# MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu

DOE Center on Control of Plasma Kinetics Annual Meeting May 2015

Download this talk: http://www.eecs.berkeley.edu/~lieber







#### LOW PRESSURE DISCHARGES

- 1D and 2D particle-in-cell (PIC) kinetic simulations
- 2D bulk-fluid/analytic-sheath simulations
- Theory

Motivations: plasma processing of materials; plasma thrusters



Center for Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems Plasma Science Cent



## **2D PIC SIMULATIONS OF DOUBLE LAYERS**



- DL's observed over a wide range (1–24 mTorr) of pressures (Kawamura et al, Phys. Fluids, 2009)
- DL's typically have time-varying (wave) structures





#### **EXCITATION OF SLOW AND FAST WAVES**

- Red: 900 kHz fast waves averaged over 0.1475 μs intervals
- Blue: 85 kHz slow waves averaged over 1.18 μs intervals



160. Waves in 6 mTorr DL region (23.6 microsecs)





### **KINETIC THEORY OF UNSTABLE WAVES**

- Waves produce 20% oscillations in DL potential and position
- Electron and ion kinetic effects are important
- Most unstable slow wave at λ = 0.7 cm at 173 kHz (PIC simulation gives λ = 1 cm at 85 kHz)
- Fast wave weakly damped at λ=0.7 cm; excitation from non-uniformities and nonlinearities

(Kawamura et al, JAP 2010)



**DOE Plasma Science Center** 

Control of Plasma Kinetics



### 2D BULK-FLUID/ANALYTIC-SHEATH MODELS

Center for Predictive Control of Plasma Kinetics:

Department of Energy

Multi-Phase and Bounded Systems



- Electromagnetic field solve
- Fluid bulk plasma model
- Analytical sheath model
- Flow model of reactive gas
- Commercial software (COMSOL)

(Kawamura et al, PSST 2012)



**DOE Plasma Science Center** 

Control of Plasma Kinetics

- Low density capacitive (E-mode)
- High density inductive (H-mode)
- Attaching gas → negative ions
  →E/H instability



### **E/H MODE TRANSITION IN CHLORINE**

- Plasma resistance R<sub>e</sub> versus n<sub>e</sub> as I<sub>rf</sub> is varied
- A "gap" occurs between I<sub>rf</sub> = 7.5 and 8 A

- Measurements at 10 mTorr Cl<sub>2</sub> show "gap region"
- Previous measurements (many) and global models (many) indicate instability
- First calculation of E/H instability in fluid simulations





#### **E/H TRANSITION INSTABILITY**



- Example: 2.2 kHz instability in 15 mTorr Cl<sub>2</sub> at  $I_{rf}$  = 7.75 A, showing (a)  $n_{Cl-}(t)$ , (b)  $n_{e}(t)$ , and (c)  $T_{e}(t)$ 
  - At time t<sub>1</sub> the discharge enters capacitive mode
  - From t<sub>1</sub>-t<sub>2</sub> the discharge is in capacitive mode
  - From t<sub>2</sub>-t<sub>3</sub> the discharge makes a transition to inductive mode
  - From  $t_3 t_4$  the discharge is in inductive mode
  - From  $t_4 t_1$  the discharge makes a transition back into capacitive mode

Center for Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems

#### **ATMOSPHERIC PRESSURE DISCHARGES**

- 1D particle-in-cell (PIC) kinetic simulations
- 1D bulk-fluid/analytic-sheath hybrid simulations
- Theory

Motivations: biomedical plasmas; plasma processing of materials



Center for Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems



#### **DISCHARGE CONFIGURATION**



- Atmospheric pressure
- He or Ar with trace reactive gases
- 1D plane-parallel geometry (~0.1–1 mm gap)
- RF-driven (6.78–54.24 MHz)





### TWO-TEMPERATURE HYBRID DISCHARGE MODEL

- Numerical solution of particle balances for each species
  - $dn_j/dt = G_j L_j$
  - G<sub>i</sub> = volume creation rate (2-body, 3-body and surfaces)
  - $L_i$  = volume loss rate (2-body, 3-body and surfaces)
- Numerical solution of Penning/secondary electron multiplication in sheaths  $\Rightarrow$  hot T<sub>h</sub>(t), n<sub>h</sub>(t)
- Analytical solutions of
  - the discharge dynamics (homogeneous model)
  - the time-varying warm T<sub>e</sub>(t)
  - the effective rate coefficients <K>
- Coupling the analytical and numerical solutions
  - $\Rightarrow$  fast solution of the discharge equilibrium

(Kawamura et al, PSST 2014; Ke Ding et al, JPD 2014)



#### PIC RESULTS (27.12 MHz, 1 mm gap, He/0.1%N<sub>2</sub>)



#### He/0.1%N<sub>2</sub> HYBRID – PIC COMPARISON



#### He/H<sub>2</sub>O ATMOSPHERIC PRESSURE DISCHARGE MODELING

 In an experiment, a 1 cm radius 0.5 mm gap discharge was embedded in a large chamber with fixed H<sub>2</sub>O concentration

> RF Generator Matching (13.56 MHz) network  $n_{He} + n_{ext,H_2O}$ (fixed) 0.5 mm Mass Spectrometer Ion Source Mass and Energy Analysis Discharge Bubbling optical vessel (P2) (P1) Mass Mass flow flow water cooling Spectromete

(P. Bruggeman et al, J. Phys. D 43, 012003, 2010)

 In a global model (46 species, 577 reactions), particle and energy balance were solved to determine the discharge equilibrium

(D.X. Liu et al, PSST 19, 025018, 2010)

• Discharge depletes external H2O density, reaction products diffuse to axial and radial walls, sheaths cause  $\alpha$ -to- $\gamma$  transition







#### SOME HYBRID MODEL RESULTS

 He/0.1%H<sub>2</sub>O discharge, 0.5 mm gap, 13.56 MHz, γ<sub>se</sub> = 0.25 (209 reactions among 43 species with clusters up to H<sub>19</sub>O<sub>9</sub><sup>+</sup>)



Plasma Science Cente

#### YEAR 6 RESEARCH

#### Low Pressure Discharges

- Fast 2D Fluid-Analytical Simulation of Ion Energies and EM Effects in Multi-Frequency Capacitive Discharges
- Electron Heating in Capacitive Discharges
- Metastables in Capacitively Coupled Oxygen Discharges
- Nonlinear Standing Wave Excitation by Series-Resonance Enhanced Harmonics in Capacitive Discharges

#### Atmospheric Pressure Discharges

- Comparison of a Hybrid Model with Experiments in Helium and Argon Discharges
- Reaction Pathways for Bio-Active Species in He/H2O Discharges
- Analytic Model of Helium/Trace Gas Penning Discharges
- PIC Simulations of He/H2O Plasma Near a Water Interface





#### CENTRAL PLASMA NONUNIFORMITY IN LOW PRESSURE CAPACITIVE DISCHARGES

 Asymmetric argon capacitive discharge (2.5 cm gap, driven at 60 MHz), showing ne(r)

(Sawada et al, JJAP, 2014)

 Investigate coupling of series-resonance enhanced harmonics of driving frequency to standing waves using a radial transmission line model







**Fig. 3.** Experimentally measured electron density profiles along the testbench A reactor midgap for argon plasma driven at 60 MHz. Top: 100 mTorr. Bottom: 15 mTorr.



#### **TRANSMISSION LINE MODEL RESULTS**

- $\omega_{\rm SR}$  = N $\omega$  = (s/d)<sup>1/2</sup> $\omega_{\rm pe}$ Series resonances:  $\omega_{\text{wave}} = M\omega = (s/d)^{1/2}\chi_{01}c/R$  Standing wave resonances: Fourier transform normalized discharge current density Fourier transform normalized discharge voltage 0.6 (e) (f) 0.5 0.8 0.4 F(jd) F(v<sub>d,tot</sub>) 0.60.3 0.4 0.2 0.2 0.1 0 0.2 0.4 0.8 0.20.6 0.8 0.6 0.4 n r/R r/R
- Example: 10 mTorr argon driven at 60 MHz and 500 V through 0.5  $\Omega$ , 15 cm radius, 2 cm gap,  $n_e = 2 \times 10^{16} \text{ m}^{-3}$





#### **DISCHARGE ELECTRON POWER/AREA**

- 10 mTorr argon discharge driven through 0.5  $\Omega$ , 15 cm radius, 2 cm gap
- Voltage rescaled as  $\omega^2 V_{rf}$  = const to keep  $n_e$  = 2 × 10<sup>16</sup> m<sup>-3</sup>



#### ANALYTIC MODEL OF HELIUM/TRACE GAS ATMOSPHERIC PRESSURE DISCHARGES

- Rf capacitive-driven with Penning ionization
- Reduced chemical complexity: helium monomer metastable, one kind of positive ion, and hot and warm electrons
- He/0.1%H<sub>2</sub>O discharge, 0.5 mm gap, driven at 13.56 MHz
- Compare analytic model (solid and dashed lines) to hybrid simulations (symbols)

(209 reactions, 43 species, clusters up to  $H_{19}O_{9}^+$ )



#### 1D PIC SIMULATIONS OF ATMOSPHERIC PLASMA NEAR A WATER INTERFACE

- 1 mm gap He/2%H<sub>2</sub>O atmospheric pressure discharge in series with an 0.5 mm H<sub>2</sub>O liquid layer and a 1 mm quartz dielectric
- Hybrid model used to determine the most important species and reactions used in the PIC simulations of the discharge
- Example of 600 V at 27.12 MHz,  $\gamma_{se}$  = 0.15



#### WHAT ARE THE OSCILLATIONS IN THE BULK?



Center for Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems Department of Energy Plasma Science Center

### 1D PIC SIMULATIONS OF PLASMA NEAR A WATER INTERFACE (CONT'D)

- H<sub>2</sub>O vibrational and rotational energy losses are so high that most electrons reach the walls at thermal energies
- Low frequency simulations: 10 kV at 50 kHz,  $\gamma_{se}$  = 0.15



- Low frequency discharge runs in a pure γ-mode
- A dc argon simulation is being used to model a solvated electron experiment (David Go, to appear in Nature Communications, 2015)



