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INTRODUCTION — STANDING WAVES
(Lieberman et al, PSST, 2002)

• Cylindrical discharge driven at outer radius

• Linear sheath model (constant sheath width s̄)

• Electromagnetic fields
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INTRODUCTION — NONLINEAR SERIES RESONANCE
(Mussenbrock and Brinkmann, APL, 2006; Lieberman et al, PoP, 2008)

• Voltage-driven, asymmetric (single sheath) discharge

• Nonlinear (homogeneous) sheath model s̄(t) ∝
√

Vs(t)

• Electrostatic fields
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• Series resonance (capacitive sheath + inductive plasma)
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SERIES RESONANCE ENHANCED STANDING WAVES
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• Nonlinear radially-varying sheath + electromagnetic fields

• Low density regime (Ez ≫ Er) with ordering

s ≪ l ≪ δp, R

with δp = c/ωp the collisionless skin depth
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MODEL EQUATIONS AND BASE CASE
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∂t
= Jd − Ji0 + Je0e

−Σ
2/2eneǫ0Te , Σ > 0, (sheath charge)

∂Jd

∂t
=

e2ne

md
(Vd − Vdc) −

e

2ǫ0md
Σ2

− νJd, (axial current density)

1

r

∂

∂r

(

r
∂Vd

∂r

)

= µ0l
∂Jd

∂t
, (radial transmission line voltage)

Σ = enes(r, t), ν = collision frequency, Vdc = bias voltage

• Solve for Vd(r, t), Jd(r, t), s(r, t), and Vdc

• BASE CASE:
l = 2 cm, R = 15 cm conducting electrodes
10 mT argon, ne = 2 × 1016 m−3, Te = 3 V
V0 = 500 V, f = 60 MHz, RT = 0.5 Ω
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BASE CASE DISCHARGE VOLTAGE AND CURRENT
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• Normalized discharge voltage has weak harmonic content at r = R;
stronger at r = 0

• Voltage at r = R can be greater than at r = 0

• Normalized discharge current density shows strong harmonics;
series resonance oscillations at r = R; strong at r = 0
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BASE CASE VOLTAGE AND SHEATH MOTION
(65 times within an rf cycle)
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• Maximum discharge voltage is higher at r = 0 than at r = R

• Minimum sheath width at r = 0 is smaller than at r = R
⇒ electrons collected near r = 0, ions collected near r = R

• Maximum sheath width at r = 0 is larger than at r = R

• Sheath motion shows series resonance oscillations; strong at r = 0
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BASE CASE FOURIER TRANSFORMS OF V AND J
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• Fundamental voltage and current show a weak standing wave

• Voltage shows significant 3rd and 4th harmonics

• Discharge current shows strong central (r = 0) 3–6 harmonics

— J ∝ ωCV (capacitive sheath)

— Series resonance enhancement (sheath resonates with plasma)
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BASE CASE TOTAL POWER AND EXCITATION V-I
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• Total electron power has strong 3rd and 4th harmonics

• Excitation voltage is nearly sinusoidal with a dc bias

• Excitation current has strong harmonic content
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POWER/AREA VS FREQUENCY AND RADIUS
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• Strong spatial resonance effects seen near Mω = ωSW
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CENTER-TO-AVERAGE POWER/AREA

ne = 2× 1016 m−3
ne = 5× 1015 m−3
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• Dashed vertical lines are the spatial resonances

• Even at lower frequencies there is a significant center-peaking
of the electron power/area
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CONCLUSIONS

• We developed and numerically solved a nonlinear radial transmission
line model of an asymmetrically driven rf capacitive discharge.

• We found that the series resonance-enhanced harmonics of the driv-
ing frequency coupled strongly to the standing wave spatial reso-
nances.

• We found significant center-peaking of the electron power/area, even
at low excitation frequencies.

• These phenomena may be responsible for the center-peaked plasma
density seen experimentally in high frequency capacitive discharges
(e.g., Sawada et al, JJAP, 2014).
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