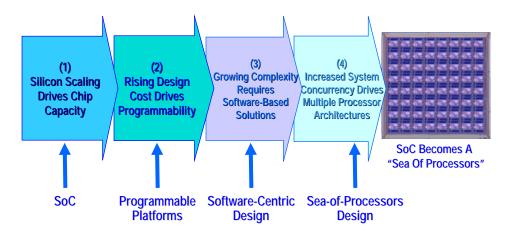
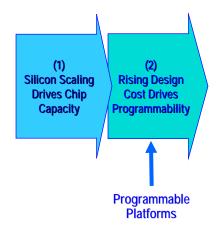
The Next Major Advance in Chip-Level Design Productivity


A. Richard Newton University of California, Berkeley

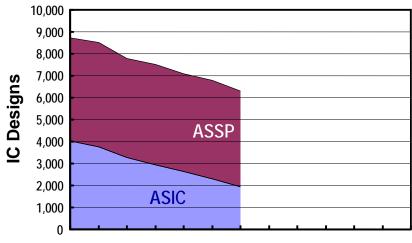
Synopsys EDA Interoperability Developers' Forum Santa Clara, CA October 21st, 2004

Fundamental Drivers of Future Chip Designs



Source: Chris Rowen, Tensilica

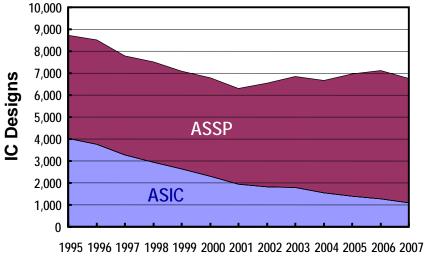
Key Points


- The future mainstream building-block of electronic system-level design will present a (configurable) clocked synchronous Von Neumann programmer's model to the system-level application developer (ASIP or TSP)
- The majority of large silicon systems will consist of many such processors, connected in an asynchronous network
- These processors may be integrated on a single chip (CMP) and/or as a (possibly very large) collection of chips
- These conclusions lead to a number of critical design-technology research challenges and new business opportunities

Fundamental Drivers of Future Chip Designs

Conventional Arguments: The Changing Landscape of Design, Manufacture, and Test

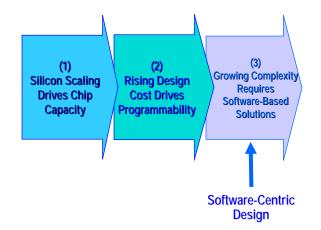
- The NRE cost of building a complex chip is O(\$20M) in 2004:
 - Fixed Costs (Masks, EDA Tools, IP Blocks, Diagnosis and Test)
 - Design Costs (Team Size, Verification, Timing Closure)
 - Opportunity Cost (Predictability Of Design Time, Chip Characteristics, and Manufacturing Reliability)
- Need either a single, huge market or ability to address multiple application variants and system product generations with same physical device
- Programmability brings adaptability to SoC. Two popular forms:
 - Field-programmable logic, based on low-level logic and interconnect hardware configuration, from hardware description languages (e.g. Verilog), and O(20-40) times slower/larger/more power than equivalent custom logic
 - Processors, based on sequential instruction programming from high-level languages (mostly C/C++ plus limited assembly code), and O(10-1,000) times slower/more power than equivalent custom logic


Total IC Designs

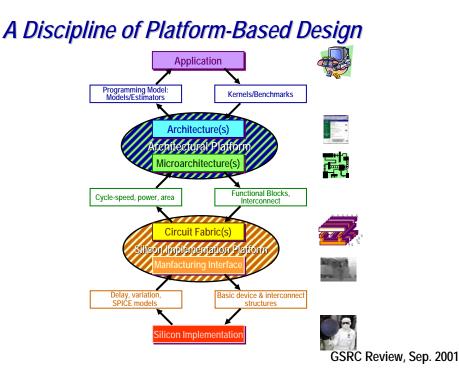
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

Source: Handel Jones, IBS, October 2002


Total IC Designs

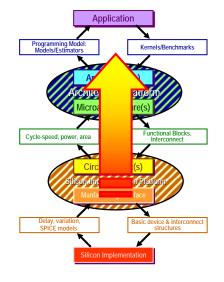
Year


Source: Handel Jones, IBS, October 2002

Fundamental Drivers of Future Chip Designs

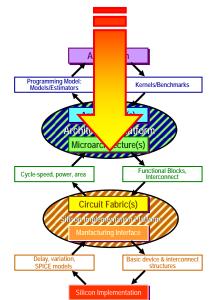
Growing Complexity Drives Software-Centric Design

- Growing product complexity driven by both market competition in end products and growing capability of silicon
- Complexity of the external application domain makes accurate specification of application domain almost impossible
- Example: voice codec ITU document size
 - G.711 (1988): 190KB, G.726 (1990): 290KB, G.729 (1996): 2.1MB
- Growing complexity means:
 - 1. Greater design time
 - 2. Greater bug risk and bug fix effort
 - 3. Greater diversity of customer requirements
 - 4. Greater exposure to changing standards
- Software, today written in high-level languages (e.g. C/C++) is the best understood, most scalable means of developing and debugging complex functions.

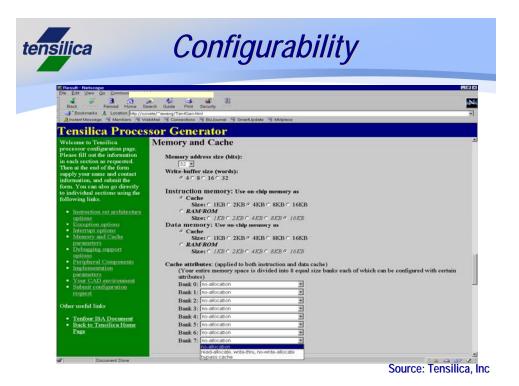


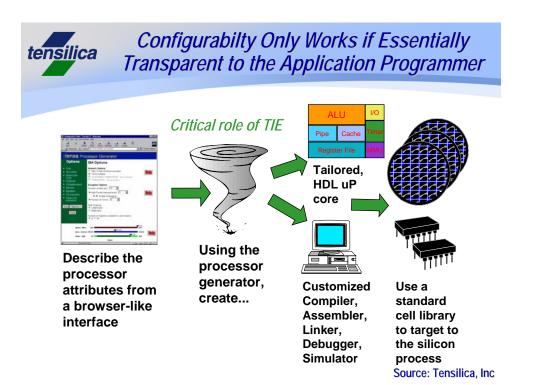
Synopsys EDA Interoperability Developers' Forum Santa Clara, CA October 21st, 2004

Today: "Given a Processor Chip (and it's Accelerators)..."

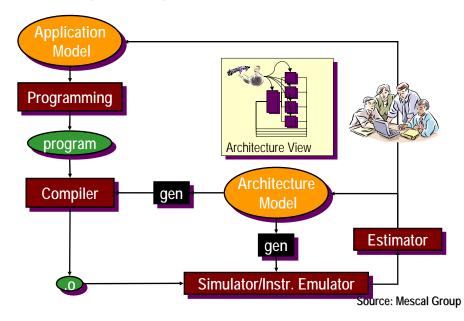

- I get to choose from existing hardware product offerings...
- Then I decide what software components I have or can find, for OS, for IO, for data conversion, etc., then I port what I must, and I plan to write the rest.

A "Hardware-up" methodology

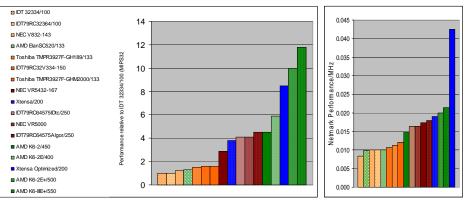



Tomorrow: "Given an Application, and a software development environment..."

- I get to specify the characteristics of a programmable hardware core or sea-of-cores...
- Then I decide what accelerators/additional instructions I might need, select IP from libraries, and use them to design a chip for this class of application
- A "Software-down" methodology



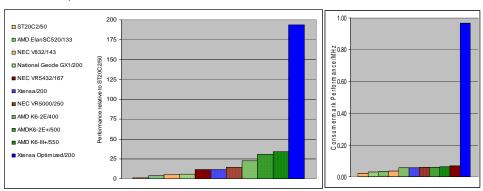
communications systems Platforms applications Simulink models DE models synchrono models model actor-oriented models "We could work C progra synthesizable VHDL programs Sy: wit der com nies (C+ Java programs VHDL programs to eve new d es programs Ţ stand C:0S amon Java byte code programs cell de ass mu é Y)VM FPGA configurations x86 programs of their customers" executables executes P4-M 1.6GHz MOSIS chips FPGAs microprocessors silicon chips Source: Professor Edward Lee



Enabling Design-Space Exploration

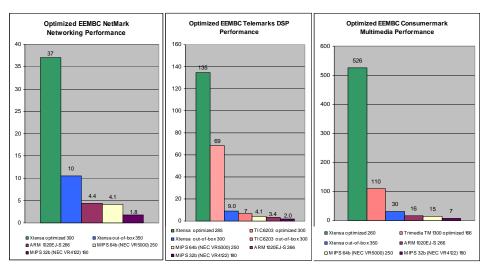
EEMBC Networking Benchmark

- · Benchmarks: OSPF, Route Lookup, Packet Flow
- · Xtensa with no optimization comparable to 64b RISCs
- · Xtensa with optimization comparable to high-end desktop CPUs
- Xtensa has outstanding efficiency (performance per cycle, per watt, per mm²)
- · Xtensa optimizations: custom instructions for route lookup and packet flow



Colors: Blue-Xtensa, Green-Desktop x86s, Maroon-64b RISCs, Orange-32b RISCs

Source: Tensilica, Inc

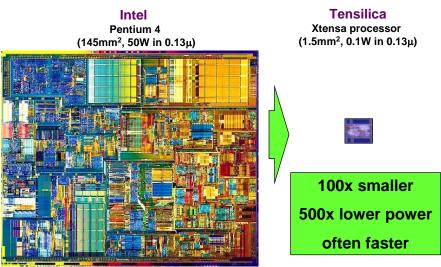

EEMBC Consumer Benchmark

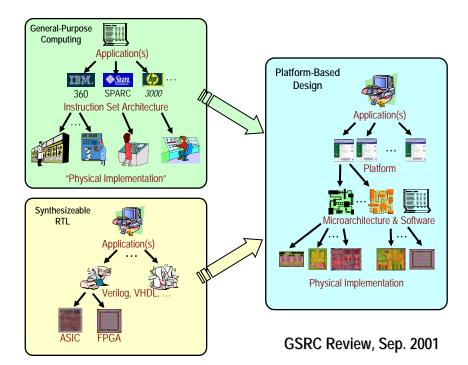
- Benchmarks: JPEG, Grey-scale filter, Color-space conversion
- Xtensa with no optimization comparable to 64b RISCs
- · Xtensa with optimization beats all processors by 6x (no JPEG optimization)
- · Xtensa has exceptional efficiency (performance per cycle, per watt, per mm²)
- Xtensa optimizations:custom instructions for filters, RGB-YIQ, RGB-CMYK

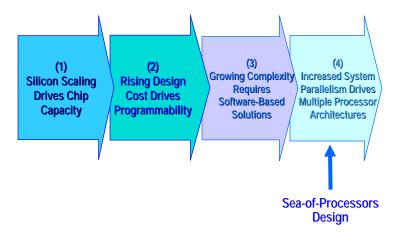
Colors: Blue-Xtensa, Green-Desktop x86s, Maroon-64b RISCs, Orange-32b RISCs

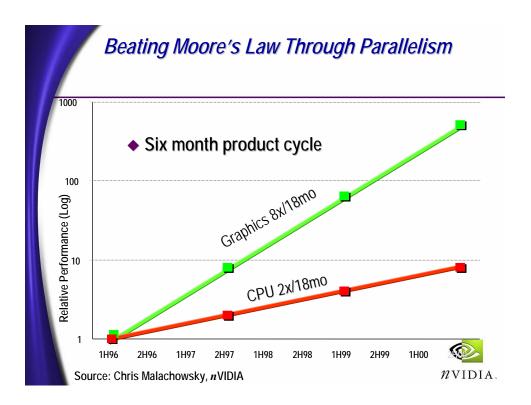
Source: Tensilica, Inc

Configurable Processors Lead Across Wide Application Range

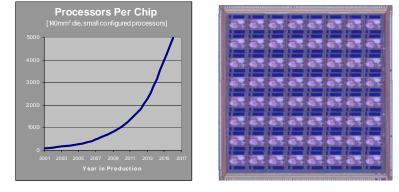

Source: Chris Rowen, Tensilica




Size Determines Cost and Power



Source: Chris Rowen, Tensilica

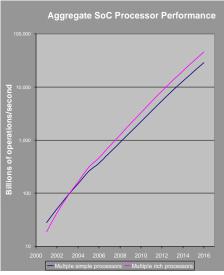


Fundamental Drivers of Future Chip Designs

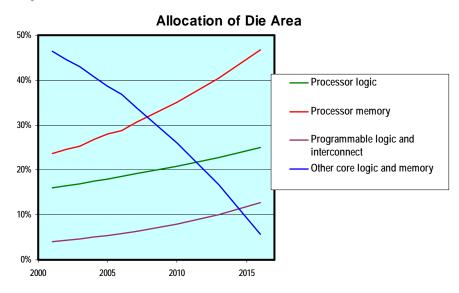
"The SOC Processor is the New Transistor" Prof. David Patterson, UC Berkeley

Trend:Pervasive use of application-specific processors as basic building block:
The Sea of Processors

Observation: Data-intensive applications often have high parallelism, so large numbers of processors efficiently utilized


"Great Companies Take What We Do Today and Do it Better" Clayton Christensen, et. al., HBR Nov. 2001

"Chip-Level Multiprocessors (CMP's)"


Rowen's Law of SoC Processor Scaling

- Part 1: Processors/chip:
 - Up to >30% year growth
- Part 2: Programmable operations/sec:
 65% per year growth
- By 2010:
 - >1000 processors/chip
 - >> 10¹² operations/sec
- Key enablers:
 - Automated processor creation from "C/C++" application
 - Automated multiple processor model and interconnect generation

Source: Chris Rowen, Tensilica

Implications of Rowen's Law

Implications of Rowen's Law

- 1. Automated processor design
 - · Range of architectural styles from tiny to high ILP
 - Automatic instruction set generation from C/C++
- 2. Concurrent programming innovation
 - Distributed programming models
 - Novel communication networks (asynchrony, application-specific topologies, automated optimization of cost and bandwidth)
- 3. System design methodology
 - Rapid software-centric MP system architecture exploration
 - Complete hardware/software co-generation
 - Tight architecture ↔ physical design tool coupling
- 4. Allocation of silicon area
 - Processor (and its memory) dominates
 - Programmable interface and interconnect
 - Non-processor logic shrinks
- 5. Cost of processors
 - · Raw logic for base processor: millicents
 - Total cost with memory: cents

"It's All About Concurrency"

- A global, synchronous model no longer works: neither in hardware nor in software
- The majority of errors most difficult to detect and eliminate in modern software development are due to concurrency issues: from Windows XP to Wind River
- We are at the beginning of a revolution in embedded runtime support. e.g. Sun Jini, COM+, Universal Plug-and-Play, Ninja
- Should consider the verification issue up front, and use a verifiable underlying model for concurrency

Key Points

- The future mainstream building-block of electronic system-level design will present a (configurable) clocked synchronous Von Neumann programmer's model to the system-level application developer
- The majority of large silicon systems will consist of many such synchronous processors, connected in an asynchronous network
- These processors may be integrated on a single chip (CMP) and/or as a (possibly very large) collection of chips
- These conclusions lead to a number of critical design-technology research challenges and new business opportunities

Summary

- No More Debate! ... The future of system-level design is CMP/MCMP, not {SS, VLIW, XYZ...} so let's get on with it.
- The most successful systems will define a Programmer's Model that:
 - Supports one or more clocked sequential processors integrated (asynchronously) on a chip
 - Is natural for application developers
 - Supports task-level processor customization (mask level or field programmable)
 - Protects task/application software development investment as much as possible
- Such systems must subsume both hardware implementation/assembly and core software tasks in a single, integrated development environment that is viewed "from the top"
 - · It is about methodology and tools, not SIP-centric
 - · Will automatically support very high levels of design reuse
 - The biggest research challenge is how to implement concurrent computation on and among processors in a reliable and verifiable way, while preserving as much efficiency as possible (speed, power, cost, etc.)

