

#### Why ICT for Developing Regions Now?

- u Cumulative price-performance advances in technologies are bringing ICT within reach of the global poor
- Emergence of successful business models has spurred commercial interest in these unconventional but large markets
- Many successful pilot applications have demonstrated the positive impact of ICT on global sustainability and quality-of-life
- And many of the very best ICT researchers from throughout the world are passionate about this challenge!







## Open, Standards-Based Global ICT Platform: Infrastructure and Basic Services

- Very Low Cost, Operates Off the Power Grid, Designed for Intermittent Connectivity, Supports Low Literacy and Multiple Languages, Reliable in Extreme Environments, Supports Shared Access, Private and Secure
- Must support telephony (synchronous and asynchronous) & data communication
- Must support sensor networks (potentially millions of sensors/application)

Network access feels just like power grid access in a developed community: You simply "plug in" (wirelessly, of course!)

#### "People Are the Killer App of the Internet"

Pavel Curtis, Xerox PARC, 1992



u Mega-Player Online Games

u Simple Telecommunications

u Blogs, Friendster, Livejournal, Tribe.net

u Time-Sensitive "Valuable" Data

SMS to MMS++ to Multimedia Calls

u Distributed Collaborative Environments

Business Relationships & Negotiation

The power of ideas and opportunities, fueled by local entrepreneurial energy, is the most powerful resource available in this resource-scarce part of our world.

# How Much Cached Storage is Enough Per Household?

u 50 Gbytes/household u 100-1000 households

served per basestation

☐ Would require 5-50 TBytes per basestation

| Activity       | Hours | Gbytes    |
|----------------|-------|-----------|
| Telephone      | 12    | 0.35      |
| TV-Movies      | 20    | 35.00     |
| Radio          | 10    | 0.29      |
| Recorded Music | 40    | 2.30      |
| Newspaper      | 4     | 0.28      |
| Books          | 30    | 2.10      |
| Magazines      | 4     | 0.32      |
| Video games    |       | 5.00      |
| Internet       |       | 5.00      |
| TOTAL          |       | 50 GBytes |











#### **Data Centers**

- Best place to store persistent data
  - √(device is second best)
  - ∨Can justify backup power, networking, physical security
- uCheapest source of storage/computer per user
  - ∨100-1000x less expensive than a personal device (!)
  - √Factors: shared resources, administration cost, raw costs (power, disks, CPUs)
- uNeed at least two for disaster tolerance
- uPlan about 3 in urban centers (for one region)

Source: Eric Brewer

### **Networking & Communications**

- u The key enabler... distribution for information.
- **u** Focus on wireless (e.g. IEEE 802.11, 802.16)
  - √Vastly cheaper to deploy
  - √Wide range of options
- u Packets of data allow efficient use of media
  - v "multiplexing" (sharing) of channels
- u IP = "Internet Protocol"
  - √Global names for every device
  - √Way to route packets to names

Source: Eric Brewer

### **Basic Properties of Networks**

- Bandwidth = data/sec
  - √ Modem = 56 kilobits/sec
  - ∨ DSL = 384 kilobits/sec
  - VIEEE 802.16 WiMAX = >75 megabits/sec per "sector" (~200 DSLs)
    - Limited only by available spectrum
- Latency = transmission delay in seconds
  - ∨ Optical Internet = milliseconds
    - I Berkeley-CMU: 44ms minimum RT time (actual ~88ms)
    - Berkeley-Bangalore: 200ms minimum RT time (actual ~0.75sec)
  - ∨ Satellite = ¼ second per hop
- Power should be mostly tied to transmission
  - ∨ Double distance Þ Quadruple power
  - Sequence of short hops usually lower power (but higher latency)

Source: Eric Brewer

### Understanding the Range of Wireless Networks

- u Range costs power (squared)
- u Long distances best covered with directional antennas
  - √ 10x difference in range for low cost
  - v "Point-to-point" links
  - VIEEE 802.16 can be used over 50km at reasonable cost
- u User density matters:
  - Range also limited by total users
  - ∨ Urban areas thus use short-range wireless
  - v Rural areas need long-range, high capacity links
- u Ideal architecture assumes islands of coverage (with point-to-point wireless)
  - ✓ Islands are the dense areas (e.g. villages)

Source: Eric Brewer

### **Asynchronous Two-Way Communication**

- The telephone system was developed when memory and storage was expensive
- u Semi-interactive, but potentially much less expensive...
- **u** Savings:
  - ∨ No need for dedicated resources
  - ∨ Can "store-and-forward" data (like real mail)
  - ∨ Can hide problems (e.g. power out) by waiting or redundancy
- Learning Examples: voice messaging, SMS/MMS, correspondence classes, medical diagnosis (non-emergency), coordinating money transfers, e-commerce (e.g. catalogs), e-mail



- Develop standard chip family for sensor application ▶ \$1-0.01 per chip
  - Processor, radio, power management, network support, integrated GPS option
  - ∨ Low-power version < 200 microwatts
- Novel low-cost organic semiconductors for flexible displays and inexpensive circuits
  - ∨ 10-50x cheaper, ultimately more robust



























## ICT for Sustainable Development: A Public, Private, University Partnership

- u Funding Agencies: International Organizations, National Governments, and Foundations
  - ∨ Support research, education, the development and maintenance of test-beds, and community-building activities

#### **u** Industry

- ▼ Treat the developing world as a legitimate and important market
- ∨ Launch internal research and development efforts (like HP Labs India)
- Partner with academia to develop and commercialize promising university research

# ICT for Sustainable Development: A Public, Private, University Partnership

#### uNGOs

- Experiment with a variety of ICT applications for sustainable development
- ∨ Support the implementation of a Technology "Peace Corps" for the developing world
- uUniversities: ICT researchers, sociologists, business,
  - ✓ Perform long-term, high-risk research and development for the developing world that may lead to order of magnitude improvements in accessibility
  - Perform rigorous and independent evaluation of past and ongoing efforts
  - ∨ Can a young faculty member be tenured working on basic research inspired by major challenges for the developing world? Medical informatics is here to stay, how about Development informatics?

#### ICT for Sustainable Development: Next Steps

Working together, we must establish:

- An active, global research and development community of interested university, industry, NGO, and government participants
- A premier international conference with the highest of academic standards—A World Technology Forum
- An international business plan competition for both developed and developing countries targeted to the developing world
- Develop a research and development roadmap for sustainable development
- A world-class publication accessible inexpensively throughout the world
- An international Engineering "Peace Corps" for students and young professionals to work together to address problems and to learn about the challenges and opportunities in the developing world

Source: Tom Kalil, Richard Newton

