FAST ANALYTICAL/NUMERICAL MODEL OF ATMOSPHERIC PRESSURE RADIO-FREQUENCY CAPACITIVE DISCHARGES M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: A.J. Lichtenberg, UC Berkeley, USA C. Lazzaroni and P. Chabert, Ecole Polytechnique, France A. Leblanc, ENS Cachan, France Jing Zhang, Donghua U, Shanghai, China

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

LiebermanGEC10

PLASMA

OUTLINE

- Motivation, scope and goal
- Electron energy probability function (EEPF) in atmospheric pressure capacitive rf discharges
- Fast analytical/numerical model formulation
- Brief summary of results

LiebermanGEC10

University of California, Berkeley

MOTIVATION

- Biomedical example of reactive oxygen species (Review article: H.W. Lee et al, J. Phys. D 44, 053001, 2011)
 - Applications to sterilization, cancer cell treatment, blood coagulation, wound healing
- Unique materials example of anatase crystalline TiO₂ (Review article: D. Mariotti and R.M. Sankaran, J. Phys. D, 323001, 2010) (Anatase TiO₂: H.G. Yang et al, Nature 453, 638, 2008)
 - Applications to photonics crystals, photo/electrochromic devices, gas sensors, spintronic devices, anticancer or gene therapies, solar cells for electric energy or hydrogen production

SCOPE

- Atmospheric pressure
- He or Ar with trace reactive gases
- 1D plane-parallel geometry ($\sim 0.1-1 \text{ mm gap}$)
- RF-driven (~ 13.56 MHz)

GOAL

- Fluid models
 - Space variations (sheaths and bulk plasma resolved)
 - Time variations (rf timescale resolved)
 - Simulations are slow
- Global models
 - No consideration of space and time variations
 - Simulations are fast
- Incorporate space and time variations into a fast global model
- The main issue is the time-variation of the EEPF
 - At low pressures $\tau_{\epsilon} \gg \tau_{\rm rf}$ (τ_{ϵ} = electron energy relaxation time) \implies EEPF varies only weakly with time

PLASM

— At atmospheric pressure $\tau_{\epsilon} \lesssim \tau_{\rm rf}$

 \implies EEPF is strongly modulated in time

LiebermanGEC10

EEPF'S IN ATMOSPHERIC PRESSURE RF CAPACITIVE DISCHARGES

LiebermanGEC10

University of California, Berkeley -

- PLASMA

EEPF TIME VARIATIONS — He 1D PIC SIMULATION

• At high pressures, $\tau_{\epsilon} \ll \tau_{\rm rf}$; the EEPF varies strongly with time

LiebermanGEC10

PLASMA

ELECTRON KINETIC ENERGY TIME VARIATIONS

• He 1D PIC simulation at various frequencies

PLASMA

EEPF TIME VARIATIONS

• He/N2 fluid simulation with kinetic (Bolsig+) EEPF calculation

(J. Waskoenig, PhD Thesis, Queens U Belfast, 2010)

- Conclusions used in modeling
 - The EEPF oscillates in time with the rf electron power absorbed
 - The EEPF is Maxwellian below a break energy $\mathcal{E}_b \approx 20 \text{ V}$ (metastable He excitation energy)
 - The EEPF has a low temperature tail above the break energy

LiebermanGEC10

University of California, Berkeley

TIME-AVERAGE EEPF — ANALYTICS

• The time average of a Maxwellian distribution with time-varying T_e is non-Maxwellian, with an enhanced low-temperature tail

FAST ANALYTICAL/NUMERICAL MODEL FORMULATION

LiebermanGEC10

University of California, Berkeley -

12

- PLASMA

HOMOGENEOUS DISCHARGE MODEL

- Uniform density ions with rf oscillation of electron cloud
 - \implies analytical expression for electron power absorbed $P_e(t)$

ELECTRON ENERGY BALANCE

$$\frac{3}{2}en_e \frac{\mathrm{dT}_e}{\mathrm{d}t} = P_e(t) - en_e \frac{3m}{M} \nu \mathrm{T}_e - \sum_j en_e \nu_j \mathcal{E}_j$$

Elastic loss Inelastic loss (small

 \implies analytical expression for $T_e(t)$

 $T_e(t) = \overline{T}_e + \widetilde{T}_e \cos(2\omega t + \phi_0)$

EFFECTIVE RATE COEFFICIENTS

- Electron-activated processes strongly affected by $T_e(t)$
- Maxwellian rate coefficient

$$K = K_0 \exp(-\mathcal{E}_a/\mathrm{T}_e)$$

• Average over oscillating temperature

 \implies Effective rate coefficient

$$\overline{K} = K_0(2\widetilde{T}_e) \operatorname{erfc}\left(\sqrt{\mathcal{E}_a/2\widetilde{T}_e}\right)$$

for energies below the break (He metastable) energy \mathcal{E}_b

• Effective rate coefficient $\overline{K} = \overline{K(\text{EEPF}(t))} \neq K(\overline{\text{EEPF}(t)})$

University of California, Berkeley

RATE COEFFICIENTS ABOVE THE BREAK ENERGY

- Above the He metastable energy \mathcal{E}_b , the tail temperature is $T_c < T_e$
- T_c is found analytically from kinetic theory

$$T_c = \frac{E_b}{n_g} \left(\frac{1}{3\sigma_{\rm m0}\sigma_{\rm exc0}}\right)^{1/2}$$

where $E_{\rm b}$ is the bulk plasma electric field, n_g is the gas density, $\sigma_{\rm m0}$ and $\sigma_{\rm exc0}$ are the elastic and excitation cross sections

(B.M. Smirnov, 1981; M.A. Lieberman and A.J. Lichtenberg, 2005)

• Effective rate coefficient for the He metastable excitation

$$\overline{K} = K_0(2\widetilde{T}_e) \underbrace{\left(\frac{\widetilde{T}_e}{\widetilde{T}_e}\right)^2}_{\text{Drects breach supervised}} \operatorname{erfc}\left(\sqrt{\mathcal{E}_a/2\widetilde{T}_e}\right)$$

Due to break energy

LiebermanGEC10

DISCHARGE CHEMISTRY

• Particle balance for each species

$$\frac{\mathrm{d}n_j}{\mathrm{d}t} = G_j - L_j$$

 G_j = volume creation rate (2-body, 3-body and surfaces) L_j = volume loss rate (2-body, 3-body, and surfaces)

- Numerically integrated using the effective rate coefficients \overline{K}
- The analytical solution of
 - the discharge dynamics
 - the time-varying $T_e(t)$
 - the effective rate coefficients \overline{K}
 - AND

the numerical solution of the particle balances

 \implies fast solution of the discharge equilibrium

LiebermanGEC10

University of California, Berkeley

17

SUMMARY OF SYSTEMS STUDIED

- $He/0.1\%N_2$, 8 species, 15 reactions
 - Comparison to 1D fluid plus Bolsig+ kinetic simulations:
 - (J. Waskoenig, Thesis, Queens U, 2010; PSST **19**, 045018, 2011)
 - Mostly within a factor of 2 for all species densities, \overline{T}_e , V_{rf} , etc — Simulation time ≈ 7 s on a MacBook Pro
- He/0.5%O₂, 16 species, 127 reactions — As above; simulation time ≈ 40 s

(C. Lazzaroni et al, MS submitted to Plasma Sources Sci. Technol. 2011)

- Ar/13%O₂/0.073%TiCl₄, 28 species, 195 reactions Some crude comparisons to anastase crystalline TiO₂ deposition (Dexin Wang et al, MS submitted to Nature, 2011)
 - Precursor identified as TiO_2Cl_3 , $DR \approx 0.5$ nm/s, etc
 - Simulation time ≈ 95 s

(A. Leblanc et al, MS submitted to Plasma Chem. Plasma Process. 2011)

LiebermanGEC10

University of California, Berkeley

OVERALL SUMMARY

- PIC/kinetic simulations show an EEPF strongly modulated at the rf frequency
- A one-dimensional hybrid analytical-numerical global model of atmospheric pressure, rf-driven capacitive discharges was developed.
- Coupling analytical solutions of the time-varying discharge and EEPF dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium.

Acknowledgments:

Department of Energy Office of Fusion Energy Science Contract DE-SC000193, the University of California France-Berkeley Fund, and a key project of the Natural Science Foundation of China Contract 10835004

Download this talk:

 $http://www.eecs.berkeley.edu/{\sim}lieber$

PLASMA

LiebermanGEC10