NONLINEAR ELECTROMAGNETICS MODEL OF AN ASYMMETRICALLY DRIVEN CAPACITIVE DISCHARGE

M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: E. Kawamura and A.J. Lichtenberg, UC Berkeley De-Qi Wen and You-Nian Wang, Dalian University of Technology

Publication: Phys. Plasmas **24** 083517 (2017)

Partially supported by DOE Office of Fusion Energy Science

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

LiebermanGEC17

PLASMA

SYSTEM CONFIGURATION

- Cylindrical discharge radius R and gap 2l
- Driven axisymmetrically by high frequency source at radius $R_x < R$
- Maximum sheath width $s_{\max} \ll l \ll R$

LiebermanGEC17

PLASMA

ELECTROMAGNETICS AND SPATIAL RESONANCE

- Transverse magnetic (TM) mode structure (H_{ϕ}, E_r, E_z)
- Top electrode/bulk plasma/bottom electrode sandwich forms a 3-electrode system in which two radially-propagating TM wave modes exist
- Symmetric mode (a): $E_{zs} = A(r,t) \cosh \alpha z$
- Antisymmetric mode (b): $E_{za} = B(r, t) \sinh \alpha z$

• Low pressure
$$(\nu \ll \omega) \Longrightarrow$$

 $\alpha = \omega_{pe}/c =$ plasma axial decay constant, $\omega_{pe} =$ plasma frequency, c = speed of light

• Radial (quarter-wave) resonance; e.g.,

$$\omega_{\rm SW} = \left(\frac{\bar{s}}{l}\right)^{1/2} \frac{2.405 \, c}{R}$$

LiebermanGEC17

NONLINEAR SHEATHS AND SERIES RESONANCE

- Sinusoidal rf driving source: $V_{\rm rf} = V_{\rm rf0} \cos \phi$; $(\phi = \omega t)$
- Sheath motions $s_{t,b}(r,t)$ vary nonlinearly with the voltage across the sheath
- Child law sheath nonlinearity: $s(r,t) \propto V_{sh}^{2/3}(r,t)$
- Nonlinearity generates driving frequency harmonics 2ω , 3ω , ...
- Series resonance (capacitive sheaths + inductive plasma) near the *N*th harmonic:

LiebermanGEC17

PLASM

SOLUTION PROCEDURE

• Maxwell's equations + Newton's laws for TM modes in the plasma:

symmetric mode: $E_{zs} = A(r, t) \cosh \alpha z$

antisymmetric mode: $E_{za} = B(r, t) \sinh \alpha z$

- Self-consistent (nonlinear) rf Child law in the sheaths: \implies Set of nonlinear pde's in (r, t), solved numerically
- Typical commercial system parameters: p = 10 mTorr chlorine discharge radius R = 25 cm, gap 2l = 5 cm, powered electrode radius $R_x = 15$ cm $n_{e0} \approx 2 \times 10^{16}$ m⁻³ (electron power ≈ 200 W) $T_e = 3.2$ V, source resistance $Z_R = 0.5 \Omega$ (self-consistent fluid code $\Rightarrow V_{rf0}$ and T_e for the specified n_{e0})
- Mainly examine 30 MHz ($V_{rf0} = 560$ V) Also compare 30 and 60 MHz power depositions

LiebermanGEC17

PLASMA

30 MHZ NORMALIZED FOURIER VOLTAGES VS $\rho = r/R$

30 MHZ CURRENT DENSITIES, POWER, Vdisch AND Idisch

CONCLUSIONS

- We developed and numerically solved a nonlinear electromagnetics model of an asymmetrically driven rf capacitive discharge, incorporating symmetric and antisymmetric radially propagating waves.
- The series resonance-enhanced harmonics of the driving frequency can couple strongly to the standing wave spatial resonances.
- At 60 MHz, there is significant center-peaking of the higher harmonic fields and the electron power/area (seen experimentally: GEC abstract SR3-00007).
- These phenomena may be responsible for the center-peaked plasma densities seen experimentally in high frequency capacitive discharges (e.g., Sawada et al, JJAP, 2014).

```
Publication: Phys. Plasmas 24 083517 (2017)
```

Download this talk:

http://www.eecs.berkeley.edu/~lieber

LiebermanGEC17

PLASMA