MWP 1.00009

MODELING AND SIMULATION OF ELECTROMAGNETIC EFFECTS IN CAPACITIVE DISCHARGES

Insook Lee, D.B. Graves, and M.A. Lieberman University of California Berkeley, CA 94720

LiebermanGEC07

University of California, Berkeley

STANDING WAVES AND SKIN EFFECTS

• High frequency and large area \Rightarrow standing wave effects

• High frequency \Rightarrow high density \Rightarrow skin effects

- 1. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner, Plasma Sources Sci. Technol. 11, 283, 2002
- 2. P. Chabert, J. Phys. D: Appl. Phys. 40, R63, 2007
- 3. Insook Lee, D.B. Graves, and M.A. Lieberman, "Modeling of electromagnetic effects in capacitive discharges," submitted to *Plasma Sources Sci. Technology*, 2007

LiebermanGEC07

University of California, Berkeley

ASM

CYLINDRICAL CAPACITIVE DISCHARGE

Consider only the high frequency source

Fields cannot pass through metal plates

(1) V_s excites radially outward wave in top vacuum gap (2) Outward wave excites radially inward wave in plasma

LiebermanGEC07

University of California, Berkeley

SURFACE WAVE MODE

• Power enters the plasma via a *surface wave mode:*

• Radial wavelength for surface wave (low density limit):

$$\lambda\approx\frac{\lambda_0}{\sqrt{1+d/s}}\sim\frac{\lambda_0}{3}$$

with $\lambda_0 = c/f$ the free space wavelength

• Axial skin depth for surface wave:

$$\delta \sim \frac{c}{\omega_p}$$

• There are also evanescent modes leading to edge effects near r = R

LiebermanGEC07

University of California, Berkeley

EXPERIMENTAL RESULTS FOR STANDING WAVES

 20×20 cm discharge p = 150 mTorr 50 W rf power

The standing wave effect is seen at 60 MHz and is more pronounced at 81.36 MHz

PLASMA

(A. Perret, P. Chabert, J-P Booth, J. Jolly, J. Guillon and Ph. Auvray, Appl. Phys. Lett. 83, 243, 2003)

LiebermanGEC07

FINITE ELEMENT METHOD (FEM), 2D EM SOLUTIONS (with Insook Lee and D.B. Graves)

- Arbitrary (asymmetric) discharge geometries and materials
- Transition from global to local power balance
- Distinguish edge effects (electrostatic) versus EM effects
- Series resonance stop band

STANDING WAVES — 40 W, 150 mTORR

University of California, Berkeley

LiebermanGEC07

SKIN EFFECTS — 150 mTORR

• Transmission line model: collisionless sheaths, no edge effects, purely local power deposition

In both cases spatial E to H transitions are seen

LiebermanGEC07

COMPARE 20 CM AND 40 CM RADIUS REACTORS (150 mTorr, 200 MHz, $V_{rf} = 100$ V on-axis)

Radial plasma profile for (a) 40 and (b) 20 cm radius reactors

Radial P_r and axial P_z power deposition versus radius r, and their sum

• Edge effect for 20 cm radius reactor, and wave effects, are apparent
LiebermanGEC07
9

PLA

SMA

SERIES RESONANCE — 200 MHz, 150 mTORR

Surface wave does not propagate for 40 W case:

$$\omega_{\rm res} \lesssim \omega \lesssim \omega_p$$

 $\omega_{\rm res} = {\rm series resonance frequency}$

 $\omega_p =$ plasma frequency

University of California, Berkeley

ASYMMETRIC (BOTTOM) EXCITATION — 150 mTORR

ASYMMETRIC VOLTAGE WAVEFORMS

University of California, Berkeley

12

CONCLUSIONS

- A 2-D axisymmetric model and finite element method (FEM) simulation strategy was developed to determine radial plasma uniformity in large-area, high frequency capacitive discharges
- Electromagnetic effects and electrostatic edge effects are well captured by the simulations
- The use of a FEM-based simulation allows for irregular and complex geometries, as well as fluid flow, heat and mass transfer, and chemical kinetics, although we do not include most of these effects here

Download this poster:

http://www.eecs.berkeley.edu/~lieber

University of California, Berkeley

LiebermanGEC07