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MOTIVATION

• Ensure uniformity and controllability of large area, high
frequency capacitive plasma discharges used for thin film processing

Large area ⇒ 3m × 3m glass substrates
High frequency ⇒ high density, low sheath voltage silicon wafers

• For these conditions, a linear electromagnetics model showed
a significant standing wave effect

=⇒ center-high, gradually-varying radial power deposition profile

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 11 (2002) 283–293 PII: S0963-0252(02)36846-4

Standing wave and skin effects in
large-area, high-frequency capacitive
discharges
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M M Turner3
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MOTIVATION

• 2D fluid simulations with linear electromagnetics showed the same

IOP PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY
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Modeling electromagnetic effects in
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Plasma Sources Science and Technology
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Fast 2D fluid-analytical simulation of ion

energy distributions and electromagnetic

effects in multi-frequency capacitive
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HIGHLY-PEAKED PLASMA NONUNIFORMITY

• But experiments often showed
very sharply peaked density

•Asymmetric argon capacitive dis-
charge (2.5 cm gap, driven at
60 MHz), showing ne(r) =⇒
(Sawada et al, JJAP, 2014)

• Could sheath nonlinearities gen-
erate driving frequency har-
monics responsible for these
sharp peaks?

• Investigate coupling of nonlinearly-
generated harmonics of the driv-
ing frequency to the standing
waves using a radial transmis-
sion line model Fig. 3. Experimentally measuredelectrondensityprofiles along the test-

benchA reactormidgapfor argonplasmadrivenat 60MHz. Top: 100mTorr.

Bottom: 15mTorr.

Peak

Peak
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DISCHARGE UNIFORMITY:

COUPLING OF SHEATH NONLINEARITIES
TO EM PLASMA WAVES
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ASYMMETRICALLY-DRIVEN DISCHARGE

• Cylindrical discharge radius R and gap 2l

• Driven axisymmetrically at radius Rx by high frequency source Vrf
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NONLINEAR SHEATHS AND SERIES RESONANCE

• Sinusoidal rf driving source: Vrf = Vrf0 cosωt

• Sheaths are strongly nonlinear; for Child law: Vsh ∝ Q4
sh

• Sheath nonlinearity generates harmonics 2ω, 3ω, ...

• Series resonance (capacitive sheaths + inductive plasma)
near the Nth harmonic:

Nω ≈ ωSR =
( s̄

l

)1/2

ωpe

(s̄ = mean sheath width; ωpe = plasma frequency; l = half-gap width)
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(Dash-dot – smooth w/o harmonics; red – oscillations with harmonics)
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ELECTROMAGNETICS AND SPATIAL RESONANCE

• Top electrode/bulk plasma/bottom elec-
trode sandwich forms a 3-electrode system
in which two radially-propagating TMwave
modes (Hφ, Er, Ez) exist

• Symmetric mode: Ezs = A(r, t) coshαz

• Antisymmetric mode: Eza = B(r, t) sinhαz

(α = inverse plasma skin depth)

• Radial (spatial) resonance near Mth driv-
ing frequency harmonic; e.g., for 1st anti-
symmetric mode

Mω ≈ ωa = 3.83ωpe

√
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UNIFORMLY-EXCITED SPATIAL RESONANCES

• For uniform (in r) excitations of the spatial resonances,
the radial variations of Ez(r) are Bessel functions
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• For nonuniform radial excitations, these spatial resonance curves
become distorted
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MODEL SOLUTION AND DISCHARGE PARAMETERS

(De-Qi Wen et al, PoP, 2017)

• Maxwell’s equations + Newton’s laws for symmetric
and antisymmetric modes at low pressure

• Initial assumption of uniform density plasma slab

• Self-consistent (nonlinear) rf Child law
in the radially-varying sheaths

=⇒ Set of nonlinear pde’s in (r, t), solved numerically

• Typical commercial system parameters:
– p = 10 mTorr chlorine
– discharge radius R = 25 cm, gap 2l = 5 cm,
– powered electrode radius Rx = 15 cm
– total source power P ≈ 200 W (ne0 ≈ 2× 1016 m−3)

• Examples of 30 MHz (Vrf0 = 560 V) and 60 MHz (Vrf0 = 160 V)
Compare 30 and 60 MHz electron powers
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30 MHZ Vdisch, Idisch, AND ELECTRON POWER

Normalized voltage and current

discharge
current

discharge
voltage

ωt/2π

Total electron power at 30 MHz

• The discharge current shows a strong 9th harmonic oscillation
(near the series resonance frequency)

• The total electron power in the harmonics is fairly small

• However, the radial profiles . . .
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30 MHz VOLTAGE AND CURRENT HARMONICS

r/R

Bottom normalized Fourier voltage

DC bias

Weak
standing wave

Series
resonance|F

(V
b
)|

r/R

Bottom normalized Fourier Jz

Series
resonance

Weak
standing wave

|F
(J

b
)|

• Weak 1st harmonic standing wave

• Significant 9th harmonic series resonance current
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60 MHZ Vdisch, Idisch, AND ELECTRON POWER

Normalized voltage and current

discharge
current

discharge
voltage

Total electron power at 60 MHz

• The discharge current shows strong 4th–6th harmonic oscillations
(near the series resonance frequency)

• There are also strong 2nd and 3rd harmonic powers

• The total electron power in the harmonics is roughly
equal to the fundamental power
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60 MHz VOLTAGE AND CURRENT HARMONICS

Bottom normalized Fourier voltage

DC bias

Strong
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Series
resonance
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• Strong 1st harmonic standing wave

• Large 4th–6th harmonic series resonance currents near r = 0

• Note: radial power profile Pz(r) ∝ J2
z (r) . . .
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30 AND 60 MHz POWER HARMONICS

30 MHz-driven axial field power
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Measurements of ne(r)
(2.5 cm gap, driven at 60 MHz),
showing central peaking

(Sawada et al, JJAP, 2014)
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EXPERIMENTAL RESULTS

Observation of Nonlinear Standing Waves Excited by Plasma-Series-Resonance-
Enhanced Harmonics in Capacitive Discharges

Kai Zhao,
1,2,*

De-Qi Wen,
1,*

Yong-Xin Liu,
1,†

Michael A. Lieberman,
3

Demetre J. Economou,
2
and You-Nian Wang

1,‡

1
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education),

PHYSICAL REVIEW LETTERS 122, 185002 (2019)

Figure 1. A schematic of the experimental apparatus equipped with the diagnostics system for case I (two-frequency source is applied on the

Plasma Sources Sci. Technol. 27 (2018) 055017 K Zhao et al

• 28 cm diameter argon plasma CCP reactor
• 21 cm diameter plates with 3 cm gap
• Bφ(r) measured with a B-dot probe (2–200 MHz)
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EXPERIMENTAL RESULTS (FREQUENCY)
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FIG. 1. Experimental data (points) and simulation predictions

(lines) for discharges driven at 13.56 MHz (left) and 100 MHz

(right) at 3 Pa, for a fixed power of 80 W: radial distributions of

the harmonic magnetic field Bφ;n (a),(b), the harmonic voltage Vn

(c),(d), and the harmonic current Jn (e),(f). All harmonic

amplitudes (n ¼ 1–5) are normalized to the radial maxima

[Bφ;n;max, Vn;max, and Jn;max (see Table I)] to obtain a clearer

view of the harmonic structures.
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EXPERIMENTAL RESULTS (PRESSURE)
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FIG. 4. Experimental data (points) and simulation predictions

(lines) of the radial distributions of Bφ;n at different pressures:

(a) 3 Pa, (b) 8 Pa, (c) 20 Pa, and (d) 50 Pa. All harmonic magnetic

field amplitudes were normalized to the maxima at 3 Pa. Other

conditions were ω=2π ¼ 100 MHz and power ¼ 80 W.
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FLUID PLASMA MODEL AND HIGH PRESSURES

(Jian-Kai Liu et al, PSST, 2021)

• Couple nonlinear transmission line (NTL) model
to spatially-varying bulk plasma fluid model
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• Use collisional Child law at higher pressures
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HIGH PRESSURE EFFECTS

• Argon discharge, 60 MHz driving frequency, 40 W electron power

Density Electron temperature

• As pressure increases, the nonlinear harmonics damp out,
and the enhancement of on-axis power deposition
becomes less significant

• Electrostatic edge effects increase the density near the
powered electrode edge

• These pressure effects also seen in experiments
LiebermanICOPS21 20
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FREQUENCY VARIATIONS

(Jian-Kai Liu, work in progress)

• With increasing driving frequency,

– the powered sheath width sp,ave decreases to near sg,ave
– the discharge voltage Vtot decreases to a few 10’s of volts

• Near 80 MHz, the driving frequency becomes equal to
the 1st antisymmetric mode radial resonance (Pr → Pz)

• Near 100 MHz,the driving frequency becomes equal to
the 1st symmetric mode radial resonance (Vreac → 0, Pr ≪ Pz)
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(Argon pressure = 20 mTorr, electron power Pe = 40 W)
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DENSITY VARIATION WITH FREQUENCY

Far from driving frequency
resonance =⇒

Near symmetric mode res-
onance =⇒

Higher frequency shows
strong edge heating =⇒
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ADD DIELECTRIC LAYER TO POWERED ELECTRODE
(E. Kawamura et al, JVSTA, 2017)

• Radial wavelength ∝
√
sheath width

⇒ a dielectric layer increases the “effective” sheath width

300 W Cl2 CCP driven at 100 MHz
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• Dielectric layer increases radial wavelength ⇒ improves uniformity
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DISCHARGE CONTROLLABILITY:

RADIAL WAVE RESONANCES ⇒ HYSTERESIS

⇒ MULTIPLE EQUILIBRIUM STATES
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2D PIC SIMULATIONS OF HYSTERESIS
(De-Qi Wen et al, JPD, 2017)

• High driving frequencies and low pressures ⇒ discharge hysteresis

Argon plasma

10 mTorr, 73 MHz

High density

Low density

30 mTorr, 73 MHz 60 mTorr, 73 MHz
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HYSTERESIS DENSITIES ne

Low density state (10 mTorr, 60 V at 73 MHz)

High density state (10 mTorr, 60 V at 73 MHz)
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HYSTERESIS MODEL

• Symmetric mode not spatially resonant

• Antisymmetric mode has radial (spatial) resonance

• Plot power absorbed and power lost versus density
intersection(s) =⇒ discharge equilibrium

No hysteresis Hysteresis present
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DISCHARGE CONTROLLABILITY:

RADIAL RESONANCES ⇒ SYMMETRY-BREAKING

⇒ MULTIPLE EQUILIBRIUM STATES
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SYMMETRIC DISCHARGE SYMMETRICALLY EXCITED

(Zhao et al, PSST, 2018)

d

l

z

Rr

Sheath

Plasma

0

s

I rf0 cos ωt
+

–

Vt(r,t)

+

_

sSheath

Fluid model

Vb(r,t)

_

+

LiebermanICOPS21 29



University of California, Berkeley PLASMA

FLUID SIMULATIONS
(E. Kawamura et al, PoP, 2018)
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• Sheath nonlinearity coupled to antisymmetric mode resonance

=⇒ Symmetry-breaking

• Discharge can be in two states:
top sheath > bottom sheath, or bottom sheath > top sheath at r = 0
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WHEATSTONE BRIDGE MODEL

• Central and peripheral regions connect to each other
through the radial fields of the antisymmetric mode
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• Due to the sheath capacitance nonlinearity
=⇒ classic pitchfork bifurcation as frequency is varied
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CONCLUSIONS

• Large area and/or high frequency capacitive rf discharges are
used extensively for thin film processing

• In these discharges, sheath nonlinearities can couple to radially-
propagating EM wave modes, producing strong resonance effects

• Understanding these effects can be critical for achieving good
uniformity and control of the processing environment

Download this talk:

http://www.eecs.berkeley.edu/∼lieber
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