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Abstract

The Grothendieck constant KG is the smallest constant such that for every n ∈ N and every matrix
A = (ai j) the following holds,

sup
ui,u j∈B(n)

∑
i j

ai j〈ui, u j〉 6 KG · sup
xi,y j∈[−1,1]

∑
i j

ai jxiy j ,

where B(n) is the unit ball in Rn. Despite several efforts [Kri78, Ree93], the value of the constant KG

remains unknown. The Grothendieck constant KG is precisely the integrality gap of a natural SDP
relaxation for the KN,N-QP problem. The input to this problem is a matrix A = (ai j)
and the objective is to maximize the quadratic form

∑
i j ai jxiy j over xi, y j ∈ [−1, 1].

In this work, we apply techniques from [Rag08] to the KN,N-QP problem.
Using some standard but non-trivial modifications, the reduction in [Rag08] yields the following
hardness result: Assuming the Unique Games Conjecture, it is NP-hard to approximate the KN,N-
QP problem to any factor better than the Grothendieck constant KG.

By adapting a “bootstrapping” argument used in a proof of Grothendieck inequality [BL01], we
perform a tighter analysis than [Rag08]. Through this careful analysis, we obtain the following new
results:

– An approximation algorithm for KN,N-QP that is guaranteed to achieve an
approximation ratio arbitrarily close to the Grothendieck constant KG (optimal approximation ratio
assuming the Unique Games Conjecture).

– We show that the Grothendieck constant KG can be computed within an error η, in time depending
only on η. Specifically, for each η, we formulate an explicit finite linear program, whose optimum
is η-close to the Grothendieck constant.

We also exhibit a simple family of operators on the Gaussian Hilbert space that is guaranteed to
contain tight examples for the Grothendieck inequality. To achieve this, we give a direct conversion
from dictatorship tests to integrality gap instances bypassing the use of a reduction from UG
and the Khot-Vishnoi [KV05] integrality gap instances for UG.

∗University of Washington, Seattle, WA.
†Princeton University, Princeton, NJ.
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1 Introduction

The Grothendieck inequality states that for every n × m matrix A = (ai j) and every choice of unit vectors
u1, . . . ,un and u1, . . . , um, there exists a choice of signs x1, . . . , xn, y1, . . . , ym ∈ {1,−1} such that

n∑
i=1

m∑
j=1

ai j〈ui, u j〉 6 KG

n∑
i=1

m∑
j=1

ai jxiy j ,

where KG is a universal constant. The smallest value of KG for which the inequality holds, is referred
to as the Grothendieck constant. Since the inequality was first discovered [Gro53], the inequality has not
only undergone various restatements under different frameworks of analysis (see [LP68]), it has also found
numerous applications in functional analysis.

In recent years, the Grothendieck’s inequality has found algorithmic applications in efficient construction
of Szemeredi partitions of graphs and estimation of cut norms of matrices [AN06], in turn leading to efficient
approximation algorithms for dense graph problems [FK99]. The inequality has also proved useful in certain
lower bound techniques for communication complexity [LS07]. Among its various applications, here we
shall elaborate on the KN,N-QP problem. In this problem, the objective is to maximize
the following quadratic program given as input the matrix A = (ai j).

Maximize
∑
i, j

ai jxiy j Subject to: xi, y j ∈ {1,−1}

Alternatively, the problem amounts to computing the norm ‖A‖∞→1 of the matrix A. The KN,N-
QP problem is a formulation of the correlation clustering problem with two clusters
. The following natural SDP relaxation to the problem is obtained by relaxing the variables xi, y j to unit
vectors.

Maximize
∑
i, j

ai j〈ui, u j〉 Subject to: ‖ui‖ = ‖u j‖ = 1

The Grothendieck constant KG is precisely the integrality gap of this SDP relaxation for the KN,N-
QP problem.

Despite several proofs and reformulations, the value of the Grothendieck constant KG still remains
unknown. In his original work, Grothendieck showed that π

2 6 KG 6 2.3. The upper bound has been
later improved to π/2 log(1+

√
2) ≈ 1.78 by Krivine [Kri78], while the best known lower bound is roughly 1.67

[Ree93]. More importantly, very little seems to be known about the matrices A for which the inequality
is tight. Approximating the Grothendieck constant and characterizing the tight examples for the inequality
form the original motivation for this work. Towards this goal, we will harness the emerging connections
between semidefinite programming (SDP) and hardness of approximation based on the Unique Games
Conjecture (UGC) [Kho02].

In a recent work [Rag08], the first author obtained general results connecting SDP integrality gaps to
UGC-based hardness results for arbitrary constraint satisfaction problems (CSP). These connections yielded
optimal algorithms and inapproximability for every CSP assuming the Unique Games Conjecture. Further,
for the special case of 2-CSPs, it yielded an algorithm to compute the value of the integrality gap of a natural
SDP.

Recall that the Grothendieck constant is precisely the integrality gap of the SDP for KN,N-
QP. In this light, the current work applies the techniques of Raghavendra [Rag08]
to the KN,N-QP.
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1.1 Results

We obtain the following UGC-based hardness result for KN,N-QP.

Theorem 1.1. Assuming the Unique Games Conjecture, it is NP-hard to approximate KN,N-
QP by any constant factor smaller than the Grothendieck constant KG.

Although KN,N-QP falls in the “generalized constraint satisfaction problem” frame-
work of Raghavendra [Rag08], the above result does not immediately follow from [Rag08] since the re-
duction does not preserve bipartiteness. The main technical hurdle in obtaining a bipartiteness-preserving
reduction, is to give a stronger analysis of the dictatorship test so as to guarantee a common influential
variable. This is achieved using a standard truncation argument as outlined in [Mos08].

On the other hand, the optimal algorithm for CSPs in [Rag08] does not directly translate in to an
algorithm for KN,N-QP. The main issue is the constant additive error incurred in all the
reductions of [Rag08]. For a CSP, the objective function is guaranteed to be at least a fixed constant fraction
(say 0.5), and hence the additive constant error is negligible. In case of KN,N-QP,
the value of the optimum solution could be 1/log n, in which case an additive constant error destroys the
approximation ratio.

To obtain better bound on the error, we use a bootstrapping argument similar to the Gaussian Hilbert
space approach to Grothendieck inequality [BL01] (this approach is used for algorithmic purposes in [AN06,
AMMN05, KNS08]). Using ideas from the proof of Grothendieck inequality, we perform a tighter analysis
of the reduction in [Rag08] for the special case of KN,N-QP. This tight analysis yields
the following new results:

Theorem 1.2. For every η > 0, there is an efficient algorithm that achieves an approximation ratio KG − η

for KN,N-QP running in time F(η) · poly(n) where F(η) = exp(exp(O(1/η3))).

Theorem 1.3. For every η > 0, the Grothendieck constant KG can be computed within an error η in time
proportional to exp(exp(O(1/η3))).

A tighter running time analysis could improve the O(1/η3), but reducing the number of exponentiations
seems to require new ideas.

With the intent of characterizing the tight cases for the Grothendieck inequality, we perform a non-
standard reduction from dictatorship tests to integrality gaps. Unlike the reduction in [Rag08], our reduction
does not use the Khot-Vishnoi [KV05] integrality gap instance for Unique games. This new reduction yields
a simple family of operators which are guaranteed to contain the tight cases for the Grothendieck inequality.
Specifically, we show the following result:

Theorem 1.4. Let Q(k) be the set of linear operators A on functions f : Rk → R of the form A =
∑

d∈N λdQd,
where Qd is the orthogonal projector on the span of k-multivariate Hermite polynomials of degree d. Then,

KG = sup
d,k∈N ,
A∈Q(k)

sup f : Rk→[−1,1]

∫
|A f (x)| dγ(x)

sup f : Rk→B(d)

∫
‖A f (x)‖ dγ(x)

.

Here γ denotes the k-dimensional Gaussian probability measure, and for a function f : Rk → Rd, we denote
by A f (x) the vector (A f1(x), . . . , A fd(x)) where f1, . . . , fd are the coordinates of f .

1.2 Prior Work

The general Grothendieck problem on a graph G amounts to maximizing a quadratic polynomial
∑

i j ai jxix j

over {1,−1} values, where ai j is non zero only for edges (i, j) in G. KN,N Q  is the
special case where the graph G is the complete bipartite graph.
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The Grothendieck problem on a complete graph admits a O(log n) approximation [NRT99, Meg01,
CW04] and has applications in correlation clustering [CW04]. For the Grothendieck problem on general
graphs, [AMMN05] obtain an approximation that depends on the Lovasz θ number of the graph.

In an alternate direction, the Grothendieck problem has been generalized to the Lp-Grothendieck prob-
lem where the Lp norm of the assignment is bounded by 1. The traditional Grothendieck corresponds to the
case when p = ∞. In a recent work, [KNS08] obtain UGC hardness results and approximation algorithms
for the Lp-Grothendieck problem.

On the hardness side, [ABH+05] show a O(logc n)-NP hardness for the Grothendieck problem on the
complete graph for some fixed constant c < 1. Integrality gaps for the Grothendieck problem on complete
graphs were exhibited in [KO06, AMMN05]. For the KN,N-Q P problem, a UGC-based
hardness of roughly 1.67 was shown in [KO06]. The reduction uses the explicit operator constructed in the
proof of 1.67 lower bound [Ree93] for the Grothendieck constant.

2 Preliminaries

Problem 2.1 (KN,N-QP). Given an m × n matrix A = (ai j), compute the optimal value
of the following optimization problem,

opt(A) := max
∑

i j

ai jxiy j ,

where the maximum is over all x1, . . . , xm ∈ [−1, 1] and y1, . . . , yn ∈ [−1, 1]. Note that the optimum value
opt(A) is always attained for numbers with |xi| = |y j| = 1.

Problem 2.2 (KN,N-SP). Given an m×n matrix A = (ai j), compute the optimal value
of the following optimization problem,

sdp(A) := max
∑

i j

ai j〈ui, u j〉 ,

where the maximum is over all vectors u1, . . . ,um ∈ B(d) and all vectors u1, . . . , un ∈ B(d). Here B(d) denotes
the unit ball in Rd and we choose d > m + n. Note that the optimum value sdp(A) is always attained for
vectors with ‖ui‖ = ‖u j‖ = 1.

Definition 2.3. The Grothendieck constant KG is the supremum of sdp(A)/opt(A) over all matrices A.

Notation. For a probability space Ω, let L2(Ω) denote the Hilbert space of real-valued random variables
over Ω with finite second moment. Here, we will consider two kinds of probability spaces. One is the
uniform distribution over the Hamming cube {1,−1}k, denoted Ω = Hk. The other one is the Gaussian
distribution over Rk, denoted Ω = Gk. For f , g ∈ L2(Ω), we denote 〈 f , g〉 := E fg, ‖ f ‖ :=

√
E f 2, and

‖ f ‖∞ := supx∈Ω f (x). We have ‖ f ‖ 6 ‖ f ‖∞.

Lemma 2.4. Given an operator A on L2(Ωk), and functions f , g, f ′, g′ ∈ L(d)
2 (Ωk) satisfying

‖ f ‖, ‖g‖, ‖ f ′‖, ‖g′‖ 6 1, then

|〈 f , Ag〉 − 〈 f ′, Ag′〉| 6 ‖A‖(‖ f − f ′‖ + ‖g − g′‖) .

Lemma 2.5 (Bootstrapping Lemma). Given an m×n matrix A = (ai j), and vectors u1, . . . ,um and u1, . . . , un,
then ∑

i j

ai j〈ui, u j〉 6
(

max
i
‖ui‖

)(
max

j
‖u j‖

)
· sdp(A) 6 2

(
max

i
‖ui‖

)(
max

j
‖u j‖

)
· opt(a)
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Definition 2.6 (Noise Operator). For Ω =Hk or Ω = Gk, let Tρ denote the linear operator on L2(Ω) defined
as

Tρ :=
k∑

d=0

ρdPd ,

where Pd denotes the orthogonal projector on the subspace of L2(Ω) spanned by the (multilinear) degree-d
monomials

{
xS :=

∏
i∈S xi | S ⊆ [k], |S | = d

}
.

Hermite Polynomials and Gaussian Noise operator. Let G be the probability space over R with Gaus-
sian probability measure. The Hermite polynomials {Hd(x)|d ∈ N} form an orthonormal basis for L2(G). An
orthogonal basis for L2(Gt) is given by the set of functions {Hσ(x) :=

∏t
i=1 Hσi(xi) | σ ∈ Nt

0}.
Let Qd denote the projection operator that maps an arbitrary function F ∈ L2(Gt) to the degree d com-

ponent.

Definition 2.7 (Gaussian Noise Operator). Let Uρ denote the linear operator on L2(Gk) defined as

Uρ :=
k∑

d=0

ρdQd ,

where Qd denotes the orthogonal projector on the subspace of L2(Hk) spanned by the degree-d Hermite
polynomials

{
Hσ(x) :=

∏
i∈[k] Hσi(xi) | σ ∈ Nk

0,
∑
σi = d

}
.

Variable Influences. For a function f ∈ L2(Hk), we define Infi f =
∑
σ3i f̂ 2

σ, where f̂ is the Fourier-
transform of f . Let us denote MaxInf f := maxi∈[k] Infi f . For a pair of functions f , g ∈ L2(Hk), we define
MaxComInf( f , g) := maxi∈[k] min{Infi f , Infig} to be the maximum common influence.

Fact 2.8. For f ∈ L2(Hk) and γ ∈ [0, 1], we have
∑k

i=1 InfiT1−γ f 6 ‖ f ‖2/γ. Similarly, for f ∈ L2(Gk) and
γ ∈ [0, 1],

∑k
i=1 InfiU1−γ f 6 ‖ f ‖2/γ.

Multilinear Extensions. For f ∈ L2(Hk), let f̄ ∈ L2(Gk) denotes the (unique) multilinear extension of f
to Rk.

Lemma 2.9. Let u, u ∈ Rd be two unit vectors, and f , g ∈ L2(Hk). Then,

E
Φ

f̄ (Φu)ḡ(Φu) = 〈 f ,T〈u,u〉g〉

where Φ is a k×d Gaussian matrix, that is, the entries of Φ are mutually independent normal variables with
standard deviation 1√

d
.

Proof. It suffices to show the lemma for the case that both f and g are the same multilinear monomial.
Since the variables are independent, one may assume that the monomial has degree 1. For this case, it is
trivial. �

Truncation of Low-influence Functions. For f : Rk → R, let trunc f : Rk → [−1, 1] denote the function

trunc f (x) :=


1 if f (x) > 1 ,
f (x) if −1 < f (x) < 1 ,
−1 if f (x) < −1 .
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Theorem 2.10 (Invariance Principle, [MOO08]). There is a universal constant C such that, for all ρ =

1 − γ ∈ (0, 1) the following holds: Let f ∈ L2(Hk) with ‖ f ‖∞ 6 1 and Infi(Tρ f ) 6 τ for all i ∈ [k]. Then,∥∥∥Tρ f̄ − trunc Tρ f̄
∥∥∥ 6 τC·γ

where f̄ ∈ L2(Gk) denotes the (unique) multilinear extension of f to Rk.

3 Proof Overview

In this section, we will outline the overall structure of the reductions, state the key definitions and lemmas,
and show how they connect with each other. In the subsequent sections, we will present the proofs of the
lemmas used. The overall structure of the reduction is along the lines of [Rag08]. We begin by defining
dictatorship tests in the current context.

Definition 3.1. A dictatorship test B is an operator on L2(Hk) of the following form:

B =

k∑
d=0

λdPd

where Pd is the projection operator on to the degree d part, and |λ1| > |λd | for all d. We define two parameter
of B:

Completeness(B) := inf
i
〈χi, Bχi〉 , where χi(x) = xi is the ith dictator function.

Soundnessη,τ(B) := sup
f ,g∈L2(Hk),

MaxComInf(Tρ f ,Tρg)6τ

〈Tρ f , BTρg〉 , where ρ = 1 − η.

3.1 From Integrality Gaps to Dictatorship Tests:

In the first step, we describe a reduction from a matrix A of arbitrary size, to a dictatorship test D(A) on
L2(Hk) for a constant k independent of the size of A.

Towards this, let us set up some notation. Let A = (ai j) be an m × n matrix with SDP value sdp(A). Let
u1, . . . ,um ∈ B(d) and u1, . . . , un ∈ B(d) be an SDP solution such that∑

i j

ai j〈ui, u j〉 = sdp(A) .

In general, an optimal SDP solution u1, . . . ,um and u1, . . . , un might not be unique. In the following, we
will however assume that for every instance A we can uniquely associate an optimal SDP solution, e.g., the
one computed by a given implementation of the ellipsoid method.

With this notation, we are ready to define the dictatorship testD(A).

Definition 3.2. For d ∈ N, let us define coefficients λd ∈ R,

λd :=
∑

i j

ai j〈ui, u j〉
d .

Define linear operatorsD(A),Dη(A) on L2(Hk) as follows:

D(A) :=
k∑

d=0

λdPd , Dη(A) := TρD(A)Tρ =

k∑
d=0

ρ2dλdPd ,

where ρ = 1 − η.
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By the definition of Completeness(Dη(A)), we have:

Lemma 3.3. For all matrices A, Completeness(Dη(A)) = λ1ρ
2 > sdp(A)(1 − 2η).

Towards bounding Soundnessη,τ(Dη(A)), we define a rounding scheme Roundη, f ,g for every pair of
functions f , g ∈ L2(Hk) and ρ < 1. The rounding scheme Roundη, f ,g is an efficient randomized procedure
that takes as input the optimal SDP solution for A, and outputs a solution x1, . . . , xm, y1, . . . , yn ∈ {1,−1}.
The details of the randomized rounding procedure are described in Section 4.

Definition 3.4. Roundη, f ,g(A) is the expected value of the solution returned by the randomized rounding
procedure Roundη, f ,g on the input A.

The following relationship between performance of rounding schemes and soundness of the dictatorship
test is proven using the invariance principle [MOO08].

Theorem 3.5. Let A be a matrix. For functions f , g ∈ L2(Hk) satisfying ‖ f ‖∞, ‖g‖∞ 6 1 and
MaxComInf(Tρ f ,Tρg) 6 τ for ρ = 1 − η, there exists functions f ′, g′ ∈ L2(Hk) such that

〈 f ,Dη(A)g〉 6 Roundη, f ′,g′(A) +
(
10τCη/8/

√
η
)
· sdp(A) .

Further the functions f ′, g′ satisfy min InfiTρ f ′, InfiTρg′ 6 τ for all i.

By taking the supremum on both sides of the above inequality over all low influence functions, one
obtains the following corollary:

Corollary 3.6. For every matrix A and η > 0,

Soundnessη,τ(Dη(A)) 6
(

sup
f ,g∈L2(Hk),

MaxComInf(Tρ f ,Tρg)6τ

Roundη, f ,g(A)
)

+
(
10τCη/8/

√
η
)
· sdp(A) ,

where ρ = 1 − η.

As Roundη, f ,g is the expected value of a {1,−1} solution, it is necessarily smaller than opt(A). Further
by Grothendieck’s inequality, sdp(A) and opt(A) are within constant factor of each other. Together, these
facts immediately imply the following corollary:

Corollary 3.7. For a fixed η > 0, if τ 6 2−100 log η/Cη then , then for all matrices A,

Soundnessη,τ(Dη(A)) 6 opt(A)(1 + η)

3.2 From Dictatorship Tests to Integrality Gaps

The next key step is the conversion from arbitrary dictatorship tests back to integrality gaps. Unlike many
previous works [Rag08], we obtain a simple direct conversion without using the unique games hardness
reduction or the Khot-Vishnoi integrality gap instance. In fact, the integrality gap instances produced have
the following simple description:

Definition 3.8. Given an dictatorship test B on L2(Hk) of the form B =
∑

d λ
k
d=0Pd , define the corresponding

operator Gη(B) on L2(Gk) as
Gη(B) =

∑
d

λdQdρ
2d

where ρ = 1 − η.
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We present the proof of the following theorem in Appendix A.

Theorem 3.9. For all η > 0, there exists k, τ such that following holds: For any dictatorship test B on
L2(Hk), we have:

sdp(G(B)) > Completeness(B) (1 − 5η) (1)

opt(G(B)) 6 Soundnessη,τ(B) (1 + η) + ηCompleteness(B) (2)

In particular, the choices τ = O(2−100/η3
) and k = Ω(2200/η3

) suffice.

By Grothendieck’s theorem, the ratio of sdp(G(B)) and opt(G(B)) is at most KG. Hence as a simple
corollary, one obtains the following limit to dictatorship testing:

Corollary 3.10. For all η > 0, there exists k, τ such that: For any dictatorship test B on L2(Hk),

Soundnessη,τ(B)
Completeness(B)

>
1

KG
− η . (3)

From the above corollary, we know that Soundnessη,τ(B) and Completeness(B) are within constant
factors of each other. Hence we obtain the following corollary.

Corollary 3.11. The equation 2 can be replaced by

opt(G(B)) 6 Soundnessη,τ(B) (1 + 5η)

We present the proof of the Theorems 1.2 to illustrate how the two conversions outlined in this section
come together. The proofs of the remaining theorems are deferred to the Appendix B.

3.3 Proof of Theorem 1.2

Consider the following idealized algorithm for the KN,N-Q P problem

– Find the optimal SDP solution ui, u j

– Fix k = 2200/η3
and τ = 2−100/η3

. For every function f , g ∈ L2(Hk) with ‖ f ‖, ‖g‖ 6 1, run the rounding
scheme Roundη, f ,g(A) to obtain a {1,−1} solution. Output the solution with the largest value.

The value of the solution obtained is given by sup f ,g∈L2(Hk) Roundη, f ,g(A). From Corollary 3.6 we have

sup
f ,g∈L2(Hk),‖ f ‖,‖g‖61

Roundη, f ,g(A) > sup
f ,g∈L2(Hk),

MaxComInf(Tρ f ,Tρg)6τ

Roundη, f ,g(A)

> Soundnessη,τ(Dη(A)) −
(
10τCη/8/

√
η
)
· sdp(A) (4)

From Lemma 3.3, we know Completeness(Dη(A)) = sdp(A)(1 − η). By the choice of k, τ, we can apply
Corollary 3.10 onDη(A) to conclude

Soundnessη,τ(Dη(A)) > Completeness(Dη(A))
( 1
KG
− η

)
> sdp(A)

( 1
KG
− η

)
(1 − η) (5)

From Equations 4 and 5, we conclude that the value returned by the algorithm is at least

sdp(A)
(( 1

KG
− η

)
(1 − η) − 10τCη/8/

√
η

)
,
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which by the choice of τ is at least sdp(A)(1/KG − 4η).
In order to implement the idealized algorithm, we discretize the unit ball in space L2(Hk) using a ε-net

in the L2 norm. As k is a fixed constant depending on η, there is a finite ε-net that would serve the purpose.
To finish the argument, one needs to show that the value of the solution returned is not affected by the
discretization. This follows from the following lemma (see Appendix C for the proof):

Lemma 3.12. For f , g, f ′, g′ ∈ L2(Hk) with ‖ f ‖ , ‖g‖ , ‖ f ′‖ , ‖g′‖ 6 1,

|Round f ,g(A) − Round f ′,g′(A)| 6 sdp(A)(‖ f − f ′‖ + ‖g − g′‖)

4 From Integrality gaps to Dictatorship Tests

4.1 Rounding Scheme

For functions f , g ∈ L2(Hk), define the rounding procedure Round f ,g as follows:

Round f ,g

Input : An m × n matrix A = (ai j) with SDP solution {u1,u2, . . . ,um}, {u1, u2, . . . , un} ⊂ B(d)

– Compute f̄ , ḡ the multilinear extensions of f , g.

– Generate k × d matrix Φ all of whose entries are mutually independent normal variables of standard
deviation 1/

√
d.

– Assign xi = trunc Tρ f̄ (Φui) and y j = trunc Tρḡ(Φu j).

The expected value of the solution returned Roundη, f ,g(A) is given by:

Round f ,g(A) = E
Φ

∑
i jai jtrunc Tρ f̄ (Φui)trunc Tρḡ(Φu j)

4.2 Relaxed Influence Condition

The following lemma shows that we could replace the condition MaxComInf(Tρ f ,Tρg) 6 τ in Definition 3.1
by the condition MaxInf Tρ f ,MaxInf Tρg 6

√
τ with a small loss in the soundness. The proof is presented

in Appendix C.

Lemma 4.1. Let A be a dictatorship test on L2(Hk), and let f , g be a pair of functions in L2(Hk) with
‖ f ‖∞, ‖g‖∞ 6 1 and MaxComInf(Tρ f ,Tρg) 6 τ for ρ = 1 − η. Then for every τ′ > 0, there are functions
f ′, g′ ∈ L2(Hk) with ‖ f ′‖∞, ‖g′‖∞ 6 1 and MaxInf Tρ f ′,MaxInf Tρg′ 6 τ′ such that

〈Tρ f ′, ATρg′〉 > 〈Tρ f , ATρg〉 − 2‖A‖
√
τ/τ′η .

With this background, we now present the soundness analysis.

4.3 Proof of Theorem 3.5

Proof. By Lemma 4.1, there exists function f ′, g′ ∈ L2(Hk) with ‖ f ′‖∞, ‖g′‖∞ 6 1 and
MaxInf Tρ f ′,MaxInf Tρg′ 6

√
τ such that

〈 f ′,Dη(A)g′〉 > 〈 f ,Dη(A)g〉 − 2‖D(A)‖ · τ1/4/
√
η > 〈 f ,Dη(A)g〉 − 4opt(A) · τ1/4/

√
η .
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On the other hand, we have

〈 f ′,Dη(A)g′〉 =
∑

i j

k∑
d=0

〈Tρ f ′, ai j〈ui, u j〉
dPd(Tρg′)〉 =

∑
i j

ai j〈Tρ f ′,T〈ui,u j〉(Tρg
′)〉 (6)

We can assume that all vectors ui and u j have unit norm. By Lemma 2.9 , we have

E
Φ

∑
i j

ai jTρ f̄ ′(Φui)Tρḡ′(Φu j) =
∑

i j

ai j〈Tρ f ′,T〈ui,u j〉(Tρg
′)〉 (7)

From the above equations we have

〈 f ,Dη(A)g〉 = E
Φ

∑
i j

ai jTρ f̄ ′(Φui)Tρḡ′(Φu j) (8)

By the invariance principle (Theorem 2.10), we have

‖Tρ f̄ ′ − trunc Tρ f̄ ′‖ 6 τCη/2 and ‖Tρḡ′ − trunc Tρḡ′‖ 6 τCη/2 . (9)

Now we shall apply the simple yet powerful bootstrapping trick. Let us define new vectors in L2(Gk×d),

u′i = Tρ f̄ ′(Φui) u′j = Tρḡ′(Φu j)

and

u′′i = trunc Tρ f̄ ′(Φui) u′′j = trunc Tρḡ′(Φu j)

Equation (9) implies that ‖u′i−u′′i ‖ 6 τ
Cη/2 and ‖u′j−u

′′
j ‖ 6 τ

Cη/2. Using the bootstrapping argument (Lemma
2.5), we finish the proof

Roundη, f ′,g′(A) =
∑

i j

ai j〈u′′i , u
′′
j 〉 =

∑
i j

ai j〈u′i , u
′
j〉 −

∑
i j

ai j〈u′i − u′′i , u
′
j〉 −

∑
i j

ai j〈u′′i , u
′
j − u

′′
j 〉

(9)
>

∑
i j

ai j〈u′i , u
′
j〉 − 2τCγopt(A) − 2τCγopt(A)

> 〈 f ,DηAg〉 − 4τCη/2opt(A) − 4τ1/4opt(A)/
√
η . (10)

�

5 From Dictatorship Tests to Integrality Gaps

In this section, we outline the key ideas in the proof of 3.9. For the convenience of the reader, a full self
contained proof is presented in Appendix A.

5.1 sdp(G(B)) > Completeness(B) (1 − 5η)

To prove this claim, we need to construct an SDP solution to sdp(G(B)) that achieves nearly the same value
as Completeness(B). Formally, we need to construct functions f , g whose domain is Gt and outputs are
unit vectors. Since we want to achieve a value close to Completeness(B) = λ1, the functions f , g should
be linear or near-linear. Along the lines of [KO06, Ree93], we choose the following function f (x) = x/‖x‖
which always outputs unit vectors, and very close to the linear function f (x) = x/

√
t as t increases. From

Lemma A.1, for t > 1/η5, we have

sdp(G(B)) > Completeness(B)(1 − 5η)

10



5.2 opt(G(B)) 6 Soundnessη,τ(B) (1 + η) + ηCompleteness(B)

For the sake of contradiction, let us suppose opt(G(B)) > Soundnessη,τ(B)(1 + η) + ηCompleteness(B).
Let the optimum solution be given by two functions f , g ∈ L2(Gt). By assumption, we have ‖ f ‖∞, ‖g‖∞ 6 1
and,

〈 f ,G(B)g〉 > Soundnessη,τ(B)(1 + η) + ηCompleteness(B)

To get a contradiction, we will construct low influence functions in L2(Hk) that have a objective value
greater than Soundnessη,τ(B) on the dictatorship test B. This construction is obtained in two steps:

– In the first step, we obtain functions f ′, g′ over a larger dimensional space with the same objective
value but are also guaranteed to have no influential coordinates. This is achieved by defining f ′, g′ as
follows for large enough R.

f ′(x) = f
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

g′(x) = g
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

In Lemma A.2, we show that for R = d1/ητe, the functions f ′, g′ ∈ L2(Gt′) for t′ = t · R satisfy the
requisite properties.

– In the second step, we apply the invariance principle to construct functions on L2(Hk) with the same
properties as f ′, g′. However, the invariance principle of [MOO08] only applies to multilinear poly-
nomials, while the functions f ′, g′ need not be multilinear. To overcome this hurdle, we treat a mul-
tivariate Hermite expansion as a multilinear polynomial over the ensemble consisting of Hermite
polynomials. Unfortunately, this step of the proof is complicated with careful truncation arguments
and choice of ensembles to apply invariance principle. The technical details are described in Lemma
A.4. In conclusion, by applying Lemma A.4, we obtain functions f ′′ and g′′ in L2(H t′D) that have
the following properties :

‖ f ′′‖∞, ‖g′′‖∞ 6 1 max
i

Infi(Tρ f ′′),max
j

Inf j(Tρg′′) 6 τ

Further the functions f ′′, g′′ satisfy,

〈Tρ f ′′, BTρg′′〉 > 〈 f ′,GBg′〉 − η‖B‖ = 〈 f ,GBg〉 − η‖B‖

= Soundnessη,τ(B)(1 + η) + ηCompleteness(B) − η‖B‖

Recall that ‖B‖ = λ1 = Completeness(B). By the choice of k > t′D, the functions f ′′, g′′ ∈ L2(H t′D) ⊂
L2(Hk). Thus we have two functions f ′′, g′′ with no influential variables, but yielding a value higher than
the Soundnessη,τB. A contradiction.
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A From Dictatorship Tests to Integrality Gaps

In this section, we give a self contained proof of Theorem 3.9 for the convenience of the reader.

Proof of Theorem 3.9 :

Proof. Define D = d2 log1−η η/16e , τ 6 O(2−35D2 log D) , t > 1/η5 and k > tDd1/ητe.
Firstly, we need to construct an SDP solution to sdp(G(B)) that achieves nearly the same value as

Completeness(B). Formally, we need to construct functions f , g whose domain is Gt and outputs are unit
vectors. Since we want to achieve a value close to Completeness(B) = λ1, the functions f , g should be
linear or near-linear. Along the lines of [KO06, Ree93], we choose the following function f (x) = x/‖x‖
which always outputs unit vectors, and very close to the linear function f (x) = x/

√
t as t increases. From

Lemma A.1, for t > 1/η5, we have

sdp(G(B)) > Completeness(B)(1 − 5η)

For the sake of contradiction, let us suppose opt(G(B)) > Soundnessη,τ(B)(1+η)+ηCompleteness(B).
Let the optimum solution be given by two functions f , g ∈ L2(Gt). By assumption, we have ‖ f ‖∞, ‖g‖∞ 6 1
and,

〈 f ,G(B)g〉 > Soundnessη,τ(B)(1 + η) + ηCompleteness(B)

To get a contradiction, we will construct low influence functions in L2(Hk) that have a objective value
greater than Soundnessη,τ(B) on the dictatorship test B. This construction is obtained in two steps:

– In the first step, we obtain functions f ′, g′ over a larger dimensional space with the same objective
value but are also guaranteed to have no influential coordinates. This is achieved by defining f ′, g′ as
follows for large enough R.

f ′(x) = f
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

g′(x) = g
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

In Lemma A.2, we show that for R = d1/ητe, the functions f ′, g′ ∈ L2(Gt′) for t′ = t · R satisfy the
requisite properties.
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– In the second step, we apply the invariance principle to construct functions on L2(Hk) with the same
properties as f ′, g′. However, the invariance principle of [MOO08] only applies to multilinear poly-
nomials, while the functions f ′, g′ need not be multilinear. To overcome this hurdle, we treat a mul-
tivariate Hermite expansion as a multilinear polynomial over the ensemble consisting of Hermite
polynomials. Unfortunately, this step of the proof is complicated with careful truncation arguments
and choice of ensembles to apply invariance principle. The technical details are described in Lemma
A.4. In conclusion, by applying Lemma A.4, we obtain functions f ′′ and g′′ in L2(H t′D) that have
the following properties :

‖ f ′′‖∞, ‖g′′‖∞ 6 1 max
i

Infi(Tρ f ′′),max
j

Inf j(Tρg′′) 6 τ

Further the functions f ′′, g′′ satisfy,

〈Tρ f ′′, BTρg′′〉 > 〈 f ′,GBg′〉 − η‖B‖ = 〈 f ,GBg〉 − η‖B‖

= Soundnessη,τ(B)(1 + η) + ηCompleteness(B) − η‖B‖

Recall that ‖B‖ = λ1 = Completeness(B). By the choice of k > t′D, the functions f ′′, g′′ ∈ L2(H t′D) ⊂
L2(Hk). Thus we have two functions f ′′, g′′ with no influential variables, but yielding a value higher than
the Soundnessη,τB. A contradiction.

It is easy to check that our choices of k, τ satisfy τ < O(2−100/η3
) and k > Ω(2200/η3

). �

Lemma A.1. sdp(G(B)) > Completeness(B)
(
ρ4 − 2

( log t
t

) 1
4

)
Proof. For the sake of brevity, let us denote C = G(B). Consider the functions F,G : Rt → B(t) given by
F(x) = x

‖x‖ . The functions F,G form a feasible SDP solution, since they associate a unit vector F(x) with
each point x is Rt. Define a related function F′(x) = x√

t
also satisfying ‖F‖ = 1. As ‖x‖ is concentrated

around
√

t, the functions F, F′ should be close to each other. Formally,

‖F − F′‖2 = E
x

∥∥∥∥∥∥ x
√

t
−

x
‖x‖

∥∥∥∥∥∥2 =
1
t
E
x

[
(‖x‖ −

√
t)2

]
= 2 −

2Ex[‖x‖]
√

t
( using E

x
[‖x‖2] = t)

Using the well known fact Ex [‖x‖] >
√

t − O(
√

log t), we get ‖F − F′‖ 6 ( log t
t )

1
4 . Observe that,

〈F′,CG′〉 =
1
t
〈x, (

k∑
d=0

ρ4dλdQd)x〉 = ρ4λ1

Now using Lemma 2.4

〈F,CG〉 > λ1ρ
4 − ‖C‖(‖F′ − F‖ + ‖G −G′‖) > λ1

ρ4 − 2
(
log t

t

) 1
4


This completes the proof since λ1 = Completeness(B). �

Lemma A.2. Given two functions f , g ∈ L2(Gt) with ‖ f ‖∞, ‖g‖∞ 6 1 , there exists f ′, g′ ∈ L2(Gt·d1/(1−ρ)τe)
with ‖ f ‖′∞, ‖g‖

′
∞ 6 1 and maxi Infi(Uρ f ′),max j Inf j(Uρg

′) 6 τ and

〈 f ′,G(B)g′〉 = 〈 f ,G(B)g〉
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Proof. Again for the sake of brevity, let us denote C = G(B) and R = d1/(1− ρ)τe. Define f ′, g′ as follows :

f ′(x) = f
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

g′(x) = g
( 1
√

R

R∑
i=1

xi,
1
√

R

2R∑
i=R+1

xi, . . . ,
1
√

R

Rt∑
i=(R−1)t+1

xi
)

For succinctness, we will use M : RtR → Rt to denote the linear transformation that maps (x1, . . . , xtR) →(
1/
√

R
∑R

i=1 xi, 1/
√

R
∑2R

i=R+1 xi, . . . , 1/
√

R
∑Rt

i=(R−1)t+1 xi
)
. In this notation, f ′(x) = f (Mx) and g′(x) =

g(Mx).
Firstly, we will show that 〈 f ′,G(B)g′〉 = 〈 f ,G(B)g〉. As G(B) is a linear combination of the projection

operators Qd, it is enough to show that for all projections less than d, we have 〈 f ′,Qdg
′〉 = 〈 f ,Qdg〉. Let us

denote f =d = Qd f , g=d = Qdg, f ′=d = Qd f ′ and g′=d = Qdg
′. We need to show that for each d

〈 f =d, g=d〉 = 〈 f
′=d, g

′=d〉

Towards this, we make the following claim:

Claim A.3. For any β, (Uβ f )(Mx) = (Uβ f ′)(x)

Proof.

(Uβ f ′)(x) = E
z
[ f ′(βx +

√
(1 − β2)z)] = E

z
[ f (β(Mx) +

√
(1 − β2)(Mz))]

For random Gaussian vector z ∈ GtR, the distribution of Mz is identical to a random Gaussian vector z′ ∈ Gt.
Thus we have

(Uβ f ′)(x) = E
z′

[ f (β(Mx) +

√
(1 − β2)z′)] = (Uβ f )(Mx)

�

From the above claim, we have:∑
d

βd f
′=d(x) = (Uβ f ′)(x) = (Uβ f )(Mx) =

∑
d

βd f =d(Mx)

for all β ∈ [0, 1] and all x. Any two power series that agree on an interval must have matching coeffcients.
From this, we get f

′=d(x) = f =d(Mx) for all x. Now we have,

〈 f
′=d, g

′=d〉 = E
x

[
f
′=d(x)g

′=d(x)
]

= E
x

[
f =d(Mx)g=d(Mx)

]
= 〈 f =d, g=d〉

The last equality uses the fact that Mx has the same distribution as a random vector z generated from the
Gaussian measure Gt.

To finish the proof of the lemma, we need to show that maxi(Infi(Uρ f ′),maxi(Uρg
′) 6 τ. From Fact

2.8, we know
∑

i Infi(Uρ f ′) 6 ‖ f ′‖2/1−ρ. Further, due to the symmetries among the input variables to
f ′, we have Inf(i−1)R+1(Uρ f ′) = Inf(i−1)R+2(Uρ f ′) . . . = . . . InfiR(Uρ f ′). Hence we immediately conclude
maxi InfiUρ f ′ 6 1/(1 − ρ)R 6 τ. The same argument applied to g′ finishes the proof. �
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Lemma A.4. For any η > 0, there exists D, τ > 0 such that the following holds for every oper-
ator B =

∑tD
d=0 λdPd on L2(H tD) : Given two functions f , g : L2(Gt) with ‖ f ‖∞, ‖g‖∞ 6 1 and

maxi Infi(Uρ f ), Inf j(Uρg) 6 τ, there exists functions f ′, g′ ∈ L2(H tD) satisfying ‖ f ′‖∞, ‖g′‖∞ 6 1,
maxi Infi(Tρ f ′),max j Inf j(Tρg′) 6 τ

〈Tρ f ′, BTρg′〉 > 〈 f ,G(B)g〉 − η‖B‖

In particular, the choices D > 2 log1−η η/16 and τ 6 O(2−35D2 log D) suffice.

Proof. . For the sake of brevity, let us denote C = G(B). Notice that by definition of G(B), we have
C = Uρ2 NUρ2 . Define f̃ = Uρ f and g̃ = Uρg. By definition, the functions f̃ , g̃ satisfy ‖ f̃ ‖∞, ‖g̃‖∞ 6 1.
Further,

〈 f ,Cg〉 = 〈 f ,U2
ρBU2

ρg〉 = 〈Uρ f ,UρBUρg〉 = 〈 f̃ ,UρBUρg̃〉 (11)

Let f 6D, g6D denote the functions obtained by truncating f̃ , g̃ to degree D. Formally, we have f 6D =∑D
d=0 ρ

dQd f and g6D =
∑D

d=0 ρ
dQdg. Observe that

‖ f̃ − f 6D‖2 =
∑
|σ|>D

f̃
′2
σ =

∑
|σ|>D

ρ|σ| f 2
σ 6 η

2/256 (12)

From Lemma 2.4 we have:

〈 f 6D,UρBUρg
6D〉 > 〈 f̃ ,UρBUρg̃〉 − ‖UρBUρ‖(‖ f̃ − f 6D‖ + ‖g̃ − g6D‖)

> 〈 f ,Cg〉 − η‖B‖/16 (13)

Although the range of functions f̃ , g̃ is [−1, 1], their low degree truncations f 6D, g6D are not necessarily
bounded in [−1, 1]. However, they are nearly always bounded in the following sense:

‖ f 6D − trunc f 6D‖ 6 ‖ f 6D − f̃ ‖ + ‖ f̃ − trunc f̃ ‖ + ‖trunc f̃ − trunc f 6D‖

6 η/16 + 0 + η/16 = η/8 (14)

The final inequality is obtained using Equation (12), ‖ f̃−trunc f̃ ‖∞ = 0 and ‖trunc f̃−trunc f 6D‖ 6 ‖ f̃− f 6D‖.
Similarly, for g6D we have ‖g6D − trunc g6D‖ 6 η/8.

Now we shall apply the invariance principle to obtain functions f ′, g′ on {1,−1}k from f 6D, g6D. To-
wards this, we define certain ensembles of random variables. Firstly, let X denote the ensemble consisting
of the first D + 1 Hermite polynomials. Specifically,

X = {H0(x) = 1,H1(x), . . . ,HD(x)|x ∈ G}

Correspondingly, define the ensemble Y over the space {1,−1}D as follows:

Y =

χi(y) =

i∏
j=1

yi

∣∣∣∣∣∣0 6 i 6 D, y is uniform in {1,−1}D


We wish to point out that Y does not form a basis for L2({1,−1}D) since it consists of only D + 1 of the 2D

characters. Observe that X and Y are orthonormal ensemble of random variables. Let Xt = (X(1), . . . ,X(t))
and Yt = (Y(1), . . . ,Y(t)) denote the product space consisting of t independent copies of X and Y respec-
tively.

16



Recall that f 6D and g6D are polynomials of total degree at most D in t variables. In other words, f 6D

can be written as :

f 6D(x(1), x(2), . . . , x(t)) =
∑
|σ|6D

f̂σ
t∏

i=1

Hσi(x(i))

Hence f 6D, g6D are multilinear polynomials in the ensemble Xt. Let f̄ and ḡ denote the multilinear
polynomials obtained by substituting Yt in place of Xt. So f̄ and ḡ are functions over the domain
({1,−1}D)t = {1,−1}tD. More precisely,

f̄ (y(1), . . . , y(t)) =
∑
|σ|6D

f̂σ
t∏

i=1

χσi(y
(i)) where y(i) ∈ {1,−1}D

The ensemble Y is chosen so that term
∏t

i=1 Hσi(xi) is mapped to a unique term
∏t

i=1 χσi(y
(i)) of the same

total degree. Hence we have the following identity :

〈 f 6D,UρBUρg
6D〉 =

D∑
d=0

ρ2dλd

∑
|σ|=d

f̂σĝσ = 〈Tρ f̄ , BTρḡ〉 (15)

Finally, define the functions f ′ and g′ as

f ′ = trunc f̄ g′ = trunc ḡ

By definition, the functions f ′, g′ satisfy ‖ f ‖∞, ‖g‖∞ 6 1. Further, for any coordinate i, we have

Infi(Tρ f ′) 6 Infi(Tρ f̄ ) 6 Infi( f̄ ) = Infi( f 6D) 6 Infi( f̃ ) = Infi(Uρ f ) 6 τ

Thus the functions f ′, g′ satisfy the maximum influence condition too.
Firstly, we appeal to the invariance principle to bound the truncation errors : ‖ f ′ − f̄ ‖ and ‖g′ − ḡ‖.

Towards this, note that there exists some finite constant α(D) depending only on D such that ensembles
X and Y are (2, 3, β(D))-hypercontractive(see [MOO08] for definitions). In particular, we will show the
following in Appendix D

Lemma A.5. For all D, the ensemble X = {H0(x), . . . ,HD(x)} is (2, 3, α(D) = 2−5D log D) hypercontractive.
The ensemble Y = {χi(y)} is (2, 3, 2−D/6−1) hypercontractive.

Now we shall apply Theorem 3.19 in [MOO08] under the hypothesis H1 to the degree D polynomial
( f 6D + 1)/2 to conclude

∣∣∣∣∣∣E
[
ζ

(
f 6D(X) + 1

2

)]
− E

[
ζ

(
f̄ (Y) + 1

2

)] ∣∣∣∣∣∣ 6 O(D2/3α(D)−2Dτ1/3)

where ζ(x) is defined as

ζ(x) =


(x − 1)2 if x > 1
0 if 0 6 x 6 1
x2 if x < 0

By the choice of τ, O(D2/3α(D)−2Dτ1/3) = O(211D2 log Dτ1/3) 6 η2/256. Clearly we have ζ( f 6D(x)+1
2 ) =

( f 6D(x) − trunc f 6D(x))2/4. Thus we get

‖ f̄ − trunc f̄ ‖2 6 ‖ f 6D − trunc f 6D‖2 + η2/256
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Along with Equation (14) this yields, ‖ f̄ − f ′‖ = ‖ f̄ − trunc f̄ ‖ 6 η/7. By a similar argument, we get
‖ḡ − g′‖ 6 η/7. Using Lemma 2.4, we finish the proof:

〈Tρ f ′, BTρg′〉 > 〈Tρ f̄ , BTρḡ〉 − ‖B‖(‖Tρ f − Tρ f̄ ‖ + ‖Tρg − Tρḡ‖)

> 〈Tρ f̄ , BTρḡ〉 − 2‖B‖η/7

> 〈 f 6D,UρBUρg
6D〉 − 2‖B‖η/7 Equation (15)

> 〈 f ,Cg〉 − ‖B‖η/2 Equation (13)

�

B Putting it together : proofs of the Theorems 1.1,1.4, 1.3

B.1 Proof of Theorem 1.1

As a rule of thumb, every dictatorship test yields a UG hardness result using by now standard techniques
[KKMO07, KO06, Rag08]. For the sake of completeness, we include the proof of the following lemma in
the Appendix C.1.

Lemma B.1. Given a dictatorship test A with completeness c and soundness s, and a unique games instance
G, it is possible to efficiently construct an operator G ⊗ρ A satisfies the following to two conditions:

1. if val(G) > 1 − ε, then opt(G ⊗ρ A) > c(1 − oε,γ,τ→0(1)),

2. if val(G) < ε, then opt(G ⊗ρ A) < s(1 + oε,γ,τ→0(1)),

To finish the proof of Theorem 1.1, let A be a matrix for which the ratio of sdp(A)/opt(A) > KG − η.
Consider the dictatorship test Dη(A) obtained from the matrix A. By Corollary 3.3, the completeness of
Dη(A) is sdp(A)(1 − η). Further by Corollary 3.7, the soundness is at most opt(A)(1 + η) for sufficiently
small choice of τ. Plugging this dictatorship testDη(A) in to the above lemma, we obtain a UG hardness of
(KG − η)(1 − η)/(1 + η) > KG − 5η. Since η can be made arbitrarily small, the proof is complete.

B.2 Proof of Theorem 1.4

Let A be an arbitrary finite matrix for which sdp(A)/opt(A) > KG−η. Consider the dictatorship test/operator
Dη(A) on L2(Hk). From Lemma 3.3 and Corollary 3.7, the ratio of Completeness(A) to Soundnessη,τ(A)
is at least sdp(A)/opt(A) − 2η for sufficiently small choice of τ. Further it is easy to see that the operator
Dη(A) is translation invariant by construction. Now using Theorem 3.9, for large enough choice of k, the
operatorG(Dη(A)) is an operator with sdp(A)/opt(A) > KG−10η. It is easy to see that the operatorG(Dη(A))
has all the properties specified in Theorem 3.9.

B.3 Proof of Theorem 1.3

A naive approach to compute the Grothendieck constant, is to iterate over all matrices A and compute the
largest possible value of sdp(A)/opt(A). However, the set of all matrices is an infinite set, and there is no
guarantee on when to terminate.

As there is a conversion from integrality gaps to dictatorship tests and vice versa, instead of searching
for the matrix with the worst integrality gap, we shall find the dictatorship test with the worst possible
ratio between completeness and soundness. Recall that a dictatorship test is an operator on L2(Hk) for a
finite k depending only on η the error incurred in the reductions. In principle, this already shows that the
Grothendieck constant is computable up to an error η in time depending only on η.
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Define K as follows

1
K

= inf
λ1=1,

λd∈[−1,1]∀06d6k

sup
f ,g∈L2(Hk),

MaxComInf(Tρ f ,Tρg)6τ
‖ f ‖,‖g‖61

〈 f ,
k∑

d=0

ρ2dλdQdg〉 , where ρ = 1 − η.

Let P denote the space of all pairs of functions f , g ∈ L2(Hk) with MaxComInf(Tρ f ,Tρg) 6 τ and
‖ f ‖, ‖g‖ 6 1.. Since P is a compact set, there exists an η-net of pairs of functions F = {( f1, g1), . . . , ( fN , gN)}
such that : For every point ( f , g) ∈ P, there exists fi, gi ∈ F satisfying ‖ f − f ′‖ + ‖g − g′‖ 6 η. The size of
the η-net is a constant depending only on k and η (note: k depends only on η).

The constant K can be expressed using the following finite linear program:

Minimize
1
K

= µ

Subject to µ >
k∑

d=0

λd · 〈 f ,
k∑

d=0

ρ2dQdg〉 for all functions f , g ∈ F

λi ∈ [−1, 1] for all 0 6 i 6 k

λ1 = 1

C Further Proofs

The following lemma is restatement of Lemma 3.12.

Lemma C.1. For f , g, f ′, g′ ∈ L2(Hk) with ‖ f ‖ , ‖g‖ , ‖ f ′‖ , ‖g′‖ 6 1,

|Roundη, f ,g(A) − Roundη, f ′,g′(A)| 6 sdp(A)(‖ f − f ′‖ + ‖g − g′‖)

Proof. Define u′i = trunc Tρ f̄ (Φui) , u′j = trunc Tρḡ(Φu j) and u′′i = trunc Tρ f̄ ′(Φui) , u′′j = trunc ḡ′(Φu j).
Substituting we get,

Round f ,g(A) − Round f ′,g′ =
∑

i j

ai j〈u′i − u′′i , u
′
j〉 +

∑
i j

ai j〈u′′i , u
′
j − u

′′
j 〉

As trunc and Tρ are contractive operators, ‖u′i‖, ‖u
′′
i ‖, ‖u

′
j‖, ‖u

′′
j ‖ 6 1. Further, observe that ‖u′i − u′′i ‖ 6

‖ f − f ′‖ and ‖u′j − u
′′
j ‖ 6 ‖g − g

′‖, since for all x, |trunc f (x) − trunc f ′(x)| 6 | f (x) − f ′(x)|. Substituting in
the above equation, we get the required result. �

The following lemma is a restatement of Lemma 4.1.

Lemma C.2. Let A be a dictatorship test on L2(Hk). Let f , g be a pair of functions in L2(Hk) with
‖ f ‖∞, ‖g‖∞ 6 1 and MaxComInf(Tρ f ,Tρg) 6 τ for ρ = 1 − η.

Then for every τ′ > 0, there are functions f ′, g′ ∈ L2({0, 1}k with ‖ f ′‖∞, ‖g′‖∞ 6 1 and
MaxInf Tρ f ,MaxInf Tρg 6 τ′ such that

〈Tρ f ′, ATρg′〉 > 〈Tρ f , ATρg〉 − 2‖A‖
√
τ/τ′η .
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Proof. Let J denote the set of variables i with InfiTρ f > τ′. Since the total influence of Tρ f is bounded by
1/η (see Fact 2.8), the set J has cardinality at most 1/ητ′. Let MJ be the orthogonal projector on the space
of functions that do not depend on any variable in J. We define f ′ = MJ f and g′ = MJg. We still have
‖ f ′‖∞, ‖g′‖ 6 1. Note that InfiTρg 6 τ for every i ∈ J. Hence, ‖Tρg − Tρg′‖2 6 |J|τ. Now,

〈Tρ f , A Tρg〉 − 〈Tρ f , ATρg′〉 = 〈Tρ f , A Tρ(g − g′)〉

6 ‖A‖‖Tρ f ‖ · ‖Tρ(g − g′)‖

6
√
|J|τ .

On the other hand, 〈Tρ f , ATρg′〉 = 〈Tρ f ′, ATρg′〉, because

〈Tρ( f − f ′), ATρg′〉 = 〈Tρ f , (I − MJ)AMJTρg〉 = 〈Tρ f , A(I − MJ)MJTρg〉 = 0 ,

where we used the fact that the operators A and MJ commute (as both are diagonalized by the Fourier
transform), and that (I − MJ)MJ = 0.

We repeat the same argument with the set K of variables i with InfiTρg > τ′. Again, projecting on MK

changes the value of 〈Tρ f ′, A Tρg′〉 by at most
√
|J|τ. �

C.1 Reduction from UG to KN,N-QP

The UGC asserts that for every ε > 0, there is a k such that for a unique game G on alphabet [k] it is hard to
distinguish between val(G) > 1 − ε and val(G) < ε.

Formally, we will represent a unique game G on alphabet [k] as a distribution over triples (u, v, π), where
u ∈ W1 and v ∈ W2 are vertices, and π is a permutation of [k]. Here we can and will assume that the game is
bipartite, i.e., W1 and W2 are disjoint.

Let A =
∑

d∈[k] λdPd be a dictatorship test on L2(Hk). For ρ = 1 − η, we define a linear operator G ⊗η A

on
(
L2(Hk)

)|W1 |+|W2 | as follows:

〈 f , (G ⊗η A)g〉 := E
(u,v,π)∼G

〈Tρ(π. fu), ATρgv〉 ,

where f = ( fu)u∈W1 , g = (gv)v∈W2 , and π. fu denotes the function fu(xπ(1), . . . , xπ(k)).
We claim the following properties of the reduction G 7→ G ⊗η A. This claim implies Lemma B.1.

Claim C.3. For τ, η ∈ [0, 1], ρ = 1 − η, and every unique game G, we have

1. If val(G) > 1 − ε then opt(A ⊗η G) > Completeness(A)(1 − O(ε + η).

2. If val(G) < (τη)3 then opt(A ⊗η G) 6 Soundnessη,τ(TρATρ) + O(τη)Completeness(A).

Proof. By scaling1, we may assume λ1 = 1 and λd ∈ [−1, 1] for all d ∈ [k], where A =
∑

d λdPd. Note that
Completeness(A) = λ1 = 1.

Suppose that val(G) > 1 − ε. Then there exists a labeling ` : W1 ∪W2 → [k] such that

P
(u,v,π)∼G

{
π(`(u)) = `(v)

}
> 1 − ε .

We choose f and g such that fu(x) = x`(u) and gv(x) = x`(v) are dictator functions. If π(`(u)) = `(v),
then π. fu = gv. Hence, 〈Tρπ. fu, ATρgv〉 = ρ2λ1 = ρ2. On the other hand, if π(`(u)) , `(v), then clearly
|〈Tρπ. fu, ATρgv〉| 6 1. Thus,

E
(u,v,π)∼G

〈Tρ(π. fu), ATρgv〉 > (1 − ε) · ρ2 − ε > 1 − 2ε − 2η .

1Note that scaling A by a factor α, scales opt(G ⊗η A), Completeness(A), and Soundnessη,τ(A) by the same factor α
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It follows that opt(G ⊗η A) > c − oε→0(1) for any game G with val(G) > 1 − ε.
Now suppose that opt(G ⊗η A) > Soundnessη,τ(A) + δ, where δ = τη. In this case, we want to show that

val(G) > ε for ε = τη3. Let f = ( fu) and g = (gv) be vectors with ‖ fu‖∞, ‖gv‖∞ 6 1 that achieve

E
(u,v,π)∼G

〈Tρ(π. fu), ATρgv〉 > Soundnessη,τ(A) + δ . (16)

In hindsight, let us define a set of candidate labels for vertices u ∈ W1 and v ∈ W2,

Ju =
{
i | InfiTρ( fu) > τ

}
and Jv =

{
i | InfiTρ(gv) > τ

}
.

Since ρ = 1−η, we have |Ju|, |Jv| 6 1/ητ (see Fact 2.8). Since A is contracting, we get from equation (16) that

P
(u,v,π)∼G

{
〈Tρπ. fu, ATρgv〉 > Soundnessη,τ(A)

}
> δ .

The situation 〈Tρπ. fu, ATρgv〉 > Soundnessη,τ(A) implies that InfiTρ(π. fu) > τ and InfiTρgv > τ for some
i ∈ [k]. Of course, InfiTρ(π. fu) > τ just means that variable π−1(i) has influence Infπ−1(i)Tρ( fu) > τ. It
follows that i ∈ Jv and π(i) ∈ Ju. Thus,

P
(u,v,π)∼G

{
∃i ∈ [k]. i ∈ Ju and π(i) ∈ Jv

}
> δ .

Hence, if we choose a random element of Ju as the label `(u) and a random element of Jv as the label `(v),
we have

P
(u,v,π)∼G

{
∃i ∈ [k]. `(u) = i and `(v) = π(i)

}
> δ · (τη)2 ,

where we use the fact that |Ju||Jv| 6 1/τ2η2. We can conclude that val(G) > δτ2η2 for every unique game G
with opt(G ⊗η A) > Soundnessη,τ(A) + δ. By our choice of τ and δ, we have δτ2η2 = ε. Hence, we get
val(G) > (τη)3 for every G with opt(G ⊗η A) > Soundnessη,τ(A) + δ = Soundnessη,τ(A) + τη.

�

D Hypercontractivity, Hermite Polynomials and Invariance Principle

Lemma D.1. For all D, the ensemble X = {H0(x), . . . ,HD(x)} is (2, 3, α(D) = 2−5D log D) hypercontractive.
The ensemble Y = {χi(y)} is (2, 3, 2−D/6−1) hypercontractive.

Proof. The ensemble Y consists of random variables over the finite probability space consisting of uniform
measure of {1,−1}D. The probability of the smallest atom is 2−D. Hence by Proposition 3.15 in [MOO08],
the ensemble Y is (2, 3, 2−D/6−1) hypercontractive.

To show the hypercontractivity of the ensemble X, it is sufficient to show that every linear combination
of non-constant random variables from the ensemble is hypercontractive. Specifically, consider a random
variable X =

∑D
d=1 cdHd(x) where x is a normal random variable. By Proposition 3.16 in [MOO08], the

variable X is (2, 3, α) hypercontractive for α = ‖X‖2/2
√

2‖X‖3. Thus to show hypercontractivity of the
ensemble X it is sufficient to upper bound ‖X‖3 for all X =

∑D
d=1 cdHd(x) with

∑D
d=1 c2

d = 1.
We will derive some rough upper bound on the ‖X‖3. using the following well known facts:

– All the coefficients of the polynomial Hd(x) are strictly bounded in absolute value by d!.

– For a normal random variable x, Ex∈G[x2t] = 2t!
2tt! .
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In particular, this gives :

‖X‖3 <
D∑

d=1

‖Hd(x)‖3 <
D∑

d=1

d! · (
d∑

i=0

‖xi‖3) < D! · D · (3D!)
1
3 < 25D log D (17)

Hence the ensemble X is (2, 3, α(D) = 2−5D log D) hypercontractive. �
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