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SYSTEM CONFIGURATION

• Cylindrical discharge radius R and gap 2l

• Driven axisymmetrically by high frequency source at radius Rx < R

• Maximum sheath width smax ≪ l ≪ R
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• Uniform density plasma ne0

• Child law sheaths: st,b(r, t)
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ELECTROMAGNETICS AND SPATIAL RESONANCE

• Transverse magnetic (TM) mode structure
(Hφ, Er, Ez)

• Top electrode/bulk plasma/bottom elec-
trode sandwich forms a 3-electrode system
in which two radially-propagating TM wave
modes exist

• Symmetric mode (a): Ezs = A(r, t) coshαz

• Antisymmetric mode (b): Eza = B(r, t) sinhαz

• Low pressure (ν ≪ ω) =⇒

α = ωpe/c = plasma axial decay constant,
ωpe = plasma frequency, c = speed of light

• Radial (quarter-wave) resonance; e.g.,

ωSW =
( s̄
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NONLINEAR SHEATHS AND SERIES RESONANCE

• Sinusoidal rf driving source: Vrf = Vrf0 cosφ; (φ = ωt)

• Sheath motions st,b(r, t) vary nonlinearly
with the voltage across the sheath

• Child law sheath nonlinearity: s(r, t) ∝ V
2/3

sh (r, t)

• Nonlinearity generates driving frequency harmonics 2ω, 3ω, ...

• Series resonance (capacitive sheaths + inductive plasma)
near the Nth harmonic:

ωSR =
( s̄

l

)1/2

ωpe ≈ Nω
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SOLUTION PROCEDURE

• Maxwell’s equations + Newton’s laws for TM modes in the plasma:

symmetric mode: Ezs = A(r, t) coshαz

antisymmetric mode: Eza = B(r, t) sinhαz

• Self-consistent (nonlinear) rf Child law in the sheaths:

=⇒ Set of nonlinear pde’s in (r, t), solved numerically

• Typical commercial system parameters:
p = 10 mTorr chlorine
discharge radius R = 25 cm, gap 2l = 5 cm,
powered electrode radius Rx = 15 cm
ne0 ≈ 2 × 1016 m−3 (electron power ≈ 200 W)
Te = 3.2 V, source resistance ZR = 0.5 Ω
(self-consistent fluid code ⇒ Vrf0 and Te for the specified ne0)

• Mainly examine 30 MHz (Vrf0 = 560 V)
Also compare 30 and 60 MHz power depositions
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30 MHZ NORMALIZED FOURIER VOLTAGES VS ρ = r/R
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30 MHZ VOLTAGES AND SHEATH WIDTHS
Bottom normalized voltage Bottom normalized voltage

Bottom sheath width Top sheath width
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30 MHZ CURRENT DENSITIES, POWER, Vdisch AND Idisch

Top normalized Jz Bottom normalized Jz

Series
resonance

Weak
standing wave

Electron power absorbed Normalized voltage and current
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current
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30 AND 60 MHZ POWERS/UNIT AREA
30 MHz radial field Er

60 MHz radial field Er

30 MHz axial field Ez

60 MHz axial field Ez

Central
peaking
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CONCLUSIONS

• We developed and numerically solved a nonlinear electromagnetics
model of an asymmetrically driven rf capacitive discharge, incorpo-
rating symmetric and antisymmetric radially propagating waves.

• The series resonance-enhanced harmonics of the driving frequency
can couple strongly to the standing wave spatial resonances.

• At 60 MHz, there is significant center-peaking of the higher har-
monic fields and the electron power/area (seen experimentally: GEC
abstract SR3-00007).

• These phenomena may be responsible for the center-peaked plasma
densities seen experimentally in high frequency capacitive discharges
(e.g., Sawada et al, JJAP, 2014).
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