HYBRID GLOBAL MODEL SIMULATIONS OF He/N₂ AND He/H₂O ATMOSPHERIC PRESSURE CAPACITIVE DISCHARGES

M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: E. Kawamura, A.J. Lichtenberg, UC Berkeley Ke Ding, Donghua University, Shanghai, China C. Lazzaroni, University Paris 13, France P. Chabert, Ecole Polytechnique, France

Download this talk:

http://www.eecs.berkeley.edu/~lieber

LiebermanGEC14

PLASMA

University of California, Berkeley

OUTLINE

- $He/0.1\%N_2$ discharge with simplified chemistry
 - Particle-in-cell (PIC) simulations (hours to days)
 - Use PIC to develop fast hybrid global model (two electron temperatures + sheaths)
 - Hybrid global model simulations (30 seconds)
 - Electron multiplication in sheaths $\Rightarrow \alpha$ -to- γ transition
- He/H_2O bounded discharge with complex chemistry
 - Depletion of H_2O , reaction product diffusion
 - Hybrid model simulations (two minutes)
 - α -to- γ transition including depletion/diffusion effects

LiebermanGEC14

University of California, Berkeley

PLASMA ----

He/N₂ DISCHARGE

(Kawamura et al, PSST 23, 035014, 2014)

- Helium with 1000 ppm nitrogen at 760 Torr
- 1D plane-parallel geometry with 1 mm gap
- Current driven at 13.56–40.68 MHz, $J = 400-6000 \text{ A/m}^2$
- Simplified reaction set with fixed He and N₂ densities:

e + He → e + He, Elastic Scattering e + N₂ → e + e + N₂⁺, Ionization e + N₂⁺ → N + N, Recombination (N is not followed in the PIC) N₂⁺ + He → N₂⁺ + He, Ion Elastic Scattering e + He → e + He^{*}, Metastable Excitation He^{*} + 2He → He₂^{*} + He, Loss of He^{*} (He₂^{*} is not followed in the PIC) He^{*} + N₂ → e + N₂⁺ + He, Penning Ionization by He^{*} He^{*} + He → He^{*} + He, He^{*} Elastic Scattering

LiebermanGEC14

PLASMA

University of California, Berkeley

PIC RESULTS (cont'd)

He/N_2 HYBRID MODEL ASSUMPTIONS

- Homogeneous discharge model for E(z,t) and s(t) (analytic)
- Electron power balance in bulk determines warm $T_e(t)$ (analytic) (ohmic power $J \cdot E \approx$ e-He elastic scattering power loss)
- E/n_{He} in sheaths determines hot $T_h(t)$ (analytic, BOLSIG+)
- Time-average over oscillating temperatures gives warm and hot electron rate coefficients (analytic, BOLSIG+)
- Uniform or triangular ion source profile within Child law sheath determines the mobility-driven ion wall losses (analytic)
- Secondary and Penning multiplication factors (numerical)
- Particle balance relations (numerical, using MATLAB ode15s)

 \Rightarrow Fast solution of discharge equilibrium

University of California, Berkeley

LiebermanGEC14

PLASMA

$\rm He/H_2O$ MODELING

• In an experiment, a 1 cm radius 0.5 mm gap discharge was embedded in a large chamber with fixed H₂O concentration

(P. Bruggeman et al, JPD 43, 012003, 2010)

• In a global model (46 species, 577 reactions), particle and energy balance were solved to determine the discharge equilibrium

(D.X. Liu et al, PSST 19, 025018, 2010)

• Discharge depletes external H_2O density, reaction products diffuse to axial and radial walls, sheaths cause α -to- γ transition

PLASMA

LiebermanGEC14

University of California, Berkeley

He/H₂O ADDITIONAL HYBRID MODEL PHYSICS

(Ke Ding et al, JPD 47, 305203, 2014)

- Diffusive flow of H₂O into discharge region (analytic)
- Diffusive flow of reaction products to walls (analytic)
- Multiple Penning processes and positive ion wall losses (numerical)
- 203 reactions, 43 species (includes clusters up to $H_{19}O_9^+$)

LiebermanGEC14

VARIATIONS WITH J AND H₂O CONCENTRATION

• Radius 1 cm, gap 0.5 mm, 13.56 MHz, secondary emission = 0.25

10

DENSITY VARIATIONS WITH J AT 1000 ppm H₂O

• Radius 1 cm, gap 0.5 mm, 13.56 MHz, secondary emission = 0.25

- $H_{11}O_5^+$ is the main ion in α -mode
- HeH⁺ is the main ion in the γ -mode
- The α -mode scalings $n_e \propto J$ and $n_h \approx \text{const}$ are seen

LiebermanGEC14

PLASMA -

PRINCIPAL REACTION PATHWAYS ANALYSIS

(Ke Ding et al, submitted to JPD, 2014)

- Open source software package PumpKin (www.pumpkin-tool.org) (A. H. Markosyan, A. Luque, F. Gordillo-Vazquez, and U. Ebert, Comput. Phys. Commun. 185, 2697, 2014)
- Example of O_2 formation from H_2O
 - The important intermediates are OH, HO_2 , and H_2O_2
 - OH is produced from H_2O via Penning ionization-initiated cluster formation, and also by direct electron dissociation
 - OH production is followed by

 $2 \cdot (2 \text{ OH} + \text{He} \rightarrow \text{H}_2\text{O}_2 + \text{He})$ $e + \text{H}_2\text{O}_2 \rightarrow 2 \text{ OH} + e$ $OH + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2 + \text{H}_2\text{O}$ $OH + \text{HO}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O}$

LiebermanGEC14

University of California, Berkeley

PLASMA

SUMMARY

- We used PIC simulations of a He/N₂ atmospheric pressure rf capacitive discharge, with simplified chemistry, to develop a hybrid global model including sheaths and two electron temperatures.
- The hybrid model simulations of the discharge gave reasonable agreement with the PIC simulations, including the α -to- γ transition.
- We added trace gas depletion and reaction product diffusion to the hybrid model to simulate a chemically complex He/H_2O bounded discharge.
- We determined the H_2O depletion, the reaction product diffusion, the α -to- γ transition, the suppression of the α -mode by the sheaths at high H_2O concentrations, and the principal pathways for various species.

Download this talk:

 $\rm http://www.eecs.berkeley.edu/{\sim}lieber$

LiebermanGEC14

University of California, Berkeley

1:

PLASM