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Key Points

# The future mainstream building-block of electronic system-level
design will present a (configurable) clocked synchronous Von
Neumann programmer’s model to the system-level application
developer (ASIP or TSP)

# The majority of large silicon systems will consist of many such
processors, connected in an asynchronous network

@ These processors may be integrated on a single chip (CMP) and/or
as a (possibly very large) collection of chips

@ These conclusions lead to a number of critical design-technology
research challenges and new business opportunities

Fundamental Drivers of Future Chip Designs
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Conventional Arguments: The Changing
Landscape of Design, Manufacture, and Test

# The NRE cost of building a complex chip is O($20M) in 2004:
+ Fixed Costs (Masks, EDA Tools, IP Blocks, Diagnosis and Test)
+ Design Costs (Team Size, Verification, Timing Closure)
+ Opportunity Cost (Predictability Of Design Time, Chip Characteristics, and
Manufacturing Reliability)
# Need either a single, huge market or ability to address multiple
application variants and system product generations with same
physical device

# Programmability brings adaptability to SoC. Two popular forms:

« Field-programmable logic, based on low-level logic and interconnect hardware
configuration, from hardware description languages (e.g. Verilog), and 0(20-40)
times slower/larger/more power than equivalent custom logic

+ Processors, based on sequential instruction programming from high-level languages
(mostly C/C++ plus limited assembly code), and O(10-1,000) times slower/more
power than equivalent custom logic
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Growing Complexity Drives Software-Centric Design

¢ Growing product complexity driven by both market competition in end
products and growing capability of silicon

& Complexity of the external application domain makes accurate
specification of application domain almost impossible
& Example: voice codec ITU document size
+ G.711(1988): 190KB, G.726 (1990): 290KB, G.729 (1996): 2.1MB
+ Growing complexity means:
1. Greater design time
2. Greater bug risk and bug fix effort
3. Greater diversity of customer requirements
4. Greater exposure to changing standards
& Software, today written in high-level languages (e.g. C/C++) is the best

understood, most scalable means of developing and debugging complex
functions.
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Today: “Given a Processor Chip (and it's Accelerators)...”

# | get to choose from existing
hardware product offerings...

Programming Model:
Models/Estimators

| Kernels/Benchmarks |

# Then | decide what software
components | have or can find,
for OS, for 10, for data

conversion, etc., then | port [ ot speet poner.ara A |
what | must, and | plan to write
the rest.

& A “Hardware-up™ methodology ot
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SPICE models structures
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Tomorrow: “Given an Application, and a software

development environment...” —

P [ ]

¢ | get to specify the characteristics ;-;l
of a programmable hardware core Programming Mode: p—
or sea-of-cores...

¢ Then | decide what
accelerators/additional instructions
| might need, select IP from
libraries, and use them to design a
chip for this class of application
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EEMBC Networking Benchmark

* Benchmarks: OSPF, Route Lookup, Packet Flow

* Xtensa with no optimization comparable to 64b RISCs

« Xtensa with optimization comparable to high-end desktop CPUs
* Xtensa has outstanding efficiency (performance per cycle, per watt, per mm?)
« Xtensa optimizations: custom instructions for route lookup and packet flow

Synopsys EDA Interoperability Developers’ Forum

Santa Clara, CA
October 21st, 2004
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EEMBC Consumer Benchmark

* Benchmarks: JPEG, Grey-scale filter, Color-space conversion
« Xtensa with no optimization comparable to 64b RISCs

« Xtensa with optimization beats all processors by 6x (no JPEG optimization)

* Xtensa has exceptional efficiency (performance per cycle, per watt, per mm2)
* Xtensa optimizations:custom instructions for filters, RGB-Y1Q, RGB-CMYK

Source: Tensilica, Inc
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Configurable Processors Lead Across Wide Application Range
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2003: Radical Specialization
Around a Common Core
Architectural Platform

B s,/ 0

2003: What Can We Learn About a
Maturing Industry?

e —

Radically Different
Core Architectures?

Modern DSP Architectures—
Jack of All Trades?

Traditional ASIC?

Santa Clara, CA
October 21st, 2004
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Size Determines Cost and Power

Intel Tensilica
Pentium 4 Xtensa processor
(145mm?2, 50W in 0.13p) (1.5mm?, 0.1W in 0.13p)
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Fundamental Drivers of Future Chip Designs

Increased System
Parallelism Drives

Solutions Architectures

Sea-of-Processors
Design

Beating Moore’s Law Through Parallelism
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“The SOC Processor is the New Transistor”
Prof. David Patterson, UC Berkeley

Processors Per Chip

[#40mm? die, small configured processors]

1000

0
2001 2003 2005 2007 2009 2011 2013 2015 2017

Year in Production

Trend: Pervasive use of application-specific processors as basic building block:
The Sea of Processors

Observation: Data-intensive applications often have high parallelism, so large
numbers of processors efficiently utilized

“Great Companies Take What We Do Today and Do it Better”

layton Christensen, et. al., HBR Nov. 2001
— A 2t ‘
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“Transistors on a Chip”

“TTL on a Chip”

“Minicomputer CPU on
A Chip”

“System on a Chip”
(Minicomp+Peripherals)

MP and “Server Farms”

“Chip-Level Multiprocessors (CMP’s)”
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Rowen'’s Law of SoC Processor Scaling

< Part 1: Processors/chip:
Up to >30% year growth
< Part 2: Programmable operations/sec:
65% per year growth
< By 2010:
>1000 processors/chip
>> 10%2 operations/sec

< Key enablers:

< Automated processor creation from “C/C++”
application

Aggregate SoC Processor Performance

.ﬂ
s
2
8

g

°
c
o
o
)

£
@
=
5]
<
jid
)
=%
)

o=
o
»
o
5]
o

< Automated multiple processor model and 10

2000 2002 2004 2006 2008 2010 2012 2014 2016

InterconneCt generatlon Multple simple processors  Multiple rich processors

Source: Chris Rowen, Tensilica

Implications of Rowen’s Law

50%

40%

30%

20%

10% -

0%

2000

Allocation of Die Area

—— Processor logic

—— Processor memory

—— Programmable logic and
interconnect

—— Other core logic and memory

\
(

2005 2010 2015

Synopsys EDA Interoperability Developers’ Forum
Santa Clara, CA
October 215, 2004

Page 15



The Next Major Advance in Chip-Level Synopsys EDA Interoperability Developers’ Forum
Design Productivity Santa Clara, CA

newton@coe.berkeley.edu October 215, 2004

Implications of Rowen’s Law

1. Automated processor design
+ Range of architectural styles from tiny to high ILP
+ Automatic instruction set generation from C/C++
2. Concurrent programming innovation
+ Distributed programming models

+ Novel communication networks (asynchrony, application-specific topologies,
automated optimization of cost and bandwidth)

3. System design methodology
+ Rapid software-centric MP system architecture exploration
+ Complete hardware/software co-generation
+ Tight architecture € physical design tool coupling
4. Allocation of silicon area
+ Processor (and its memory) dominates
+ Programmable interface and interconnect
+ Non-processor logic shrinks
5. Cost of processors
+ Raw logic for base processor: millicents
+ Total cost with memory: cents

“It’s All About Concurrency”

# A global, synchronous model no longer works: neither in
hardware nor in software

@ The majority of errors most difficult to detect and eliminate
in modern software development are due to concurrency
issues: from Windows XP to Wind River

© We are at the beginning of a revolution in embedded
runtime support. e.g. Sun Jini, COM+, Universal Plug-and-
Play, Ninja

# Should consider the verification issue up front, and use a
verifiable underlying model for concurrency
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Key Points

# The future mainstream building-block of electronic system-level
design will present a (configurable) clocked synchronous Von
Neumann programmer’s model to the system-level application
developer

© The majority of large silicon systems will consist of many such
synchronous processors, connected in an asynchronous network

# These processors may be integrated on a single chip (CMP) and/or
as a (possibly very large) collection of chips

# These conclusions lead to a number of critical design-technology
research challenges and new business opportunities

Summary

# No More Debate! ... The future of system-level design is CMP/MCMP,
not {SS, VLIW, XYZ...) so let's get on with it.

€ The most successful systems will define a Programmer’s Model that:

+ Supports one or more clocked sequential processors integrated
(asynchronously) on a chip

+ |Is natural for application developers

+ Supports task-level processor customization (mask level or field
programmable)

+ Protects task/application software development investment as much as
possible

@ Such systems must subsume both hardware implementation/assembly and
core software tasks in a single, integrated development environment that
is viewed “from the top”

+ It is about methodology and tools, not SIP-centric
+ Will automatically support very high levels of design reuse

+ The biggest research challenge is how to implement concurrent computation
on and among processors in a reliable and verifiable way, while preserving as
much efficiency as possible (speed, power, cost, etc.)
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Thank You!
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