
(A.98)

Fsi(ρ) , ln
∑

y∈Y
Q(y)

(∑

x∈X
Q(x|y)

1
1+ρ

)ρ

(A.99)

then for any ε > 0, the probability of error with delay, Pe(d), is at most

Pe(d) ≤ K̃ε2−d(Er(R)−ε) (A.100)

where Er(R) = supρ∈[0,1] ρR − Esi(ρ), and K̃ε is a finite constant independent of d. This

shows that the error exponent with delay of this scheme is at least Er(R).

Proof: The proof is completely parallel to the proof in A.2, the only addition is conditioning

on the side information sequence yd
1 . Using the same error events, and letting u denote a

false sequence in the tree, we get to the following:

P (Fd) ≤
d∑

k=1

e−dρR+(d−k)sρG
∑

yd
1

∑

xk
1

∑

xd
k+1

Q(yd
1)Q(xk

1|yk
1)Q(xd

k+1|yd
k+1)

(∑

uk
1

(
Q(uk

1|yk
1)

Q(xk
1|yk

1)

)s)ρ(∑

ud
k+1

Q(ud
k+1|yd

k+1)
s

)ρ

=
d∑

k=1

e−dρR+(d−k)sρG
∑

yd
1

∑

xk
1

∑

xd
k+1

Q(yd
1)Q(xk

1|yk
1)1−sρQ(xd

k+1|yd
k+1)

(∑

uk
1

Q(uk
1|yk

1)s

)ρ(∑

ud
k+1

Q(ud
k+1|yd

k+1)
s

)ρ

=
d∑

k=1

e−dρR+(d−k)sρG
∑

yd
1

∑

xk
1

74

Q(yd
1)Q(xk

1|yk
1)1−sρ

(∑

uk
1

Q(uk
1|yk

1)s

)ρ(∑

ud
k+1

Q(ud
k+1|yd

k+1)
s

)ρ

=
d∑

k=1

e−dρR+(d−k)sρG
∑

yd
1

Q(yd
1)

(∑

xk
1

Q(xk
1|yk

1)1−sρ

)

(∑

xk
1

Q(xk
1|yk

1)s

)ρ(∑

xd
k+1

Q(xd
k+1|yd

k+1)
s

)ρ

Now set s = 1/(1 + ρ). Using the iid nature of the source and interchanging products

with sums, we have

P (Fd) <
d∑

k=1

e−dρR+(d−k)sρG

(∑

y∈Y
Q(y)

(∑

x∈X
Q(x|y)

1
1+ρ

)1+ρ)k

(∑

y∈Y
Q(y)

(∑

x∈X
Q(x|y)

1
1+ρ

)ρ)d−k

=
d∑

k=1

e−dρR+(d−k)sρG

(∑

y∈Y

(∑

x∈X
Q(x, y)

1
1+ρ

)1+ρ)k(∑

y∈Y
Q(y)

(∑

x∈X
Q(x|y)

1
1+ρ

)ρ)d−k

Now, having defined Esi(ρ) and Fsi in the theorem statement, we get

P (Fd) <
d∑

k=1

exp
(
− dρR + (d− k)

ρ

1 + ρ
G + kEsi(ρ) + (d− k)Fsi(ρ)

)

= exp
(
− dρR + d

ρ

1 + ρ
G + dFsi(ρ)

) d∑

k=1

exp
(

k

[
Esi(ρ)− Fsi(ρ)− ρ

1 + ρ
G

])

If Esi(ρ)− Fsi(ρ)− Fρ/(1 + ρ) ≤ 0, we get

P (Fd) < d exp
(
− d(ρR−Esi(ρ))

)

∀ρ ∈ [0, 1]

The linear term d is dominated by the exponential, so maximizing the exponent with respect

to ρ gives the result.

75

