NONLINEARITY AND WAVES IN CAPACITIVE DISCHARGES

M.A. Lieberman

Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720

Collaborators: E. Kawamura and A.J. Lichtenberg, UC Berkeley Pascal Chabert, Ecole Polytechnique De-Qi Wen, Kai Zhao, and You-Nian Wang, Dalian University of Technology

Download this talk:

http://www.eecs.berkeley.edu/~lieber

LiebermanAKT19

PLASMA

MOTIVATION

• Radial uniformity in high frequency capacitive discharges

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 11 (2002) 283-293

PII: S0963-0252(02)36846-4

PLASMA

Standing wave and skin effects in large-area, high-frequency capacitive discharges

M A Lieberman¹, J P Booth², P Chabert², J M Rax² and M M Turner³

- Linear analytical electromagnetics model showed
 - Standing wave effect \implies center-high power deposition
 - Skin effect \implies center-low power deposition

LiebermanAKT19

MOTIVATION

• 2D fluid simulations with linear electromagnetics showed the same

IOP PUBLISHING

PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 17 (2008) 015018 (16pp)

doi:10.1088/0963-0252/17/1/015018

Modeling electromagnetic effects in capacitive discharges

Insook Lee¹, D B Graves¹ and M A Lieberman²

 ¹ Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
² Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA

IOP Publishing

Plasma Sources Science and Technology

Plasma Sources Sci. Technol. 23 (2014) 064003 (12pp)

doi:10.1088/0963-0252/23/6/064003

SM

Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

E Kawamura¹, M A Lieberman¹ and D B Graves²

• But experiments sometimes showed very sharply peaked central plasma nonuniformity

LiebermanAKT19

CENTRAL PLASMA NONUNIFORMITY

• Asymmetric argon capacitive discharge (2.5 cm gap, driven at)60 MHz), showing $n_e(r)$ (Sawada et al, JJAP, 2014)

• Investigate coupling of nonlinearlygenerated series-resonance enhanced harmonics of driving frequency to standing waves using a single-sheath radial transmission line model

Fig. 3. Experimentally measured electron density profiles along the testbench A reactor midgap for argon plasma driven at 60 MHz. Top: 100 mTorr. Bottom: 15 mTorr.

SM

LiebermanAKT19

TRANSMISSION LINE MODEL RESULTS

• Series resonances

$$\omega_{\rm SR} = N\omega = \left(\frac{s}{d}\right)^{1/2} \omega_{pe}$$

• Standing wave resonances

$$\omega_{\text{wave}} = M\omega = \left(\frac{s}{d}\right)^{1/2} \frac{\chi_{01}c}{R}$$

• Example

10 mTorr argon driven at 60 MHz and 500 V through 0.5 Ω , 15 cm radius, 2 cm gap, $n_e = 2 \times 10^{16} \text{ m}^{-3}$

LiebermanAKT19

PLASM

DISCHARGE ELECTRON POWER/AREA

- 10 mTorr argon discharge driven through 0.5 Ω , 15 cm radius, 2 cm gap
- Voltage rescaled as $\omega^2 V_{\rm rf} = {\rm const}$ to keep $n_e = 2 \times 10^{16} {\rm m}^{-3}$

ASYMMETRICALLY-DRIVEN DISCHARGE

- Motivation: uniformity and controllability of large area, high frequency capacitive discharges for thin film processing
- Cylindrical discharge radius R and gap 2l
- Driven axisymmetrically at radius R_x by high frequency source $V_{\rm rf}$

Coupling of Child law sheath nonlinearities to waves

LiebermanAKT19

University of California, Berkeley

NONLINEAR SHEATHS AND SERIES RESONANCE

- Sinusoidal rf driving source: $V_{\rm rf} = V_{\rm rf0} \cos \omega t$
- Child law sheaths strongly nonlinear: $V_{sh} \propto Q_{sh}^4$
- Sheath nonlinearity generates harmonics 2ω , 3ω , ...
- Series resonance (capacitive sheaths + inductive plasma) near the Nth harmonic:

$$N\omega \approx \omega_{\rm SR} = \left(\frac{\bar{s}}{l}\right)^{1/2} \omega_{pe}$$

 \bar{s} = mean sheath width; ω_{pe} = plasma frequency

LiebermanAKT19

PLASM

ELECTROMAGNETICS AND SPATIAL RESONANCE

- Top electrode/bulk plasma/bottom electrode sandwich forms a 3-electrode system in which two radially-propagating TM wave modes (H_{ϕ}, E_r, E_z) exist
- Symmetric mode: $E_{zs} = A(r, t) \cosh \alpha z$
- Antisymmetric mode: $E_{za} = B(r, t) \sinh \alpha z$

 $(\alpha = \text{inverse plasma skin depth})$

• Radial (spatial) resonance near *M*th driving frequency harmonic; e.g., for antisymmetric mode

$$M\omega \approx \omega_a = 3.83 \,\omega_{pe} \frac{\sqrt{\bar{s}d}}{R}$$

SM

LiebermanAKT19

THEORETICAL MODEL SOLUTION AND DISCHARGE PARAMETERS

- Maxwell's equations + Newton's laws for symmetric and antisymmetric modes in the plasma
- Self-consistent (nonlinear) rf Child law in the sheaths \implies Set of nonlinear pde's in (r, t), solved numerically
- Typical commercial system parameters: p = 10 mTorr chlorine discharge radius R = 25 cm, gap 2l = 5 cm, powered electrode radius $R_x = 15$ cm electron power $P_e \approx 200$ W ($n_{e0} \approx 2 \times 10^{16}$ m⁻³)
- Example of 30 MHz ($V_{rf0} = 560$ V) Compare 30 and 60 MHz powers

LiebermanAKT19

University of California, Berkeley

30 MHz VOLTAGE AND CURRENT HARMONICS

• Weak 1st harmonic standing wave

• Significant 9th harmonic series resonance

LiebermanAKT19

University of California, Berkeley

EXPERIMENTAL RESULTS PHYSICAL REVIEW LETTERS **122**, 185002 (2019)

Observation of Nonlinear Standing Waves Excited by Plasma-Series-Resonance-Enhanced Harmonics in Capacitive Discharges

Kai Zhao,^{1,2,*} De-Qi Wen,^{1,*} Yong-Xin Liu,^{1,†} Michael A. Lieberman,³

Plasma Sources Sci. Technol. 27 (2018) 055017

K Zhao et al

LiebermanAKT19

- 28 cm diameter argon plasma CCP reactor
- 21 cm diameter plates with 3 cm gap
- $B_{\phi}(r)$ measured with a B-dot probe (2–200 MHz)

University of California, Berkeley

EXPERIMENTAL RESULTS (FREQUENCY)

FIG. 1. Experimental data (points) and simulation predictions (lines) for discharges driven at 13.56 MHz (left) and 100 MHz (right) at 3 Pa, for a fixed power of 80 W: radial distributions of the harmonic magnetic field $B_{\varphi,n}$ (a),(b), the harmonic voltage V_n (c),(d), and the harmonic current J_n (e),(f). All harmonic amplitudes (n = 1-5) are normalized to the radial maxima [$B_{\varphi,n,\max}$, $V_{n,\max}$, and $J_{n,\max}$ (see Table I)] to obtain a clearer view of the harmonic structures.

PLASMA

LiebermanAKT19

EXPERIMENTAL RESULTS (PRESSURE)

FIG. 4. Experimental data (points) and simulation predictions (lines) of the radial distributions of $B_{\varphi,n}$ at different pressures: (a) 3 Pa, (b) 8 Pa, (c) 20 Pa, and (d) 50 Pa. All harmonic magnetic field amplitudes were normalized to the maxima at 3 Pa. Other conditions were $\omega/2\pi = 100$ MHz and power = 80 W.

LiebermanAKT19

University of California, Berkeley -

University of California, Berkeley

LiebermanAKT19

2D PIC SIMULATIONS OF HYSTERESIS

• High driving frequencies and low pressures \Rightarrow discharge hysteresis

17

HYSTERESIS DENSITIES n_e

University of California, Berkeley

18

HYSTERESIS CIRCUIT MODEL

• Antisymmetric mode has radial (spatial) resonance

Symmetric mode Antisymmetric mode

SYMMETRIC DISCHARGE SYMMETRICALLY EXCITED

20

FLUID SIMULATIONS

• Sheath nonlinearity coupled to antisymmetric wave resonance

 \implies Symmetry-breaking

LiebermanAKT19

University of California, Berkeley

WHEATSTONE BRIDGE MODEL

• Central and peripheral regions connect to each other through the radial fields of the antisymmetric mode

• Classic reverse pitchfork bifurcation as frequency decreases

LiebermanAKT19

University of California, Berkeley

CONCLUSION

Accounting for sheath nonlinearities and radially-propagating EM wave modes can be critical for achieving good uniformity and control of high frequency, large area CCP's

LiebermanAKT19

University of California, Berkeley

23

REFERENCES

- [1] De-Qi Wen, E. Kawamura, M.A. Lieberman, A.J. Lichtenberg, and You-Nian Wang, "Nonlinear series resonance and standing waves in dual-frequency capacitive discharges," *Plasma Sources Sci. Technol.* **26**, 015007 (2017).
- [2] De-Qi Wen, E. Kawamura, M.A. Lieberman, A.J. Lichtenberg, and You-Nian Wang, "A nonlinear electromagnetics model of an asymmetrically-driven, low pressure capacitive discharge," *Phys. Plasmas* 24, 083517 (2017).
- [3] E. Kawamura, De-Qi Wen, M.A. Lieberman and A.J. Lichtenberg, "Effect of a dielectric layer on plasma uniformity in high frequency electronegative capacitive discharges," J. Vac. Sci. Technol. A 35, 05C311 (2017).
- [4] De-Qi Wen, E. Kawamura, M.A. Lieberman, A.J. Lichtenberg and You-Nian Wang, "Two-dimensional particle-in-cell simulations of standing waves and waveinduced hysteresis in asymmetric capacitive discharges," J. Phys. D: Appl. Phys. 50, 495201 (2017).
- [5] Kai Zhao, Yong-Xin Liu, E. Kawamura, De-Qi Wen, M. A. Lieberman, and You-Nian Wang, "Experimental investigation of standing wave effect in dualfrequency capacitively coupled argon discharges: role of low frequency source," *Plasma Sources Sci. Technol.*, in press (2018).
- [6] E. Kawamura, M.A. Lieberman and A.J. Lichtenberg, "Symmetry breaking in high frequency, symmetric capacitively coupled plasmas," *Phys. Plasmas* 25 093517 (2018).
- [7] Kai Zhao, De-Qi Wen, Yong-Xin Liu, M.A. Lieberman, D.J. Economou and You-Nian Wang, "Observation of Nonlinear Standing Waves Excited by Plasma Series Resonance-Enhanced Harmonics in Capacitive Discharges," *Phys. Rev. Lett.* **122**, 185012 (2019).

LiebermanAKT19

University of California, Berkeley -