MODELING PLASMA PROCESSING DISCHARGES

M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: E. Kawamura, D.B. Graves, and A.J. Lichtenberg, UC Berkeley C. Lazzaroni and P. Chabert, Ecole Polytechnique, France J. Gudmundsson, Shanghai Jiao Tong U; Science Institute, U. Iceland A. Leblanc, ENS Cachan, France Jing Zhang, Donghua U, Shanghai, China

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

LiebermanPSC12

University of California, Berkeley

OUTLINE

- Fast computation of atmospheric pressure rf capacitive discharges
- Fluid model of E-H transition instability in electronegative inductive discharge

ATMOSPHERIC PRESSURE CAPACITIVE RF DISCHARGE

LiebermanPSC12

University of California, Berkeley -

- PLASMA -----

MOTIVATION

• Biomedical — example of reactive oxygen species

(Review article: H.W. Lee et al, J. Phys. D 44, 053001, 2011)

— Applications to sterilization, cancer cell treatment, blood coagulation, wound healing

• Unique materials — example of anatase crystalline TiO₂ (Review article: D. Mariotti and R.M. Sankaran, J. Phys. D, 323001, 2010) (Anatase TiO₂: H.G. Yang et al, Nature **453**, 638, 2008)

 Applications to photonics crystals, photo/electrochromic devices, gas sensors, spintronic devices, anticancer or gene therapies, solar cells for electric energy or hydrogen production

DISCHARGE CONFIGURATION

- Atmospheric pressure
- He or Ar with trace reactive gases
- 1D plane-parallel geometry ($\sim 0.2-2 \text{ mm gap}$)
- RF-driven (nominal 13.56 MHz)

EEPF TIME VARIATIONS

• He/N_2 fluid simulation with kinetic (Bolsig+) EEPF calculation

(J. Waskoenig, PhD Thesis, Queens U Belfast, 2010)

- Conclusions used in modeling
 - The EEPF oscillates in time with the rf electron power absorbed
 - The EEPF is Maxwellian below a break energy $\mathcal{E}_b \approx 20 \text{ V}$ (metastable He excitation energy)
 - The EEPF has a low temperature tail above the break energy

PLASMA

LiebermanPSC12

HYBRID DISCHARGE MODEL

• Numerical solution of particle balances for each species $\frac{\mathrm{d}n_j}{\mathrm{d}t} = G_j - L_j$

 G_j = volume creation rate (2-body, 3-body and surfaces) L_j = volume loss rate (2-body, 3-body, and surfaces)

- Analytical solutions of
 - the discharge dynamics (homogeneous model)
 - the time-varying $T_e(t)$
 - the effective rate coefficients $\langle K \rangle$

• Coupling the analytical and numerical solutions

 \implies fast solution of the discharge equilibrium

University of California, Berkeley -----

LiebermanPSC12

COMPARISON TO FLUID SIMULATION

- He/ $0.5\%O_2$ (16 species), 1mm gap, 13.56 MHz
- Neutral (left) and charged (right) densities versus power

(open symbols — global model; solid symbols — fluid results, Waskoenig, 2010)

• \Rightarrow Reasonable agreement of model and fluid simulations 40 sec simulation time on fast laptop

LiebermanPSC12

PLASM

E/H (CAPACITIVE/INDUCTIVE) MODE TRANSITION INSTABILITY IN ELECTRONEGATIVE DISCHARGE

LiebermanPSC12

University of California, Berkeley

MOTIVATION

- Low pressure inductive reactors for thin film processing
 - Example: fabrication of CMOS transistors for microprocessors/memory
 - Inductive reactors often operate near the E/H transition with electronegative feedstock gases
 - Macroscopic instabilities observed in both commercial and research reactors

University of California, Berkeley

LiebermanPSC12

E/H MODE TRANSITION

- Plasma resistance R_e versus n_e as $I_{\rm rf}$ is varied
- A "gap" occurs between $I_{\rm rf} = 7.5$ and 8 A

- Previous measurements (many) and global models (many) indicate instability
- First calculation of E/H instability in fluid simulations

BULK-FLUID/ANALYTIC-SHEATH MODEL

• Inductive reactor (Malyshev and Donnelly, 2000–01)

- Electromagnetic field solve
- Fluid bulk plasma model
- Analytical sheath model
- Flow model of reactive gas
- Commercial software (COMSOL)

(Kawamura et al, PSST 2011) LiebermanPSC12

E/H TRANSITION INSTABILITY

- Example: 2.2 kHz instability in 15 mTorr Cl₂ at $I_{\rm rf} = 7.75$ A, showing (a) $n_{\rm Cl^-}(t)$, (b) $n_e(t)$, and (c) $T_e(t)$
 - At time t_1 the discharge enters capacitive mode
 - From t_1-t_2 the discharge is in capacitive mode
 - From t_2-t_3 the discharge makes a transition to inductive mode
 - From t_3-t_4 the discharge is in inductive mode
 - From t_4-t_1 the discharge makes a transition back into capacitive mode

LiebermanPSC12

 $^{\circ.0}$ Lieberman PSC 12 $^{\circ.18}$

FLUID AND GLOBAL MODEL COMPARISON

- Intersection of $dn_e/dt = 0$ and $dn_-/dt = 0$ curves \Rightarrow equilibrium
- Slope dn_-/dn_e of $dn_e/dt = 0$ curve positive \Rightarrow unstable

• Good agreement of fluid calculation and analytical global model

LiebermanPSC12

University of California, Berkeley

16

NEUTRAL TIME AVERAGES OVER INSTABILITY

- Neutral species time variations are very small
- Time averages:

- T_q rises to 530 K inside discharge
- Chlorine density varies significantly with radius $_{\text{LiebermanPSC12}}$

University of California, Berkeley

SUMMARY

- A one-dimensional hybrid analytical-numerical global model of atmospheric pressure, rf-driven capacitive discharges was developed
- Coupling analytical solutions of the time-varying discharge and EEPF dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium (Lazzaroni et al, to appear in PSST, 2012)
- The E/H transition instability has been found and studied in 2D fluid simulations
- The fluid instability dynamics is in good agreement with an analytical global model

(Kawamura et al, submitted to PSST, 2012)

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

 ${\it LiebermanPSC12}$

University of California, Berkeley