KINETIC EFFECTS IN PLASMA PROCESSING DISCHARGES

M.A. Lieberman and E. Kawamura Dept. EECS, UC Berkeley

University of California, Berkeley

PLSC100501

PLASMA —

I. 2D PARTICLE-IN-CELL (PIC) SIMULATIONS OF UNSTABLE WAVES EXCITED BY DOUBLE LAYERS

(with A.J. Lichtenberg and J.P. Verboncoeur)

Motivations: remote plasma processing; plasma thrusters

University of California, Berkeley

PLSC100501

REACTOR CONFIGURATION

• DL's typically have time-varying (wave) structures

PLSC100501

University of California, Berkeley

ABOUT 2D PIC SIMULATIONS

- Self-consistent results from first principles with no assumptions about electron and ion velocity distributions
- Stability, speed and accuracy require low densities: $n_e \approx 4 \times 10^{14} \text{ m}^{-3}, \lambda_D \approx 0.8 \text{ mm}$
- Rescaled oxygen cross sections are used to simulate higher densities and other chemistries
- A typical simulation takes 1–2 weeks

PLSC100501

MOVIE SHOWS SLOW AND FAST WAVES

Red: 900 kHz fast waves averaged over 0.1475 μ s intervals Blue: 85 kHz slow waves averaged over 1.18 μ s intervals

160. Waves in 6 mTorr DL region (23.6 microsecs)

KINETIC THEORY OF UNSTABLE WAVES

- Waves produce 20% oscillations in DL potential and position
- Electron and ion kinetic effects are important

- Most unstable slow wave at $\lambda = 0.7$ cm at 173 kHz (PIC simulation gives $\lambda = 1$ cm at 85 kHz)
- Fast wave weakly damped at $\lambda = 0.7$ cm; excitation from nonuniformities and nonlinearities?

(Kawamura et al, to appear in J. Appl. Phys.)

University of California, Berkeley

II. BULK-FLUID/ANALYTIC-SHEATH HYBRID SIMULATIONS

(with D.B. Graves)

Motivation: fast computation of plasma reactor parameters

University of California, Berkeley

PLSC100501

1

BULK-FLUID/ANALYTIC-SHEATH MODEL

• Example of inductive reactor (Malyshev and Donnelly, 2000–01)

- Electromagnetic field solve (including wafer chuck rf bias)
- Fluid bulk plasma model
- Analytical sheath model
- Flow model of reactive gas
- Commercial software (COMSOL)

PLSC100501

University of California, Berkeley

CHLORINE REACTOR SIMULATIONS

- 100 sccm Cl₂ gas flow, 10 mTorr at outlet, 740 W at 13.56 MHz
- Total simulation time $\approx 70 \text{ min} (2.2 \text{ GHz CPU 4GB RAM})$
- Inductive >> capacitive power, high gas T, high Cl₂ dissociation

University of California, Berkeley

MODEL VERSUS EXPERIMENT

University of California, Berkeley

10

USING 1D/2D PIC SIMULATIONS

- Benchmark/verify assumptions of hybrid model
- Example of dual frequency excitation

 \Rightarrow 1D PIC confirms analytical sheath model

- PIC simulations yield
 - electron energy distribution in bulk plasma
 - ion and fast neutral distributions on the substrate
- Couple PIC to hybrid model

PLSC100501

University of California, Berkeley

III. OOPD1 — 1D PIC CODE DEVELOPMENT

(with J.P. Verboncoeur, J.T. Gudmundsson and A. Wu)

Motivation: Unified extensible code with easy-to-use interface

University of California, Berkeley

PLSC100501

ENERGETIC PARTICLES ON THE SUBSTRATE

ION LOSS VELOCITIES IN MULTI-ION PLASMAS

- OOPD1 model of an argon/xenon experiment (see Lee, Hershkowitz and Severn 2007)
- Model results:

- Model sheath width = 0.31 cm, experiment = 0.27 cm
- Model $T_e = 0.49$ V, experiment = 0.69 V

PLSC100501

ION VELOCITY SIMULATION RESULTS

- Bohm velocities $\sqrt{eT_e/M_i} = 592$ m/s for Xe⁺ and 1073 m/s for Ar⁺
- Model velocities = 636 m/s for Xe⁺ and 1190 m/s for Ar⁺
- Experimental velocities = 940 m/s for Xe^+ and 1100 m/s for Ar^+
- This is work in progress

University of California, Berkeley -

15