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STANDING WAVES AND SKIN EFFECTS

• High frequency and large area ⇒ standing wave effects

• High frequency ⇒ high density ⇒ skin effects

1. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner,
Plasma Sources Sci. Technol. 11, 283, 2002

2. P. Chabert, J. Phys. D: Appl. Phys. 40, R63, 2007
3. Insook Lee, D.B. Graves, and M.A. Lieberman, “Modeling of electromagnetic

effects in capacitive discharges,” submitted to Plasma Sources Sci. Technology,
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CYLINDRICAL CAPACITIVE DISCHARGE

Consider only the high frequency source
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Fields cannot pass through metal plates

(1) Vs excites radially outward wave in top vacuum gap
(2) Outward wave excites radially inward wave in plasma
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SURFACE WAVE MODE

• Power enters the plasma via a surface wave mode:
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• Radial wavelength for surface wave (low density limit):
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with λ0 = c/f the free space wavelength

• Axial skin depth for surface wave:

δ ∼
c

ωp

• There are also evanescent modes leading to edge effects near r = R
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EXPERIMENTAL RESULTS FOR STANDING WAVES

20×20 cm discharge
p = 150 mTorr
50 W rf power

The standing wave ef-
fect is seen at 60 MHz
and is more pronounced
at 81.36 MHz

(A. Perret, P. Chabert, J-P Booth, J. Jolly, J. Guillon and Ph. Auvray,

Appl. Phys. Lett. 83, 243, 2003)
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FINITE ELEMENT METHOD (FEM), 2D EM SOLUTIONS
(with Insook Lee and D.B. Graves)

• Arbitrary (asymmetric) discharge geometries and materials

• Transition from global to local power balance

• Distinguish edge effects (electrostatic) versus EM effects

• Series resonance stop band
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(Analytical model: collisional Child law, variable sheath
width, stochastic and ohmic heating in the sheath)
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STANDING WAVES — 40 W, 150 mTORR
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SKIN EFFECTS — 150 mTORR
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FEM model Transmission line model
(with Insook Lee and D.B. Graves) (P. Chabert et al, Plasma Sources

Sci. Technol. 15, S130, 2006)

• Transmission line model: collisionless sheaths, no edge effects,
purely local power deposition

In both cases spatial E to H transitions are seen
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COMPARE 20 CM AND 40 CM RADIUS REACTORS
(150 mTorr, 200 MHz, Vrf = 100 V on-axis)
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Radial plasma profile for (a) 40 and (b) 20 cm radius reactors
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Radial Pr and axial Pz power deposition versus radius r, and their sum

• Edge effect for 20 cm radius reactor, and wave effects, are apparent
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SERIES RESONANCE — 200 MHz, 150 mTORR
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for 40 W case:

ωres
<
∼

ω <
∼

ωp

ωres = series resonance frequency

ωp = plasma frequency
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ASYMMETRIC (BOTTOM) EXCITATION — 150 mTORR
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ASYMMETRIC VOLTAGE WAVEFORMS
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CONCLUSIONS

• A 2-D axisymmetric model and finite element method (FEM) simu-
lation strategy was developed to determine radial plasma uniformity
in large-area, high frequency capacitive discharges

• Electromagnetic effects and electrostatic edge effects are well cap-
tured by the simulations

• The use of a FEM-based simulation allows for irregular and com-
plex geometries, as well as fluid flow, heat and mass transfer, and
chemical kinetics, although we do not include most of these effects
here

Download this poster:

http://www.eecs.berkeley.edu/∼lieber
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