## MWP 1.00009

MODELING AND SIMULATION OF ELECTROMAGNETIC EFFECTS IN CAPACITIVE DISCHARGES

Insook Lee, D.B. Graves, and M.A. Lieberman University of California

Berkeley, CA 94720

## STANDING WAVES AND SKIN EFFECTS

- High frequency and large area $\Rightarrow$ standing wave effects
- High frequency $\Rightarrow$ high density $\Rightarrow$ skin effects

1. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner, Plasma Sources Sci. Technol. 11, 283, 2002
2. P. Chabert, J. Phys. D: Appl. Phys. 40, R63, 2007
3. Insook Lee, D.B. Graves, and M.A. Lieberman, "Modeling of electromagnetic effects in capacitive discharges," submitted to Plasma Sources Sci. Technology, 2007

## CYLINDRICAL CAPACITIVE DISCHARGE

Consider only the high frequency source


Fields cannot pass through metal plates
(1) $V_{s}$ excites radially outward wave in top vacuum gap
(2) Outward wave excites radially inward wave in plasma

## SURFACE WAVE MODE

- Power enters the plasma via a surface wave mode:

- Radial wavelength for surface wave (low density limit):

$$
\lambda \approx \frac{\lambda_{0}}{\sqrt{1+d / s}} \sim \frac{\lambda_{0}}{3}
$$

with $\lambda_{0}=c / f$ the free space wavelength

- Axial skin depth for surface wave:

$$
\delta \sim \frac{c}{\omega_{p}}
$$

- There are also evanescent modes leading to edge effects near $r=R$


## EXPERIMENTAL RESULTS FOR STANDING WAVES



The standing wave effect is seen at 60 MHz and is more pronounced at 81.36 MHz
(A. Perret, P. Chabert, J-P Booth, J. Jolly, J. Guillon and Ph. Auvray, Appl. Phys. Lett. 83, 243, 2003)

## FINITE ELEMENT METHOD (FEM), 2D EM SOLUTIONS (with Insook Lee and D.B. Graves)

- Arbitrary (asymmetric) discharge geometries and materials
- Transition from global to local power balance
- Distinguish edge effects (electrostatic) versus EM effects
- Series resonance stop band


Solution Procedure

(Analytical model: collisional Child law, variable sheath width, stochastic and ohmic heating in the sheath)

## STANDING WAVES - $40 \mathrm{~W}, 150 \mathrm{mTORR}$


$\times 10^{4}$ Power deposition




$\times 10^{4}$ Power deposition 80 MHZ Electron temperature



$\times 10^{4}$ Power deposition 100 MHZ Electron temperature


## SKIN EFFECTS - 150 mTORR




Transmission line model
(P. Chabert et al, Plasma Sources Sci. Technol. 15, S130, 2006)

- Transmission line model: collisionless sheaths, no edge effects, purely local power deposition In both cases spatial E to H transitions are seen


## COMPARE 20 CM AND 40 CM RADIUS REACTORS

 ( $150 \mathrm{mTorr}, 200 \mathrm{MHz}, V_{\mathrm{rf}}=100 \mathrm{~V}$ on-axis)


Radial plasma profile for (a) 40 and (b) 20 cm radius reactors



Radial $P_{r}$ and axial $P_{z}$ power deposition versus radius $r$, and their sum

- Edge effect for 20 cm radius reactor, and wave effects, are apparent


## SERIES RESONANCE

## $200 \mathrm{MHz}, 150 \mathrm{mTORR}$






$\times 10^{5}$ Power deposition
160 VV Electron temperature




$\times 10^{5}$ Power deposition
40 W Electron temperature


Surface wave does not propagate for 40 W case:

$$
\omega_{\mathrm{res}} \lesssim \omega \lesssim \omega_{p}
$$

$\omega_{\text {res }}=$ series resonance frequency
$\omega_{p}=$ plasma frequency


## ASYMMETRIC VOLTAGE WAVEFORMS





## CONCLUSIONS

- A 2-D axisymmetric model and finite element method (FEM) simulation strategy was developed to determine radial plasma uniformity in large-area, high frequency capacitive discharges
- Electromagnetic effects and electrostatic edge effects are well captured by the simulations
- The use of a FEM-based simulation allows for irregular and complex geometries, as well as fluid flow, heat and mass transfer, and chemical kinetics, although we do not include most of these effects here

Download this poster:
http://www.eecs.berkeley.edu/~lieber

