NONLINEARITY AND WAVES IN CAPACITIVE DISCHARGES

M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: E. Kawamura, A.J. Lichtenberg and D.B. Graves, UC Berkeley Pascal Chabert, Ecole Polytechnique De-Qi Wen, Kai Zhao, Jian-Kai Liu, and You-Nian Wang, Dalian University of Technology

Download this talk:

http://www.eecs.berkeley.edu/~lieber

LiebermanICOPS21

PLASMA

University of California, Berkeley

MOTIVATION

• Ensure uniformity and controllability of large area, high frequency capacitive plasma discharges used for thin film processing

Large area \Rightarrow 3m \times 3m glass substrates High frequency \Rightarrow high density, low sheath voltage silicon wafers

• For these conditions, a linear electromagnetics model showed a significant standing wave effect

 \Rightarrow center-high, gradually-varying radial power deposition profile

INSTITUTE OF PHYSICS PUBLISHING

PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 11 (2002) 283-293

PII: S0963-0252(02)36846-4

PLASMA

Standing wave and skin effects in large-area, high-frequency capacitive discharges

M A Lieberman¹, J P Booth², P Chabert², J M Rax² and M M Turner³

LiebermanICOPS21

University of California, Berkeley

MOTIVATION

• 2D fluid simulations with linear electromagnetics showed the same

IOP PUBLISHING

PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 17 (2008) 015018 (16pp)

doi:10.1088/0963-0252/17/1/015018

Modeling electromagnetic effects in capacitive discharges

Insook Lee¹, D B Graves¹ and M A Lieberman²

 ¹ Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
 ² Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA

IOP Publishing

Plasma Sources Science and Technology

Plasma Sources Sci. Technol. 23 (2014) 064003 (12pp)

doi:10.1088/0963-0252/23/6/064003

Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

E Kawamura¹, M A Lieberman¹ and D B Graves²

LiebermanICOPS21

University of California, Berkeley

PLASMA .

HIGHLY-PEAKED PLASMA NONUNIFORMITY

- But experiments often showed very sharply peaked density
- Asymmetric argon capacitive discharge (2.5 cm gap, driven at 60 MHz), showing $n_e(r) \Longrightarrow$ (Sawada et al, JJAP, 2014)
- Could sheath nonlinearities generate driving frequency harmonics responsible for these sharp peaks?
- Investigate coupling of nonlinearlygenerated harmonics of the driving frequency to the standing waves using a radial transmission line model

Fig. 3. Experimentally measured electron density profiles along the testbench A reactormidgapfor argon plasmadriven at 60 MHz. Top: 100 mTorr. LiebermanICOP^{Bettom: 15 mTorr.}

DISCHARGE UNIFORMITY:

COUPLING OF SHEATH NONLINEARITIES TO EM PLASMA WAVES

LiebermanICOPS21

University of California, Berkeley -

PLASMA -

ASYMMETRICALLY-DRIVEN DISCHARGE

- Cylindrical discharge radius R and gap 2l
- Driven axisymmetrically at radius R_x by high frequency source $V_{\rm rf}$

Sheath nonlinearities couple to bulk plasma \Rightarrow resonances

LiebermanICOPS21

University of California, Berkeley

NONLINEAR SHEATHS AND SERIES RESONANCE

- Sinusoidal rf driving source: $V_{\rm rf} = V_{\rm rf0} \cos \omega t$
- Sheaths are strongly nonlinear; for Child law: $V_{sh} \propto Q_{sh}^4$
- Sheath nonlinearity generates harmonics 2ω , 3ω , ...
- Series resonance (capacitive sheaths + inductive plasma) near the *N*th harmonic:

$$N\omega pprox \omega_{
m\scriptscriptstyle SR} = \left(rac{ar s}{l}
ight)^{1/2} \omega_{pe}$$

 $(\bar{s} = \text{mean sheath width}; \omega_{pe} = \text{plasma frequency}; l = \text{half-gap width})$

(Dash-dot – smooth w/o harmonics; red – oscillations with harmonics)

LiebermanICOPS21

University of California, Berkeley

PLASMA -

ELECTROMAGNETICS AND SPATIAL RESONANCE

- Top electrode/bulk plasma/bottom electrode sandwich forms a 3-electrode system in which two radially-propagating TM wave modes (H_{ϕ}, E_r, E_z) exist
- Symmetric mode: $E_{zs} = A(r, t) \cosh \alpha z$
- Antisymmetric mode: $E_{za} = B(r, t) \sinh \alpha z$ (α = inverse plasma skin depth)
- Radial (spatial) resonance near *M*th driving frequency harmonic; e.g., for 1st antisymmetric mode

$$M\omega \approx \omega_a = 3.83 \,\omega_{pe} \frac{\sqrt{\bar{s}d}}{R}$$

 $(\bar{s} = \text{mean sheath width}; \omega_{pe} = \text{plasma frequency};$ d = half-bulk width; R = discharge radius)

SM

LiebermanICOPS21

University of California, Berkeley

UNIFORMLY-EXCITED SPATIAL RESONANCES

• For uniform (in r) excitations of the spatial resonances, the radial variations of $E_z(r)$ are Bessel functions

• For nonuniform radial excitations, these spatial resonance curves become distorted

LiebermanICOPS21

MODEL SOLUTION AND DISCHARGE PARAMETERS

(De-Qi Wen et al, PoP, 2017)

- Maxwell's equations + Newton's laws for symmetric and antisymmetric modes at low pressure
- Initial assumption of uniform density plasma slab
- Self-consistent (nonlinear) rf Child law in the radially-varying sheaths

 \implies Set of nonlinear pde's in (r, t), solved numerically

- Typical commercial system parameters:
 - -p = 10 mTorr chlorine
 - discharge radius R = 25 cm, gap 2l = 5 cm,
 - powered electrode radius $R_x = 15$ cm
 - total source power $P \approx 200 \text{ W} (n_{e0} \approx 2 \times 10^{16} \text{ m}^{-3})$
- Examples of 30 MHz ($V_{\rm rf0} = 560$ V) and 60 MHz ($V_{\rm rf0} = 160$ V) Compare 30 and 60 MHz electron powers

PLASM

LiebermanICOPS21

University of California, Berkeley

30 MHZ V_{disch} , I_{disch} , AND ELECTRON POWER

- The discharge current shows a strong 9th harmonic oscillation (near the series resonance frequency)
- The total electron power in the harmonics is fairly small
- However, the radial profiles ...

LiebermanICOPS21

University of California, Berkeley

30 MHz VOLTAGE AND CURRENT HARMONICS

• Weak 1st harmonic standing wave

• Significant 9th harmonic series resonance current

LiebermanICOPS21

University of California, Berkeley

60 MHZ V_{disch}, I_{disch}, AND ELECTRON POWER

- The discharge current shows strong 4th–6th harmonic oscillations (near the series resonance frequency)
- There are also strong 2nd and 3rd harmonic powers
- The total electron power in the harmonics is roughly equal to the fundamental power

LiebermanICOPS21

University of California, Berkeley

60 MHz VOLTAGE AND CURRENT HARMONICS

- Strong 1st harmonic standing wave
- Large 4th–6th harmonic series resonance currents near r = 0
- Note: radial power profile $P_z(r) \propto J_z^2(r) \ldots$

LiebermanICOPS21

University of California, Berkeley

University of California, Berkeley

EXPERIMENTAL RESULTS PHYSICAL REVIEW LETTERS **122**, 185002 (2019)

Observation of Nonlinear Standing Waves Excited by Plasma-Series-Resonance-Enhanced Harmonics in Capacitive Discharges

Kai Zhao,^{1,2,*} De-Qi Wen,^{1,*} Yong-Xin Liu,^{1,†} Michael A. Lieberman,³

Plasma Sources Sci. Technol. 27 (2018) 055017

K Zhao et al

- 28 cm diameter argon plasma CCP reactor
- 21 cm diameter plates with 3 cm gap
- $B_{\phi}(r)$ measured with a B-dot probe (2–200 MHz)

University of California, Berkeley

EXPERIMENTAL RESULTS (FREQUENCY)

FIG. 1. Experimental data (points) and simulation predictions (lines) for discharges driven at 13.56 MHz (left) and 100 MHz (right) at 3 Pa, for a fixed power of 80 W: radial distributions of the harmonic magnetic field $B_{\varphi,n}$ (a),(b), the harmonic voltage V_n (c),(d), and the harmonic current J_n (e),(f). All harmonic amplitudes (n = 1-5) are normalized to the radial maxima [$B_{\varphi,n,\max}$, $V_{n,\max}$, and $J_{n,\max}$ (see Table I)] to obtain a clearer view of the harmonic structures.

PLASMA

LiebermanICOPS21

University of California, Berkeley

EXPERIMENTAL RESULTS (PRESSURE)

FIG. 4. Experimental data (points) and simulation predictions (lines) of the radial distributions of $B_{\varphi,n}$ at different pressures: (a) 3 Pa, (b) 8 Pa, (c) 20 Pa, and (d) 50 Pa. All harmonic magnetic field amplitudes were normalized to the maxima at 3 Pa. Other conditions were $\omega/2\pi = 100$ MHz and power = 80 W.

LiebermanICOPS21

University of California, Berkeley -

FLUID PLASMA MODEL AND HIGH PRESSURES

(Jian-Kai Liu et al, PSST, 2021)

• Couple nonlinear transmission line (NTL) model to spatially-varying bulk plasma fluid model

• Use collisional Child law at higher pressures

 ${\it LiebermanICOPS21}$

University of California, Berkeley

19

HIGH PRESSURE EFFECTS

• Argon discharge, 60 MHz driving frequency, 40 W electron power

- As pressure increases, the nonlinear harmonics damp out, and the enhancement of on-axis power deposition becomes less significant
- Electrostatic edge effects increase the density near the powered electrode edge
- These pressure effects also seen in experiments LiebermanICOPS21

University of California, Berkeley -

FREQUENCY VARIATIONS

(Jian-Kai Liu, work in progress)

- With increasing driving frequency,
 - the powered sheath width $s_{p,ave}$ decreases to near $s_{g,ave}$
 - the discharge voltage $V_{\rm tot}$ decreases to a few 10's of volts
- Near 80 MHz, the driving frequency becomes equal to the 1st antisymmetric mode radial resonance $(P_r \rightarrow P_z)$
- Near 100 MHz, the driving frequency becomes equal to the 1st symmetric mode radial resonance $(V_{\text{reac}} \rightarrow 0, P_r \ll P_z)$

DENSITY VARIATION WITH FREQUENCY

ADD DIELECTRIC LAYER TO POWERED ELECTRODE

(E. Kawamura et al, JVSTA, 2017)

• Radial wavelength $\propto \sqrt{\text{sheath width}}$ \Rightarrow a dielectric layer increases the "effective" sheath width

DISCHARGE CONTROLLABILITY:

$\begin{array}{l} \textbf{RADIAL WAVE RESONANCES} \Rightarrow \textbf{HYSTERESIS} \\ \Rightarrow \textbf{MULTIPLE EQUILIBRIUM STATES} \end{array}$

LiebermanICOPS21

University of California, Berkeley

24

HYSTERESIS DENSITIES n_e

26

HYSTERESIS MODEL

- Symmetric mode not spatially resonant
- Antisymmetric mode has radial (spatial) resonance
- Plot power absorbed and power lost versus density intersection(s) \implies discharge equilibrium

LiebermanICOPS21

DISCHARGE CONTROLLABILITY:

$\begin{array}{l} \textbf{RADIAL RESONANCES} \Rightarrow \textbf{SYMMETRY-BREAKING} \\ \Rightarrow \textbf{MULTIPLE EQUILIBRIUM STATES} \end{array}$

LiebermanICOPS21

University of California, Berkeley

28

SYMMETRIC DISCHARGE SYMMETRICALLY EXCITED

29

FLUID SIMULATIONS

(E. Kawamura et al, PoP, 2018)

• Sheath nonlinearity coupled to antisymmetric mode resonance

\implies Symmetry-breaking

• Discharge can be in two states: top sheath > bottom sheath, or bottom sheath > top sheath at r = 0

LiebermanICOPS21

University of California, Berkeley

WHEATSTONE BRIDGE MODEL

• Central and peripheral regions connect to each other through the radial fields of the antisymmetric mode

• Due to the sheath capacitance nonlinearity ⇒ classic pitchfork bifurcation as frequency is varied

LiebermanICOPS21

University of California, Berkeley

CONCLUSIONS

- Large area and/or high frequency capacitive rf discharges are used extensively for thin film processing
- In these discharges, sheath nonlinearities can couple to radiallypropagating EM wave modes, producing strong resonance effects
- Understanding these effects can be critical for achieving good uniformity and control of the processing environment

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

LiebermanICOPS21

University of California, Berkeley

32