# **Compressed Sensing (CS) Workshop: Basic Elements of Compressed Sensing**

Mariya Doneva Philips Research Europe

Almir Mutapcic Sarajevo School of Science and Technology

> **Miki Lustig** EECS Department UC Berkeley, CA, USA

> > Ohrid, June 17, 2011

### Outline

Part I: Sparse Signals and Denoising

Part II: Sparsity of Medical Imaging

Part III: Compressed Sensing MRI

### Part I: Sparse Signals and Denoising

Overview:

- sparsity
- incoherency
- sparsity based reconstruction

### Sparse Signals and Denoising in 1D

- strong connection between CS and sparse signal denoising
- the sparsity of signal  $x \in \mathbf{R}^n$ , is the number of zero components of x
- similarly, the cardinality of x, card(x), is the number of nonzeros,
   we often use ||x||<sub>0</sub> to denote cardinality

### Sparse signal example

Generate  $x \in \mathbf{R}^{128}$  with 5 nonzero coefficients (randomly permuted)

>> x = [[1:5]/5 zeros(1,128-5)];
>> x = x(randperm(128));



### **Corrupted sparse signal**

Corrupt sparse signal with random Gaussian noise  $\sigma = 0.05$  (y = x + n)

>> y = x + 0.05\*randn(1,128);



# Denoising

Many approaches for denoising (or regularization), *i.e.*, estimation of the signal from noisy data:

- $\ell_2$ -norm or Tychonov penalty
- $\ell_{\infty}$ -norm or minimax
- $\ell_1$ -norm penalty (more on this soon)

### $\ell_2$ -norm denoising

This optimization trades the norm of the solution with data consistency.

argmin 
$$\frac{1}{2}||\hat{x} - y||_2^2 + \lambda \frac{1}{2}||\hat{x}||_2^2$$

The solution for this problem is

$$\hat{x} = \frac{1}{1+\lambda}y$$

### Sample solutions

Observe what happens when plot result for  $\lambda=0.1$ 



Is the solution sparse?

### Sparse signals and the $\ell_1$ -norm

Now we will penalize the  $\ell_1$ -norm, *i.e.*,

$$||x||_1 = \sum |x_i|$$

Specifically we will solve:

argmin 
$$\frac{1}{2}||\hat{x} - y||_{2}^{2} + \lambda||\hat{x}||_{1}$$

### Solution

Variables  $\hat{x}_i$ 's are independent, so minimize each seperately by solving

$$\operatorname{argmin} \frac{1}{2} |\hat{x_i} - y_i|^2 + \lambda |\hat{x_i}|$$

The solution to each  $\hat{x_i}$  has a closed form. The solution is

$$\hat{x} = \begin{cases} y + \lambda & \text{if } y < -\lambda \\ 0 & \text{if } |y| < \lambda \\ y - \lambda & \text{if } y > \lambda \end{cases}$$

(This is called soft-thresholding or shrinkage).

• <u>Show Movie</u>

### Soft thresholding or shrinkage function

SoftThresh (complex input case) function:

$$S(u,\lambda) = \begin{cases} 0 & \text{if } |u| \le \lambda \\ \frac{(|u|-\lambda)}{|u|}u & \text{if } |u| > \lambda \end{cases}$$

### Matlab implementation

Write a function SoftThresh that accepts u and  $\lambda$  and returns S(u). Plot for  $u \in [-10, 10]$  and  $\lambda = 2$ .



### Back to our example

Apply SoftThresh to the noisy signal with  $\lambda = 0.1$ .



Is the solution sparse?

### **Random Frequency Domain Sampling and Aliasing**

- a strong connection between compressed sensing and denoising
- explore this connection and the importance of incoherent sampling
- in compressed sensing, we undersample the measurements
- measure subset of k-space,  $X_u = F_u x$  where  $F_u$  is a Fourier transform evaluated only at a subset of frequency domain samples.

### **Example: Uniform vs random undersampling**

- start with the Fourier transform of a sparse signal
- undersample k-space by taking 32 equispaced samples
- compute the inverse Fourier transform, filling the missing data with zeroes
- multiply by 4 to correct for the fact that we have only 1/4 the samples

```
>> X = fftc(x);
>> Xu = zeros(1,128);
>> Xu(1:4:128) = X(1:4:128);
>> xu = ifftc(Xu)*4;
```

this is uniform sampling and minimum  $\ell_2$  norm solution (why?).

### Result in signal domain

Plot of the absolute value of the result. Describe what you see.



Will we be able to reconstruct the original signal from the result?

### **Random sampling**

Now, undersample k-space by taking 32 samples at random.

### Results

Plot the real and imaginary value, and describe the result.



### **Reconstruct the original signal?**

- Will we be able to reconstruct the signal from the result?
- How does this resemble the denoising problem?

This is the important part, so say it out loud:

By random undersampling, we've turned the ill-conditioned problem into a sparse signal denoising problem.

# Reconstruction from Randomly Sampled Frequency Domain Data

Inspired by the denoising example, we will add an  $\ell_1$  penalty and solve,

$$\operatorname{argmin} \frac{1}{2} ||F_u \hat{x} - Y||_2^2 + \lambda |\hat{x}|_1$$

- $\hat{x}$  is the estimated signal
- $F_u \hat{x}$  is the undersampled Fourier transform of the estimate
- Y are the samples of the Fourier transform that we have acquired

variables are coupled through FT, no closed-form solution

#### Iterative solution algorithm

Projection Over Convex Sets (POCS) type algorithm, iterate between soft-thresholding and constraining data consistency

Let  $\hat{X} = F\hat{x}$ . Initially set  $\hat{X}_0 = Y$ .

- 1. Compute inverse FT to get signal estimate  $\hat{x}_i = F^* \hat{X}_i$
- 2. Apply SoftThresh  $\hat{x}_i = S(\hat{x}_i, \lambda)$  in the signal domain
- 3. Compute the FT  $\hat{X}_i = F\hat{x}_i$
- 4. Enforce data consistency in the frequency domain

$$\hat{X}_{i+1}[j] = \begin{cases} \hat{X}_i[j] & \text{if } Y[j] = 0\\ Y[j] & \text{otherwise} \end{cases}$$

5. Repeat until  $||\hat{x}_{i+1} - \hat{x}_i|| < \epsilon$ 

### Matlab implementation

- Y is randomly sampled Fourier data with zeros for non-acquired data
- Initialize estimate of Fourier transform of the signal as X = Y

The core of the iteration can then be written as

```
>> x = ifftc(X);
>> xst = SofthThresh(x,lambda);
>> X = fftc(xst);
>> X = X.*(Y==0) + Y;
```

#### Results

Apply the algorithm (at least 300 iterations) to the undersampled signal with  $\lambda = \{0.01, 0.05, 0.1\}$  and plot the results.



### Plots

Make a plot of error between the true x and  $\hat{x}_i$  as a function of the iteration number, plotting the result for each of the  $\lambda$ s.



### Part II: Sparsity of Medical Imaging

- Medical Images are generally not sparse.
- Images have a sparser representation in a transform domain
- The transform depends on the type of signal

# **Sparsity of Brain Scans**

The file brain.mat contains a very pretty axial  $T_2$ -weighted FSE image of a brain stored in the matrix im. Load the file and display the magnitude image

>> load brain.mat

>> figure, imshow(abs(im),[])

Axial  $T_2\mbox{-weighted}$  Brain image



Is the brain image sparse?

### The Wavelet Transform

The Wavelet transform is known to sparsify natural images.

- Orthogonal transformation (Here)
- Wavelet coefficients are band-pass filters
- Coefficients hold both position and frequency information
- There are many kinds of wavelets (Haar, Daubechies, Symmlets,...)
- Fast to compute

### **Matlab Implementation**

- Original code from Wavelab (David Donoho) http://www-stat.stanford.edu/~wavelab/
- The Matlab class @Wavelet implements the Wavelet transform
- Usage:

```
>> W = Wavelet; % Daubechies-4 wavelet operator
>> im_W = W*im; % Forward Wavelet transform
>> im_rec = W'*im_W; % Inverse Wavelet transform
```

• The function imshowWav.m conveniently displays wavelet coefficients.

```
>> Figure, imshowWAV(im_W)
```

### Wavelet Transform of a Brain Scan

Compute the Wavelet transform of the brain images and display the coefficients.

- >> W = Wavelet; % Daubechies-4 wavelet operator
- >> im\_W = W\*im; % forward Wavelet transform
- >> figure, imshowWAV(im\_W)

Wavelet Transform

### Sparsity in The Wavelet Domain

- Each band of wavelet coefficients represent a scale (frequency band) of the image.
- The location of the wavelet coefficient within the band represent its location in space.
- What you see are edges of the image at different resolutions and directions.



Wavelet Transform

Is the signal sparse?

### Wavelet Thresholding

Threshold the wavelet coefficients retaining only the largest 10% of the coefficients. Plot the reconstructed image. (Take a note of the threshold for later)

• Show Movie

```
>> m = sort(abs(im_W(:)),'descend');
>> ndx = floor(length(m)*10/100);
>> thresh = m(ndx);
>> im_W_th = im_W .* (abs(im_W) > thresh);
>> im_denoise = W'*im_W_th;
>> figure, imshow(abs(cat(2,im,im_denoise, ...
(im-im_denoise)*10)),[0,1]);
```

# Wavelet Denoising

Original

Thresholded 15%

Difference (x10)



Q) What has been thresholded?

A) The wavelet transform sparsifies the brain image, and concentrates the "important" image energy into a subset of the coefficients. This helps us denoise the image by thresholding the coefficients which contain mostly noise!

### Wavelet Over Denoising

#### Repeat the experiment with a threshold of 2.5%



What have been thresholded? What's the approximate sparsity of the image?

### Part III: Compressed Sensing MRI

- In MRI # of measurements  $\propto$  scan time
- Reduce samples to reduce time
- Extrapolate missing samples by enforcing sparsity in transform

### **Variable-Density Random Sampling**

The variable mask\_vardens is a  $\times$ 3-fold subsampled, variable-density random mask, drawn from a probability distribution given by pdf\_vardens.



### **Linear Reconstruction**

Compute the 2D Fourier transform of the image. Multiply with the mask, divide by the PDF. Compute the inverse Fourier transform and display the result.

>> figure, imshow(abs(cat(2,im,im\_us, (im\_us-im)\*10)),[0,1])

Reconstructed

Original





### **Compressed Sensing MRI Reconstuction**

Implement the POCS algorithm for 2D images. Use lambda value from the thresholding experiment. Use 20 iterations.

```
>> DATA = fft2c(im).*mask_vardens;
>> im_cs = ifft2c(DATA./pdf_vardens); % initial value
>> figure;
>> for iter=1:20
>>im_cs = W'*(SoftThresh(W*im_cs,0.025));
>>im_cs = ifft2c(fft2c(im_cs).*(1-mask_vardens) + DATA);
>>imshow(abs(im_cs),[]), drawnow;
>> end
```

## Results



Linear

Compressed Sensing

