
Compressed Sensing (CS) Workshop:

Basic Elements of Compressed Sensing

Mariya Doneva
Philips Research Europe

Almir Mutapcic
Sarajevo School of Science and Technology

Miki Lustig
EECS Department

UC Berkeley, CA, USA

Ohrid, June 17, 2011

Outline

Part I: Sparse Signals and Denoising

Part II: Sparsity of Medical Imaging

Part III: Compressed Sensing MRI

Ohrid, June 17, 2011 1

Part I: Sparse Signals and Denoising

Overview:

• sparsity

• incoherency

• sparsity based reconstruction

Ohrid, June 17, 2011 2

Sparse Signals and Denoising in 1D

• strong connection between CS and sparse signal denoising

• the sparsity of signal x ∈ Rn, is the number of zero components of x

• similarly, the cardinality of x, card(x), is the number of nonzeros,

we often use ||x||0 to denote cardinality

Ohrid, June 17, 2011 3

Sparse signal example

Generate x ∈ R128 with 5 nonzero coefficients (randomly permuted)

>> x = [[1:5]/5 zeros(1,128-5)];

>> x = x(randperm(128));

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x

Ohrid, June 17, 2011 4

Corrupted sparse signal

Corrupt sparse signal with random Gaussian noise σ = 0.05 (y = x+ n)

>> y = x + 0.05*randn(1,128);

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

y

Ohrid, June 17, 2011 5

Denoising

Many approaches for denoising (or regularization), i.e., estimation of the
signal from noisy data:

• ℓ2-norm or Tychonov penalty

• ℓ∞-norm or minimax

• ℓ1-norm penalty (more on this soon)

Ohrid, June 17, 2011 6

ℓ2-norm denoising

This optimization trades the norm of the solution with data consistency.

argmin
1

2
||x̂− y||22 + λ

1

2
||x̂||22

The solution for this problem is

x̂ =
1

1 + λ
y

Ohrid, June 17, 2011 7

Sample solutions

Observe what happens when plot result for λ = 0.1

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x̂

Is the solution sparse?

Ohrid, June 17, 2011 8

Sparse signals and the ℓ1-norm

Now we will penalize the ℓ1-norm, i.e.,

||x||1 =
∑

|xi|

Specifically we will solve:

argmin
1

2
||x̂− y||22 + λ||x̂||1

Ohrid, June 17, 2011 9

Solution

Variables x̂i’s are independent, so minimize each seperately by solving

argmin
1

2
|x̂i − yi|

2 + λ|x̂i|

The solution to each x̂i has a closed form. The solution is

x̂ =

y + λ if y < −λ

0 if |y| < λ

y − λ if y > λ

(This is called soft-thresholding or shrinkage).

• Show Movie

Ohrid, June 17, 2011 10

Soft thresholding or shrinkage function

SoftThresh (complex input case) function:

S(u, λ) =

{

0 if |u| ≤ λ
(|u|−λ)

|u| u if |u| > λ

Ohrid, June 17, 2011 11

Matlab implementation

Write a function SoftThresh that accepts u and λ and returns S(u).
Plot for u ∈ [−10, 10] and λ = 2.

−10 −5 0 5 10
−10

−5

0

5

10

u

S
(u
)

Ohrid, June 17, 2011 12

Back to our example

Apply SoftThresh to the noisy signal with λ = 0.1.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x̂

Is the solution sparse?

Ohrid, June 17, 2011 13

Random Frequency Domain Sampling and Aliasing

• a strong connection between compressed sensing and denoising

• explore this connection and the importance of incoherent sampling

• in compressed sensing, we undersample the measurements

• measure subset of k-space, Xu = Fux where Fu is a Fourier transform
evaluated only at a subset of frequency domain samples.

Ohrid, June 17, 2011 14

Example: Uniform vs random undersampling

• start with the Fourier transform of a sparse signal

• undersample k-space by taking 32 equispaced samples

• compute the inverse Fourier transform, filling the missing data with
zeroes

• multiply by 4 to correct for the fact that we have only 1/4 the samples

>> X = fftc(x);

>> Xu = zeros(1,128);

>> Xu(1:4:128) = X(1:4:128);

>> xu = ifftc(Xu)*4;

this is uniform sampling and minimum ℓ2 norm solution (why?).

Ohrid, June 17, 2011 15

Result in signal domain

Plot of the absolute value of the result. Describe what you see.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x
u
n
if

Will we be able to reconstruct the original signal from the result?

Ohrid, June 17, 2011 16

Random sampling

Now, undersample k-space by taking 32 samples at random.
>> X = fftc(x);

>> Xr = zeros(1,128);

>> prm = randperm(128);

>> Xr(prm(1:32)) = X(prm(1:32));

>> xr = ifftc(Xr)*4;

Ohrid, June 17, 2011 17

Results

Plot the real and imaginary value, and describe the result.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

ℜ
(x

ra
n
d
)
b
lu
e,

ℑ
(x

ra
n
d
)
g
re
en

Ohrid, June 17, 2011 18

Reconstruct the original signal?

• Will we be able to reconstruct the signal from the result?

• How does this resemble the denoising problem?

This is the important part, so say it out loud:

By random undersampling, we’ve turned the ill-conditioned problem
into a sparse signal denoising problem.

Ohrid, June 17, 2011 19

Reconstruction from Randomly Sampled Frequency

Domain Data

Inspired by the denoising example, we will add an ℓ1 penalty and solve,

argmin
1

2
||Fux̂− Y ||22 + λ|x̂|1

• x̂ is the estimated signal

• Fux̂ is the undersampled Fourier transform of the estimate

• Y are the samples of the Fourier transform that we have acquired

variables are coupled through FT, no closed-form solution

Ohrid, June 17, 2011 20

Iterative solution algorithm

Projection Over Convex Sets (POCS) type algorithm, iterate between
soft-thresholding and constraining data consistency

Let X̂ = Fx̂. Initially set X̂0 = Y .

1. Compute inverse FT to get signal estimate x̂i = F ∗X̂i

2. Apply SoftThresh x̂i = S(x̂i, λ) in the signal domain

3. Compute the FT X̂i = Fx̂i

4. Enforce data consistency in the frequency domain

X̂i+1[j] =

{

X̂i[j] if Y [j] = 0
Y [j] otherwise

5. Repeat until ||x̂i+1 − x̂i|| < ǫ

Ohrid, June 17, 2011 21

Matlab implementation

• Y is randomly sampled Fourier data with zeros for non-acquired data

• Initialize estimate of Fourier transform of the signal as X = Y

The core of the iteration can then be written as

>> x = ifftc(X);

>> xst = SofthThresh(x,lambda);

>> X = fftc(xst);

>> X = X.*(Y==0) + Y;

Ohrid, June 17, 2011 22

Results

Apply the algorithm (at least 300 iterations) to the undersampled signal
with λ = {0.01, 0.05, 0.1} and plot the results.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x̂

Ohrid, June 17, 2011 23

Plots

Make a plot of error between the true x and x̂i as a function of the
iteration number, plotting the result for each of the λs.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ = .01
λ = .05
λ = .1

iter

m
a
x
|x

−
x̂
|

Ohrid, June 17, 2011 24

Part II: Sparsity of Medical Imaging

• Medical Images are generally not sparse.

• Images have a sparser representation in a transform domain

• The transform depends on the type of signal

Ohrid, June 17, 2011 25

Sparsity of Brain Scans

The file brain.mat contains a very pretty axial T2-weighted FSE image of
a brain stored in the matrix im. Load the file and display the magnitude
image

>> load brain.mat

>> figure, imshow(abs(im),[])
Axial T2-weighted Brain image

Is the brain image sparse?

Ohrid, June 17, 2011 26

The Wavelet Transform

The Wavelet transform is known to sparsify natural images.

• Orthogonal transformation (Here)

• Wavelet coefficients are band-pass filters

• Coefficients hold both position and frequency information

• There are many kinds of wavelets (Haar, Daubechies, Symmlets,...)

• Fast to compute

Ohrid, June 17, 2011 27

Matlab Implementation

• Original code from Wavelab (David Donoho)
http://www-stat.stanford.edu/~wavelab/

• The Matlab class @Wavelet implements the Wavelet transform

• Usage:

>> W = Wavelet; % Daubechies-4 wavelet operator

>> im_W = W*im; % Forward Wavelet transform

>> im_rec = W’*im_W; % Inverse Wavelet transform

• The function imshowWav.m conveniently displays wavelet coefficients.

>> Figure, imshowWAV(im_W)

Ohrid, June 17, 2011 28

Wavelet Transform of a Brain Scan

Compute the Wavelet transform of the brain images and display the
coefficients.

>> W = Wavelet; % Daubechies-4 wavelet operator

>> im_W = W*im; % forward Wavelet transform

>> figure, imshowWAV(im_W)
Wavelet Transform

Ohrid, June 17, 2011 29

Sparsity in The Wavelet Domain

• Each band of wavelet coefficients represent a scale (frequency band) of
the image.

• The location of the wavelet coefficient within the band represent its
location in space.

• What you see are edges of the image at different resolutions and
directions.

Wavelet Transform

Is the signal sparse?

Ohrid, June 17, 2011 30

Wavelet Thresholding

Threshold the wavelet coefficients retaining only the largest 10% of the
coefficients. Plot the reconstructed image. (Take a note of the threshold
for later)

• Show Movie

>> m = sort(abs(im_W(:)),’descend’);

>> ndx = floor(length(m)*10/100);

>> thresh = m(ndx);

>> im_W_th = im_W .* (abs(im_W) > thresh);

>> im_denoise = W’*im_W_th;

>> figure, imshow(abs(cat(2,im,im_denoise, ...

(im-im_denoise)*10)),[0,1]);

Ohrid, June 17, 2011 31

Wavelet Denoising

Original Thresholded 15% Difference (x10)

Q) What has been thresholded?
A) The wavelet transform sparsifies the brain image, and concentrates the
“important” image energy into a subset of the coefficients. This helps us
denoise the image by thresholding the coefficients which contain mostly
noise!

Ohrid, June 17, 2011 32

Wavelet Over Denoising

Repeat the experiment with a threshold of 2.5%

Original Thresholded 2.5% Difference (x10)

What have been thresholded?
What’s the approximate sparsity of the image?

Ohrid, June 17, 2011 33

Part III: Compressed Sensing MRI

• In MRI # of measurements ∝ scan time

• Reduce samples to reduce time

• Extrapolate missing samples by enforcing sparsity in transform

Ohrid, June 17, 2011 34

Variable-Density Random Sampling

The variable mask_vardens is a ×3-fold subsampled, variable-density
random mask, drawn from a probability distribution given by
pdf_vardens.

Variable-Density Random Sampling PDF

Ohrid, June 17, 2011 35

Linear Reconstruction

Compute the 2D Fourier transform of the image. Multiply with the mask,
divide by the PDF. Compute the inverse Fourier transform and display the
result.

>> M = fft2c(im);

>> M_us = (M.*mask_vardens)./pdf_vardens;

>> im_us = ifft2c(M_us);

>> figure, imshow(abs(cat(2,im,im_us, (im_us-im)*10)),[0,1])
Original Reconstructed Difference (x10)

Ohrid, June 17, 2011 36

Compressed Sensing MRI Reconstuction

Implement the POCS algorithm for 2D images. Use lambda value from the
thresholding experiment. Use 20 iterations.

>> DATA = fft2c(im).*mask_vardens;

>> im_cs = ifft2c(DATA./pdf_vardens); % initial value

>> figure;

>> for iter=1:20

>>im_cs = W’*(SoftThresh(W*im_cs,0.025));

>>im_cs = ifft2c(fft2c(im_cs).*(1-mask_vardens) + DATA);

>>imshow(abs(im_cs),[]), drawnow;

>> end

Ohrid, June 17, 2011 37

Results

Original Linear Compressed Sensing

Ohrid, June 17, 2011 38

