

TABLE OF CONTENTS

• Introduction to Plasma Discharges and Processing (Ch. 1)				. 1
• Summary of Plasma Fundamentals (Ch. 2, Secs. 4.1–4.2)				11
• Summary of Discharge Fundamentals (Secs. 3.1, 3.5, 5.1–5.3, 6.1–6.3)				35
• Analysis of Discharge Equilibrium (Secs. 10-1–10.2)				45
• Capacitive RF Discharges				
– Symmetric Homogeneous Model (Sec. 11.1) \ldots \ldots \ldots \ldots	•		•	54
– Self Consistent Sheath Results (Sec. 11.2) $\ldots \ldots \ldots \ldots \ldots$		•	•	73
– Simulation and Experimental Results (Sec. 11.3)			•	77
– Example Equilibrium Calculations (Sec. 11.2) \ldots \ldots \ldots \ldots			•	83
– Asymmetric Systems (Sec. 11.4) \ldots \ldots \ldots \ldots \ldots \ldots			•	88
• Inductive RF Discharges				
– Transformer Model and Matching (Secs. 12.1–12.3) \ldots			•	95
– Power Balance (Secs. 12.1–12.2) \ldots \ldots \ldots \ldots \ldots \ldots			•	109
• Capacitive RF Sheaths				
– Transit Time Effects (Sec. 11.5) \ldots \ldots \ldots \ldots \ldots \ldots			•	115
– Ion Energy Distribution (IED) (Sec. 11.6) $\ldots \ldots \ldots \ldots \ldots$	•		•	125

i

TABLE OF CONTENTS (CONT'D)

• Chemical Fundamentals
– Atoms and Molecules (Sec. 3.4, Ch. 8) \ldots \ldots \ldots \ldots \ldots \ldots 141
– Gas Phase Kinetics (Sec. 9.1–9.2) \ldots
– Adsorption and Desorption (Sec. $9.3-9.4$)
• Chemistry in Discharges
– Neutral Free Radicals (Sec. 10.2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots 176
– Negative Ions (Sec. 10.3) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 182
– Example of Oxygen (Sec. 10.4) \ldots \ldots \ldots \ldots \ldots \ldots \ldots 187
– Time-Varying Global Models (Sec. 10.4–10.6)
– Etching Processes (Secs. $15.1-15.2$)
• Plasma-Induced Charging Damage (Sec. 15.5)
• Pulsed Discharges (Sec. 10.6)
• Dual Frequency Capacitive Discharges
• High Pressure Discharges and Deposition Kinetics (Ch. 16)
• ERRATA for textbook $\ldots \ldots 304$
• About the Instructor $\ldots \ldots 308$
\bullet Self-Study Problems

THE NANOELECTRONICS REVOLUTION

- Transistors/chip doubling every $1\frac{1}{2}$ -2 years since 1959
- Billion-fold increase in performance for the same cost over the last 40 years
- CMOS transistors with 4 nm (16 atoms) gate length

EQUIVALENT AUTOMOTIVE ADVANCE

- 60 billion miles/hr (90 \times speed of light!)
- 20 billion miles/gal
- 1 cm long \times 3 mm wide

LiebermanShortCourse1

SM

DAY 1 (ETCHING EMPHASIS)

- 8:00 AM 8:30 AM: Registration
- 8:30 AM 10:00 AM
 - Introduction to Plasma Discharges and Processing
 - Summary of Plasma Fundamentals (Undriven)
- \bullet 10:00 AM 10:30 AM: Coffee Break
- 10:30 AM 12 Noon
 - Summary of Plasma Fundamentals (Driven)
 - Summary of Discharge Fundamentals
 - Analysis of Discharge Equilibrium
- 12:00 Noon 1:30 PM: Lunch
- 1:30 PM 3:00 PM
 - Capacitive RF Discharges: Symmetric Homogeneous Model
 - Capacitive RF Discharges: Self-Consistent Sheath Results
 - Capacitive RF Discharges: Simulation and Experimental Results
 - Capacitive RF Discharges: Example Equilibrium Calculations
- 3:00 PM 3:30 PM: Coffee Break
- 3:30 AM 5:00 PM
 - Capacitive RF Discharges: Asymmetric Systems
 - Inductive RF Discharges: Transformer Model and Matching
 - Inductive RF Discharges: Power Balance

DAY 2 (ETCHING EMPHASIS)

• 8:30 AM – 9:30 AM

- Capacitive RF Sheaths: Ion Transit Time Effects
- Capacitive RF Sheaths: Ion Energy Distribution (IED)
- \bullet 9:30 AM 10:00 AM: Coffee Break
- 10:00 AM 12 Noon
 - Chemical Fundamentals: Atoms and Molecules
 - Chemical Fundamentals: Gas Phase Kinetics
 - Chemical Fundamentals: Adsorption and Desorption
 - Chemistry in Discharges: Neutral Free Radicals
- 12:00 Noon 1:30 PM: Lunch

• 1:30 PM - 3:00 PM

- Chemistry in Discharges: Negative Ions
- Chemistry in Discharges: Example of Oxygen
- Chemistry in Discharges: Time-Varying Global Models
- Chemistry in Discharges: Etching Processes
- 3:00 PM 3:30 PM: Coffee Break
- 3:30 AM 5:00 PM
 - Plasma-Induced Charging Damage OR Pulsed Discharges
 - Dual Frequency Capacitive Discharges

DAY 1 (DEPOSITION EMPHASIS)

- 8:00 AM 8:30 AM: Registration
- 8:30 AM 10:00 AM
 - Introduction to Plasma Discharges and Processing
 - Summary of Plasma Fundamentals (Undriven)
- \bullet 10:00 AM 10:30 AM: Coffee Break
- 10:30 AM 12 Noon
 - Summary of Plasma Fundamentals (Driven)
 - Summary of Discharge Fundamentals
 - Analysis of Discharge Equilibrium
- 12:00 Noon 1:30 PM: Lunch
- 1:30 PM 3:00 PM
 - Capacitive RF Discharges: Symmetric Homogeneous Model
 - Capacitive RF Discharges: Self-Consistent Sheath Results
 - Capacitive RF Discharges: Simulation and Experimental Results
 - Capacitive RF Discharges: Example Equilibrium Calculations
- 3:00 PM 3:30 PM: Coffee Break
- 3:30 $\mathbf{AM} 5:00 \ \mathbf{PM}$
 - Capacitive RF Discharges: Asymmetric Systems
 - High Pressure Discharges
 - High Pressure Capacitive Discharges

LiebermanShortCourse15

- PLASMA

DAY 2 (DEPOSITION EMPHASIS)

- 8:30 AM 9:30 AM
 - Alpha-To-Gamma Transition
- \bullet 9:30 AM 10:00 AM: Coffee Break
- 10:00 AM 12 Noon
 - Chemical Fundamentals: Atoms and Molecules
 - Chemical Fundamentals: Gas Phase Kinetics
 - Chemical Fundamentals: Adsorption and Desorption
 - Chemistry in Discharges: Neutral Free Radicals
- 12:00 Noon 1:30 PM: Lunch

• 1:30 PM - 3:00 PM

- Chemistry in Discharges: Negative Ions
- Chemistry in Discharges: Example of Oxygen
- Chemistry in Discharges: Time-Varying Global Models
- Chemistry in Discharges: Etching Processes
- Chemistry in Discharges: Deposition Kinetics
- 3:00 PM 3:30 PM: Coffee Break
- 3:30 AM 5:00 PM
 - Pulsed Discharges
 - Dual Frequency Capacitive Discharges

INTRODUCTION TO PLASMA DISCHARGES AND PROCESSING

LiebermanShortCourse15

1

PLASMAS AND DISCHARGES

• Plasmas

A collection of freely moving charged particles which is, on the average, electrically neutral

• Discharges

Are driven by voltage or current sources Charged particle collisions with neutral particles are important There are boundaries at which surface losses are important The electrons are not in thermal equilibrium with the ions

• Device sizes $\sim 30 \text{ cm} - 1 \text{ m}$

• Frequencies from DC to rf (13.56 MHz) to microwaves (2.45 GHz)

LiebermanShortCourse15

EVOLUTION OF ETCHING DISCHARGES

- PLASMA

ANISOTROPIC ETCHING

ISOTROPIC PLASMA ETCHING

- 1. Start with inert molecular gas CF_4
- 2. Make discharge to create reactive species

$$CF_4 \longrightarrow CF_3 + F$$

3. Species reacts with material, yielding volatile product

$$\mathrm{Si} + 4\mathrm{F} \longrightarrow \mathrm{SiF}_4 \uparrow$$

- 4. Pump away product
- 5. CF_4 does not react with Si; SiF_4 is volatile

ANISOTROPIC PLASMA ETCHING

6. Energetic ions bombard trench bottom, but not sidewalls(a) Increase etching reaction rate at trench bottom(b) Clear passivating films from trench bottom

LiebermanShortCourse15

SM

UNITS AND CONSTANTS

- SI units: meters (m), kilograms (kg), seconds (s), coulombs (C) $e = 1.6 \times 10^{-19}$ C, electron charge = -e
- Energy unit is joule (J) Often use electron-volt

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

• Temperature unit is kelvin (K) Often use equivalent voltage of the temperature

 $T_e(\text{volts}) = \frac{kT_e(\text{kelvins})}{e}$ where $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ J/K}$

 $1 \text{ V} \Longleftrightarrow 11,600 \text{ K}$

• Pressure unit is pascal (Pa); 1 Pa = 1 N/m^2 Atmospheric pressure $\equiv 1 \text{ bar} \approx 10^5 \text{ Pa} \approx 760 \text{ Torr}$

 $1 \text{ Pa} \iff 7.5 \text{ mTorr}$

PLASMA DENSITY VERSUS TEMPERATURE

LiebermanShortCourse15

PLASMA -

RELATIVE DENSITIES AND ENERGIES

LiebermanShortCourse15

8

NON-EQUILIBRIUM

• Energy coupling between electrons and heavy particles is weak

• Electrons are *not* in thermal equilibrium with ions or neutrals

 $T_e \gg T_i$ in plasma bulk

Bombarding ion $\mathcal{E}_i \gg T_e$ at wafer surface

- "High temperature processing at low temperatures"
 - 1. Wafer can be near room temperature
 - 2. Electrons produce free radicals \implies chemistry
 - 3. Electrons produce electron-ion pairs \implies ion bombardment

ELEMENTARY DISCHARGE BEHAVIOR

- Uniform density of electrons and ions n_e and n_i at time t = 0
- Low mass warm electrons quickly drain to the wall, forming sheaths

SUMMARY OF PLASMA FUNDAMENTALS

POISSON'S EQUATION

Qencl

LiebermanShortCourse

• An electric field can be generated by charges

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \text{or} \quad \iint_S \bar{\mathbf{E}} \cdot d\mathbf{A} = \frac{Q_{\text{encl}}}{\epsilon_0}$$

• For slow time variations (dc, rf, but not microwaves)
• $\mathbf{E} \sim -\nabla \Phi$

 \mathbf{E} = electric field (V/m), ρ = charge density (C/m³), Φ = potential (V), $\epsilon_0 = 8.85 \times 10^{-12}$ F/m

• In 1D planar geometry

$$\frac{dE_x}{dx} = \frac{\rho}{\epsilon_0}, \qquad \frac{d\Phi}{dx} = -E_x$$

Combining these yields Poisson's equation

$$\frac{d^2\Phi}{dx^2} = -\frac{\rho}{\epsilon_0}$$

• This field powers a capacitive discharge or the wafer bias power of an inductive or ECR discharge $V_{rf} \odot$

FARADAY'S LAW

• An electric field can be generated by a time-varying magnetic field

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \text{or} \quad \oint_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \iiint_{\mathcal{A}} \mathbf{B} \cdot d\mathbf{A}$$
$$I_{\mathrm{rf}} = -\frac{\mathbf{A}}{\mathbf{A}} =$$

 $\mathbf{B} = \text{magnetic induction vector}$

• This field powers the coil of an inductive discharge (top power)

LiebermanShortCourse15

SM

AMPERE'S LAW

• Both conduction currents and displacement currents generate magnetic fields **H**

$$\nabla \times \mathbf{H} = \mathbf{J}_c + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mathbf{J} \qquad [A/m^2]$$

 $\mathbf{J}_{c} = \text{conduction current density}$ (physical motion of charges) $\epsilon_0 \partial \mathbf{E} / \partial t = \text{displacement current density (flows in vacuum)}$ $\mathbf{J} = \text{total current density}$

• Note the vector identity $\nabla \cdot (\nabla \times \mathbf{H}) = 0 \implies \nabla \cdot \mathbf{J} = 0$

• In 1D

REVIEW OF PHASORS

• Physical voltage (or current), a real sinusoidal function of time

$$V(t) = V_0 \cos(\omega t + \phi)$$

• Phasor voltage (or current), a complex number, independent of time

$$\widetilde{V} = V_0 \,\mathrm{e}^{j\phi} = V_R + jV_I$$

• Note that

$$V(t) = \operatorname{Re}\left(\widetilde{V}\,\mathrm{e}^{j\,\omega t}\right)$$

• Hence

 $V(t) \iff \widetilde{V}$ (given ω)

University of California, Berkeley

LiebermanShortCourse15

THERMAL EQUILIBRIUM PROPERTIES

- Electrons generally near thermal equilibrium Ions generally *not* in thermal equilibrium
- Maxwellian distribution of electrons

• Pressure p = nkTFor neutral gas at room temperature (300 K) $n_q (\text{cm}^{-3}) \approx 3.3 \times 10^{16} \, p(\text{Torr})$

University of California, Berkeley

LiebermanShortCourse15

AVERAGES OVER MAXWELLIAN DISTRIBUTION

• Average energy $\langle \frac{1}{2}mv^2 \rangle = \frac{1}{n_e} \int d^3v \frac{1}{2}mv^2 f_e(v) = \frac{3}{2}kT_e$ • Average speed $\left| \bar{v}_e = \left(\frac{8kT_e}{\pi m} \right)^{1/2} \right|$ $\left(=\frac{1}{n_e}\int d^3v\,vf_e(v)\right)$ Average electron flux lost $\overline{\text{to a wall}}$ $\Gamma_{\rm e}~[{\rm m}^{-2}{\rm s}^{-1}]$ $\left| \Gamma_e = \frac{1}{4} n_e \bar{v}_e \right| \left(= \int_{-\infty}^{\infty} dv_x \int_{-\infty}^{\infty} dv_y \int_{0}^{\infty} dv_z v_z f_e(v) \right)$ • Average kinetic energy lost per electron lost to a wall $\mathcal{E}_e = 2 \mathrm{T}_e$

FORCES ON PARTICLES

• For a unit volume of electrons (or ions)

$$mn_e \frac{d\mathbf{u}_e}{dt} = qn_e \mathbf{E} - \nabla p_e - mn_e \nu_m \mathbf{u}_e$$

mass \times acceleration = electric field force +

+ pressure gradient force + friction (gas drag) force

• m = electron mass

 $n_e = \text{electron density}$

 $\mathbf{u}_e = \text{electron flow velocity}$

$$q = -e$$
 for electrons (+e for ions)

$$\mathbf{E} = \text{electric field}$$

$$p_e = n_e k T_e$$
 = electron pressure

 ν_m = collision frequency of electrons with neutrals [p. 36]

LiebermanShortCourse

BOLTZMANN FACTOR FOR ELECTRONS

- If electric field and pressure gradient forces almost balance $0 \approx -en_e \mathbf{E} - \nabla p_e$
- Let $\mathbf{E} = -\nabla \Phi$ and $p_e = n_e k T_e$ $\nabla \Phi = \frac{k T_e}{e} \frac{\nabla n_e}{n_e}$
- Put $kT_e/e = T_e$ (volts) and integrate to obtain

UNDERSTANDING PLASMA BEHAVIOR

• The field equations and the force equations are coupled

PLASMA

DEBYE LENGTH λ_{De}

- The characteristic length scale of a plasma
- Low voltage sheaths \sim few Debye lengths thick
- Let's consider how a sheath forms near a wall Electrons leave plasma before ions and charge wall negative

Assume electrons in thermal equilibrium and stationary ions

DEBYE LENGTH λ_{De} (CONT'D)

- Newton's laws [p. 18]
- $n_e(x) = n_0 e^{\Phi/T_e}, \qquad n_i = n_0$ • Use in Poisson's equation [p. 12]

$$\frac{d^2\Phi}{dx^2} = -\frac{en_0}{\epsilon_0} \left(1 - e^{\Phi/T_e}\right)$$

• Linearize $e^{\Phi/T_e} \approx 1 + \Phi/T_e$

$$\frac{d^2\Phi}{dx^2} = \frac{en_0}{\epsilon_0 T_e} \Phi$$

• Solution is

$$\Phi(x) = \Phi_0 e^{-x/\lambda_{De}}, \qquad \left| \lambda_{De} = \left(\frac{\epsilon_0 T_e}{e n_0} \right)^{1/2} \right|$$

• In practical units

 $\lambda_{De}(\mathrm{cm}) = 740\sqrt{\mathrm{T}_e/n_0}, \qquad \mathrm{T}_e \text{ in volts, } n_0 \text{ in cm}^{-3}$

• Example At $T_e = 1$ V and $n_0 = 10^{10}$ cm⁻³, $\lambda_{De} = 7.4 \times 10^{-3}$ cm

 \implies Sheath is ~ 0.15 mm thick (Very thin!)

ELECTRON PLASMA FREQUENCY ω_{pe}

- The fundamental timescale for a plasma
- Consider a plasma slab (no walls). Displace all electrons to the right a small distance x_{e0} , and release them

• Maxwell's equations (parallel plate capacitor) [p. 12] $E = \frac{en_0 x_e(t)}{\epsilon_0}$

ELECTRON PLASMA FREQUENCY ω_{pe} (CONT'D)

• Newton's laws (electron motion) [p. 18]

$$m\frac{d^{2}x_{e}(t)}{dt^{2}} = -eE = -\frac{e^{2}n_{0}}{\epsilon_{0}}x_{e}(t)$$

• Solution is electron plasma oscillations

$$x_e(t) = x_{e0} \cos \omega_{pe} t,$$
 $\omega_{pe} = \left(\frac{e^2 n_0}{\epsilon_0 m}\right)^{1/2}$

- Practical formula is $f_{pe}(\text{Hz}) = 9000\sqrt{n_0}, \quad n_0 \text{ in cm}^{-3}$
 - \implies microwave frequencies ($\gtrsim 1 \text{ GHz}$) for typical plasmas

1 /0

1D SIMULATION OF SHEATH FORMATION

- Particle-in-cell (PIC) simulations with uniform fixed ion density; 4000 electron sheets; solve Newton's laws + Maxwell's equations
- T_e = 1 V (random), $n_e = n_i = 10^{13} \text{ m}^{-3}$ (low), l = 0.1 m
- Electron v_x -x phase space at $t = 0.77 \ \mu s$

• Note absence of electron sheets near the walls

LiebermanShortCourse15

1D SIMULATION OF SHEATH FORMATION (CONT'D)

• Electron number \mathcal{N} versus t

• Note 340 electron sheets lost to walls to form sheaths

1D SIMULATION OF SHEATH FORMATION (CONT'D)

• Electron density $n_e(x)$ at $t = 0.77 \ \mu s$

• Note sheath width is a few Debye lengths

1D SIMULATION OF SHEATH FORMATION (CONT'D)

• Electric field E(x) at $t = 0.77 \ \mu s$

• Note electric field retards electrons, accelerates ion into walls
1D SIMULATION OF SHEATH FORMATION (CONT'D)

• Potential $\Phi(x)$ at $t = 0.77 \ \mu s$

• Note plasma potential builds up to a few T_e with respect to wall

1D SIMULATION OF SHEATH FORMATION (CONT'D)

• Right hand potential $\Phi(x = l)$ versus t

• Due to asymmetric electron initial conditions, a small oscillation of the right hand potential is excited at the plasma frequency

University of California, Berkeley

PLASMA DIELECTRIC CONSTANT $\epsilon_{\mathbf{p}}$

- RF discharges are driven at a frequency ω
- Define ϵ_p from the total current in Maxwell's equations [p. 14]

$$\nabla \times \tilde{H} = \underbrace{\tilde{J}_c + j\omega\epsilon_0 \tilde{E}}_{\text{Total current } \tilde{J}} \equiv j\omega\epsilon_p \tilde{E}$$

- Conduction current $\tilde{J}_c = -en_e \tilde{u}_e$ is due to electrons
- Newton's law (electric field and neutral drag) is [p. 18]

$$j\omega m \tilde{u}_e = -e\tilde{E} - m\nu_m \tilde{u}_e$$

• Solve for \tilde{u}_e and evaluate J_c to obtain

$$\epsilon_p \equiv \epsilon_0 \kappa_p = \epsilon_0 \left[1 - \frac{\omega_{pe}^2}{\omega(\omega - j\nu_m)} \right]$$

with $\omega_{pe} = (e^2 n_e / \epsilon_0 m)^{1/2}$ the electron plasma frequency [p. 23] • For $\omega \gg \nu_m$, ϵ_p is mainly real (nearly lossless dielectric) For $\nu_m \gg \omega$, ϵ_p is mainly imaginary (very lossy dielectric)

RF FIELDS IN LOW PRESSURE DISCHARGES

• Consider mainly lossless plasma ($\omega \gg \nu_m$)

$$\epsilon_p = \epsilon_0 \left(1 - \frac{\omega_{pe}^2}{\omega^2} \right)$$

- For rf discharges, $\omega_{pe} \gg \omega \Longrightarrow \epsilon_p$ is negative $(\epsilon_p = -1000 \epsilon_0)$
- RF current density \tilde{J} is continuous across the discharge [p. 14]

Electric field in plasma is 1000 × smaller than in sheaths!
Although field in plasma is small, it sustains the plasma!

University of California, Berkeley

PLASMA CONDUCTIVITY $\sigma_{\mathbf{p}}$

- It is useful to introduce rf plasma conductivity $\tilde{J}_c \equiv \sigma_p \tilde{E}$
- Find \tilde{J}_c to be a linear function of \tilde{E} [p. 31]

$$\sigma_p = \frac{e^2 n_e}{m(\nu_m + j\omega)}$$

• DC plasma conductivity ($\omega \ll \nu_m$)

$$\sigma_{\rm dc} = \frac{e^2 n_e}{m \nu_m}$$

- The plasma dielectric constant and conductivity are related by $j\omega\epsilon_p=\sigma_p+j\omega\epsilon_0$
- RF current flowing through the plasma heats electrons (just like a resistor)

OHMIC HEATING POWER

• Time average power absorbed/volume

$$p_d = \langle \mathbf{J}(t) \cdot \mathbf{E}(t) \rangle = \frac{1}{2} \operatorname{Re} \left(\tilde{J} \cdot \tilde{E}^* \right) \qquad [W/m^3]$$

Here $\widetilde{E}^* = \operatorname{complex}$ conjugate of \widetilde{E}

- Since \tilde{J} is the same everywhere in the discharge [p. 32], put $\tilde{E} = \tilde{J}/j\omega\epsilon_p$ to find p_d in terms of \tilde{J} alone
- For discharges with $\omega \ll \omega_{pe}$ (all rf discharges)

$$p_d = \frac{1}{2} |\tilde{J}|^2 \frac{1}{\sigma_{\rm dc}} \qquad [W/m^3]$$

SUMMARY OF DISCHARGE FUNDAMENTALS

ELECTRON COLLISIONS WITH ARGON

• Maxwellian electrons collide with Ar atoms (density n_g) $\frac{\# \text{ collisions of a particular kind}}{\text{s-m}^3} = \nu n_e = K n_g n_e$

 $\nu =$ collision frequency [s⁻¹], $K(T_e) =$ rate coefficient [m³/s]

• Electron-Ar collision processes $e + Ar \longrightarrow Ar^+ + 2e$ (ionization) $e + Ar \longrightarrow e + Ar^* \longrightarrow e + Ar + photon$ $e + Ar \longrightarrow e + Ar$ (elastic scattering)

• Rate coefficient $K(T_e)$ is average of cross section $\sigma(v_R)$ [m²] for process, over Maxwellian distribution

 $K(T_e) = \langle \sigma v_R \rangle_{\text{Maxwellian}}$

 v_R = relative velocity of colliding particles

ELECTRON-ARGON RATE COEFFICIENTS

ION COLLISIONS WITH ARGON

- Argon ions collide with Ar atoms $Ar^+ + Ar \longrightarrow Ar^+ + Ar$ (elastic scattering) $Ar^+ + Ar \longrightarrow Ar + Ar^+$ (charge transfer)
- Total cross section for room temperature ions $\sigma_i \approx 10^{-14} \text{ cm}^2$
- Ion-neutral mean free path (distance ion travels before colliding)

$$\lambda_i = \frac{1}{n_g \sigma_i}$$

• Practical formula

$$\lambda_i(\text{cm}) = \frac{1}{330 \, p}, \qquad p \text{ in Torr}$$

• Ion-neutral collision frequency

$$\nu_i = \frac{\overline{v}_i}{\lambda_i}$$

with
$$\bar{v}_i = (8kT_i/\pi M)^{1/2}$$

University of California, Berkeley

THREE ENERGY LOSS PROCESSES

1. Collisional energy \mathcal{E}_c lost per electron-ion pair created

$$K_{\rm iz}\mathcal{E}_c = K_{\rm iz}\mathcal{E}_{\rm iz} + K_{\rm ex}\mathcal{E}_{\rm ex} + K_{\rm el}(2m/M)(3T_e/2)$$

 $\Longrightarrow \mathcal{E}_c(\mathbf{T}_e)$ (voltage units)

 $\mathcal{E}_{iz}, \mathcal{E}_{ex}, \text{ and } (3m/M)T_e$ are energies lost by an electron due to an ionization, excitation, and elastic scattering collision

2. Electron kinetic energy lost to walls [p. 17]

$$\mathcal{E}_e = 2 \,\mathrm{T}_e$$

3. Ion kinetic energy lost to walls is mainly due to the dc potential V_s across the sheath

$$\mathcal{E}_i \approx \bar{V}_s$$

• Total energy lost per electron-ion pair lost to walls

$$\mathcal{E}_T = \mathcal{E}_c + \mathcal{E}_e + \mathcal{E}_i$$

University of California, Berkeley

BOHM (ION LOSS) VELOCITY u_B

• Due to formation of a "presheath", ions arrive at the plasma-sheath edge with directed energy $kT_e/2$

$$\frac{1}{2}Mu_B^2 = \frac{kT_e}{2}$$

• Electron-ion pairs are lost at the Bohm velocity at the plasma-sheath edge (density n_s)

$$\Gamma_{\text{wall}} = n_s u_B, \qquad u_B = \left(\frac{kT_e}{M}\right)^{1/2}$$

AMBIPOLAR DIFFUSION AT HIGH PRESSURES

- Plasma bulk is quasi-neutral $(n_e \approx n_i = n)$ and the electron and ion loss fluxes are equal $(\Gamma_e \approx \Gamma_i \approx \Gamma)$
- Fick's law

$$\Gamma = -D_a \nabla n$$

with ambipolar diffusion coefficient $D_a = kT_e/M\nu_i$

• Density profile is sinusoidal

• Loss flux to the wall is

$$\Gamma_{\text{wall}} = n_s u_B \equiv h_l n_0 u_B$$

LiebermanShortC

• From diffusion theory, edge-to-center density ratio is $\pi u_{\rm P}$

AMBIPOLAR DIFFUSION AT LOW PRESSURES

- The diffusion coefficient is not constant
- Density profile is relatively flat in the center and falls sharply near the sheath edge

• The edge-to-center density ratio is

$$h_l \equiv \frac{n_s}{n_0} \approx \frac{0.86}{\left(3 + l/2\lambda_i\right)^{1/2}}$$

where $\lambda_i = \text{ion-neutral mean free path [p. 38]}$

• Applies for pressures < 100 mTorr in argon

• For a cylindrical plasma of length l and radius R, loss fluxes to axial and radial walls are

$$\Gamma_{\text{axial}} = h_l n_0 u_B, \qquad \Gamma_{\text{radial}} = h_R n_0 u_B$$

where the edge-to-center density ratios are

$$h_l \approx \frac{0.86}{(3+l/2\lambda_i)^{1/2}}, \qquad h_R \approx \frac{0.8}{(4+R/\lambda_i)^{1/2}}$$

• Applies for pressures < 100 mTorr in argon

LiebermanShortCourse15

SM

ANALYSIS OF DISCHARGE EQUILIBRIUM

PARTICLE BALANCE AND T_e

• Assume uniform cylindrical plasma absorbing power $P_{\rm abs}$

• Particle balance

Production due to ionization = loss to the walls

$$K_{\rm iz} n_g \eta_0' \pi R^2 l = (2\pi R^2 h_l \eta_0' + 2\pi R l h_R \eta_0') u_B$$

• Solve to obtain

$$\frac{K_{\rm iz}(T_e)}{u_B(T_e)} = \frac{1}{n_g d_{\rm eff}}$$

where

$$d_{\rm eff} = \frac{1}{2} \frac{Rl}{Rh_l + lh_R}$$

is an effective plasma size

- Given n_g and $d_{\text{eff}} \Longrightarrow$ electron temperature T_e
- T_e varies over a narrow range of 2–5 volts

LiebermanShortCourse15

SM

ELECTRON TEMPERATURE IN ARGON DISCHARGE

ION ENERGY FOR LOW VOLTAGE SHEATHS

- \mathcal{E}_i = energy entering sheath + energy gained traversing sheath
- Ion energy entering sheath = $T_e/2$ (voltage units) [p. 41]
- Sheath voltage determined from particle conservation

ION ENERGY FOR HIGH VOLTAGE SHEATHS

• Large ion bombarding energies can be gained near rf-driven electrodes embedded in the plasma

• The sheath thickness $s \ (\sim 0.5 \text{ cm})$ is given by the Child Law

$$\bar{J}_i = en_s u_B = \frac{4}{9} \epsilon_0 \left(\frac{2e}{M}\right)^{1/2} \frac{\overline{V}_s^{3/2}}{s^2}$$

• Estimating ion energy is not simple as it depends on the type of discharge and the application of bias voltages

University of California, Berkeley -

POWER BALANCE AND n₀

• Assume low voltage sheaths at all surfaces $\begin{bmatrix} p. 40 \end{bmatrix} \quad \begin{bmatrix} p. 17 \end{bmatrix} \quad \begin{bmatrix} p. 48 \end{bmatrix}$ $\mathcal{E}_T(T_e) = \underbrace{\mathcal{E}_c(T_e)}_{\text{Collisional Electron}} + \underbrace{2T_e}_{\text{Electron}} + \underbrace{5.2T_e}_{\text{Ion}} \quad [V]$

• Power balance

Power in = power out

$$P_{\rm abs} = (h_l n_0 2\pi R^2 + h_R n_0 2\pi R l) u_B e \mathcal{E}_T \qquad [W]$$

• Solve to obtain

$$n_0 = \frac{P_{\rm abs}}{A_{\rm eff} u_B e \mathcal{E}_T}$$

where

$$A_{\rm eff} = 2\pi R^2 h_l + 2\pi R l h_R$$

is an effective area for particle loss

- Density n_0 is proportional to the absorbed power $P_{\rm abs}$
- Density n_0 depends on pressure p through h_l , h_R , and T_e

PARTICLE AND POWER BALANCE

• Particle balance \implies electron temperature T_e (independent of plasma density)

• Power balance \implies plasma density n_0 (once electron temperature T_e is known)

EXAMPLE 1

- Let R = 0.15 m, l = 0.3 m, $n_g = 3.3 \times 10^{19}$ m⁻³ (p = 1 mTorr at 300 K), and $P_{abs} = 800$ W
- Assume low voltage sheaths at all surfaces
- Find $\lambda_i = 0.03$ m [p. 38]. Then $h_l \approx h_R \approx 0.3$ [p. 44] and $d_{\text{eff}} \approx 0.17$ m [p. 46]
- T_e versus $n_g d_{eff}$ figure gives $T_e \approx 3.5$ V [p. 47]
- \mathcal{E}_c versus T_e figure gives $\mathcal{E}_c \approx 42$ V [p. 40]. Adding $\mathcal{E}_e = 2T_e \approx 7$ V and $\mathcal{E}_i \approx 5.2T_e \approx 18$ V yields $\mathcal{E}_T = 67$ V [p. 39]
- Find $u_B \approx 2.9 \times 10^3 \text{ m/s} \text{ [p. 41]}$ and find $A_{\text{eff}} \approx 0.13 \text{ m}^2 \text{ [p. 50]}$
- Power balance yields $n_0 \approx 2.0 \times 10^{17} \text{ m}^{-3} \text{ [p. 50]}$
- Ion current density $J_{il} = eh_l n_0 u_B \approx 2.9 \text{ mA/cm}^2$ [p. 46]
- Ion bombarding energy $\mathcal{E}_i \approx 18$ V [p. 48]

EXAMPLE 2

- Apply a strong dc magnetic field along the cylinder axis \implies particle loss to radial wall is inhibited
- Assume no radial losses, then $d_{\rm eff} = l/2h_l \approx 0.5$ m
- From the T_e versus $n_g d_{eff}$ figure, $T_e \approx 3.3$ V (was 3.5 V)
- From the \mathcal{E}_c versus T_e figure, $\mathcal{E}_c \approx 46$ V. Adding $\mathcal{E}_e = 2T_e \approx 6.6$ V and $\mathcal{E}_i \approx 5.2T_e \approx 17$ V yields $\mathcal{E}_T = 70$ V
- Find $u_B \approx 2.8 \times 10^3$ m/s and find $A_{\text{eff}} = 2\pi R^2 h_l \approx 0.043$ m²
- Power balance yields $n_0 \approx 5.8 \times 10^{17} \text{ m}^{-3} \text{ (was } 2 \times 10^{17} \text{ m}^{-3} \text{)}$
- Ion current density $J_{il} = eh_l n_0 u_B \approx 7.8 \text{ mA/cm}^2$
- Ion bombarding energy $\mathcal{E}_i \approx 17 \text{ V}$
 - \implies Slight decrease in electron temperature T_e
 - \implies Significant increase in plasma density n_0

EXPLAIN WHY!

• What happens to T_e and n_0 if there is a sheath voltage $V_s = 500$ V at each end plate?

CAPACITIVE RF DISCHARGES

SYMMETRIC HOMOGENEOUS MODEL

- University of California, Berkeley -

BASIC PROPERTIES

- Simplicity of concept
- RF rather than microwave powered
- Inherent high sheath voltages
- No independent control of plasma density and ion energy
- Control parameters

RF current $\tilde{I}_{\rm rf}$ (1–10 mA/cm²) Driving frequency ω (2–13.56 MHz) Neutral gas density n_g (10¹⁴–10¹⁶ cm⁻³) Electrode separation l (1–10 cm)

• Discharge parameters to find Plasma density $n (10^9-10^{10} \text{ cm}^{-3})$ Electron temperature $T_e (2-4 \text{ V})$ Discharge voltage $V_{rf} (100-1000 \text{ V})$ Discharge power $P_{rf} (50-500 \text{ W})$ Ion bombarding energy $\mathcal{E}_i (50-500 \text{ V})$

CONFIGURATIONS

• Multi-wafer parallel plate and "hex" configurations (1980's)

• Modern configurations are single wafer parallel plate, sometimes driven at multiple rf frequencies

HOMOGENEOUS MODEL ASSUMPTIONS

- No transverse variations (along the electrodes)
- Electrons respond to instantaneous electric fields
- Ions respond to only time-average electric fields
- Electron density is zero in the sheath regions
- Ion density is constant in the plasma and sheath regions $n_i(z) = n_0$ (We will correct this later)

ELECTRON SHEATH EDGE MOTION

• The electric field is found by integrating the charge density in the sheath [p. 12]

$$\frac{dE}{dz} = \frac{en}{\epsilon_0}, \qquad z < s_a(t)$$

to obtain

ELECTRON SHEATH EDGE MOTION (CONT'D)

- The displacement current in the sheath is [p. 14] $I_{ap} = \epsilon_0 A \frac{\partial E}{\partial t} = -enA \frac{ds_a}{dt}$
- Let $I_{\rm rf}(t) = \tilde{I}_0 \cos \omega t$ and integrate to obtain

$$s_a(t) = \bar{s}_0 - \tilde{s}_0 \sin \omega t$$

$$\tilde{s}_0 = \frac{\tilde{I}_0}{en\omega A}$$

• The oscillation amplitude of the sheath motion is \tilde{s}_0 , but what is the "constant of integration" \bar{s}_0 ?

CONDUCTION CURRENT

- Assume a steady loss of ions to electrode a $I_i = enu_B A$
- The time-average total conduction current to the electrode is zero
- Hence electrons must be lost to the electrode
- The sheath thickness $s_a(t)$ must then collapse to zero at some time during the rf cycle $\implies \bar{s}_0 = \tilde{s}_0$

$$s_a(t) = \tilde{s}_0(1 - \sin \omega t)$$

VOLTAGE ACROSS THE SHEATH

The voltage is found by integrating the electric field in the sheath $\frac{dV}{dV} = -E$

dz

University of California, Berkeley

VOLTAGE ACROSS THE SHEATH (CONT'D)

• Integrating the electric field in the sheath [p. 12]

$$\frac{dV}{dz} = -E$$

we obtain

$$V_{ap}(t) = \int_0^{s_a(t)} E(z,t) \, dz = -\frac{en}{\epsilon_0} \frac{s_a^2(t)}{2}$$

• Using $s_a(t)$ [p. 61]

$$V_{ap}(t) = -\frac{en}{2\epsilon_0}\tilde{s}_0^2 (1-\sin\omega t)^2$$

• $V_{ap}(t)$ is a nonlinear function of I_{rf} ; there are second harmonics

VOLTAGE ACROSS BOTH SHEATHS

• By symmetry $s_b(t) = \tilde{s}_0(1 + \sin \omega t)$; since $s_a(t) = \tilde{s}_0(1 - \sin \omega t)$

• There is a rigid bulk electron cloud oscillation
VOLTAGE ACROSS BOTH SHEATHS (CONT'D)

• Voltage across sheath b is

$$V_{bp}(t) = -\frac{en}{2\epsilon_0}\tilde{s}_0^2 \left(1 + \sin\omega t\right)^2$$

- Voltage across the plasma is small because $I_{\rm rf} = j\omega\epsilon_p EA$ and ϵ_p is large $\Longrightarrow E$ across bulk plasma is small
- Discharge voltage is $V_{\rm rf} = V_{ap} + V_{pb}$

$$V_{\rm rf}(t) = \frac{2en\tilde{s}_0^2}{\epsilon_0}\sin\omega t$$

• Each sheath is nonlinear, but the combination of both sheaths is linear

DC VOLTAGE ACROSS ONE SHEATH

$$V_{pa}(t) = \frac{en}{2\epsilon_0}\tilde{s}_0^2 \left(1 - 2\sin\omega t + \sin^2\omega t\right)$$

• Take time average

$$\overline{V}_s = \frac{3}{4} \frac{en}{\epsilon_0} \tilde{s}_0^2 = \mathcal{E}_i$$

• Compare to rf voltage across discharge [p. 65]

$$\Longrightarrow \overline{V}_s = \frac{3}{8} \widetilde{V}_{\rm rf}$$

• We can think of $\widetilde{V}_{\rm rf}$ as divided equally across the two sheaths

$$\overline{V}_s = \frac{3}{4}\widetilde{V}_s \qquad \text{with} \qquad \widetilde{V}_s = \frac{1}{2}V_{\rm rf}$$

SHEATH VOLTAGES VERSUS TIME

Sheath voltages $V_{ap}(t)$, $V_{pb}(t)$, and their sum $V_{ab}(t) = V_{rf}(t)$; the time average \overline{V}_s of $V_{pb}(t)$ is also shown

SHEATH POTENTIAL VERSUS POSITION AT VARIOUS TIMES

68

Spatial variation of the total potential Φ (solid curves) for the homogeneous model at four different times during the rf cycle. The dashed curve shows the spatial variation of the time-average potential $\bar{\Phi} \equiv \overline{V}_s$

SHEATH CAPACITANCE

• Define total discharge capacitance by

$$I_{\rm rf}(t) = \tilde{I}_0 \cos \omega t, \qquad V_{\rm rf}(t) = \frac{2en\tilde{s}_0^2}{\epsilon_0} \sin \omega t \quad [p. 65]$$

which yields

$$I_{\rm rf} = C_s \frac{dV_{\rm rf}}{dt}$$
 with $C_s = \frac{\epsilon_0 A}{2\tilde{s}_0}$

• We can think of each sheath as having a capacitance

$$C_a = C_b = \frac{\epsilon_0 A}{\tilde{s}_0}$$

• We now have a lossless discharge model

LiebermanShortCourse15

PLASM

OHMIC AND STOCHASTIC HEATING

• Ohmic heating in the bulk plasma [p. 34]

$$P_{\Omega} = \frac{1}{2} |\tilde{J}_{\rm rf}|^2 \frac{m\nu_m d}{e^2 n} A \qquad \text{[watts]}$$

• Stochastic heating by oscillating sheaths

$$v' = -v + 2\,u_s(t)$$

with

$$u_s(t) = \frac{ds_a}{dt} = \tilde{u}_0 \cos \omega t \quad \text{with} \quad \tilde{u}_0 = \omega \tilde{s}_0$$

• Average energy transferred is

$$\Delta \mathcal{E}_e = \left[\frac{1}{2}m\left(-v+2u_s(t)\right)^2 - \frac{1}{2}mv^2\right] = m\tilde{u}_0^2$$

• $\Delta \mathcal{E}_e$ is positive, so the oscillating sheath heats electrons

University of California, Berkeley

STOCHASTIC HEATING POWER

• For a Maxwellian distribution, the electron flux incident on a sheath is [p. 17]

$$\Gamma_e = \frac{1}{4}n\bar{v}_e$$

with

$$\bar{v}_e = (8eT_e/\pi m)^{1/2}$$

the mean electron speed

• The time-average stochastic heating power is found to be

$$P_{sa} = \Gamma_e A \cdot 2\,\Delta \mathcal{E}_e = \frac{1}{2}mn\bar{v}_e\omega^2\tilde{s}_0^2A \qquad \text{[watts]}$$

• This is a powerful electron heating mechanism in a capacitive discharge

LiebermanShortCourse1

SN

HEATING POWERS VERSUS DRIVING VOLTAGE

• For stochastic heating [p. 71]

$$P_{sa} = \frac{1}{2}mn\bar{v}_e\omega^2\tilde{s}_0^2A$$

Using $\tilde{V}_{\rm rf} = 2en\tilde{s}_0^2/\epsilon_0$ [p. 65] we obtain for the two sheaths

$$P_s = P_{sa} + P_{sb} = \frac{m}{2e} \epsilon_0 \bar{v}_e \omega^2 \tilde{V}_{\rm rf} A$$

• For bulk ohmic heating [p. 70]

$$P_{\Omega} = \frac{1}{2} |\tilde{J}_{\rm rf}|^2 \frac{m\nu_m d}{e^2 n} A$$

Using $\tilde{J}_{\rm rf} = en\omega\tilde{s}_0$ and $\tilde{V}_{\rm rf}$ given above

$$P_{\Omega} = \frac{m}{4e} \epsilon_0 \nu_m d\,\omega^2 \widetilde{V}_{\rm rf} A$$

Ohmic and stochastic heating powers depend on $V_{\rm rf}$

University of California, Berkeley

CAPACITIVE RF DISCHARGES

SELF-CONSISTENT SHEATH RESULTS

University of California, Berkeley -

HOMOGENEOUS AND CHILD LAW SHEATHS

• Child law ion density decreases and sheath width increases compared to homogeneous model

COLLISIONLESS CHILD LAW SHEATH

• Larger sheath width \Longrightarrow larger sheath oscillation velocity $u_s \propto \omega s_m$

Stochastic heating is larger than for homogeneous model

• Collisionless ion motion \implies Child law relating s_m to n_s and \overline{V}_s

$$\bar{J}_i = en_s u_B = 0.82 \epsilon_0 \left(\frac{2e}{M}\right)^{1/2} \frac{\overline{V}_s^{3/2}}{s_m^2}$$

• RF voltage \widetilde{V}_s across sheath \Longrightarrow dc voltage \overline{V}_s

$$\overline{V}_s \approx 0.83 \, \widetilde{V}_s$$

University of California, Berkeley

SUMMARY — SELF-CONSISTENT MODEL

$$\begin{aligned} \mathcal{E}_i &= \overline{V}_s = 0.83 \, \widetilde{V}_s \\ J_i &= e n_s u_B = 0.82 \, \epsilon_0 \, \left(\frac{2e}{M}\right)^{1/2} \frac{\overline{V}_s^{3/2}}{s_m^2} \\ \widetilde{I}_{\rm rf} &= 1.23 \, j \omega \frac{\epsilon_0 A}{s_m} \widetilde{V}_s \\ P_s &= 1.12 \, \frac{m}{2e} \omega^2 \epsilon_0 \overline{v}_e \widetilde{V}_s A \\ P_\Omega &= 1.73 \frac{n_s}{n_0} \frac{m}{2e} \omega^2 \epsilon_0 \nu_m d \, (\mathrm{T}_e \widetilde{V}_s)^{1/2} A \end{aligned}$$

LiebermanShortCourse15

- PLASMA

CAPACITIVE RF DISCHARGES

SIMULATION AND EXPERIMENTAL RESULTS

University of California, Berkeley -

LiebermanShortCourse15

77

PIC SIMULATION OF DENSITIES

Symmetric rf discharge with right hand electrode grounded, $V_{\rm rf} = 1 \, \rm kV \, at \, 10 \, \rm MHz, 20 \, mTorr$ hydrogen gas (Thesis of D. Vender, Australian National University, ~ 1990)

PHASE SPACE AND POTENTIALS VERSUS POSITION

Symmetric rf discharge with right hand electrode grounded, $V_{\rm rf} = 1 \, \rm kV \, at \, 10 \, \rm MHz, 20 \, mTorr$ hydrogen gas; left panels show electron and ion phase space; right panels show potentials (see [p. 68] for comparison to theory) (Thesis of D. Vender, Australian National University, ~ 1990)

SM

TIME VARIATION OF VOLTAGES AND CURRENTS

- Note plasma always positive with respect to both electrodes
- Note steady ion current [p. 61]
- Note pulsed electron current when $V_{pa} = V_{pb} V_{rf} \rightarrow 0$ [p. 61]

SPACE-TIME DISTRIBUTION OF IONIZING COLLISIONS

The darkness of each square is proportional to the number of ionizing collisions within that square of time and position intervals; symmetric rf discharge with right hand electrode grounded, $V_{\rm rf} = 1$ kV at 10 MHz, 20 mTorr hydrogen gas (Thesis of D. Vender, Australian National University, ~ 1990)

MEASUREMENTS OF STOCHASTIC HEATING

Effective collision frequency $\nu_{\rm eff}$ versus pressure p, for a mercury discharge driven at 40.8 MHz; the solid line shows the collision frequency due to ohmic dissipation alone (Popov and Godyak, 1985)

LiebermanShortCourse15

SM

CAPACITIVE RF DISCHARGES

EXAMPLE EQUILIBRIUM CALCULATIONS

University of California, Berkeley -

POWER BALANCE

- Electron power balance El. col + kin $P_{\Omega} + 2P_s = en_s u_B 2A \left(\mathcal{E}_c + 2T_e\right)$ where $P_{\Omega} = 1.73 h_l \frac{m}{2e} \omega^2 \epsilon_0 (\nu_m d) (\mathrm{T}_e \widetilde{V}_s)^{1/2} A$ $P_s = 0.56 \, \frac{m}{2e} \omega^2 \epsilon_0 \bar{v}_e \widetilde{V}_s A$ Specify $\widetilde{V}_s \Longrightarrow n_s$ • Total power balance El. col.+kin. Ion kin. $P_{\rm abs} = en_s u_B \, 2A \left(\mathcal{E}_c + 2T_e + 0.83 \, \overline{V_s} \right)$
 - Eliminate n_s from electron and total power balance

$$P_{\rm abs} \approx \left(P_{\Omega} + 2P_s\right) \left(1 + \frac{0.83\widetilde{V}_s}{\mathcal{E}_c + 2\mathrm{T}_e}\right)$$

LiebermanShortCourse15

SM

Specify $P_{abs} \Longrightarrow V_s$ In this case, electron or total power balance $\Longrightarrow n_s$

EXAMPLE 1

- Let p = 3 mTorr argon at 300 K, l = 10 cm, A = 1000 cm², f = 13.56 MHz ($\omega = 8.52 \times 10^7$ s⁻¹), and $V_{\rm rf} = 500$ V
- Start with estimate $s_m \approx 1 \text{ cm}$
- Ion mean free path $\lambda_i = 1/n_g \sigma_i \approx 1.0$ cm [p. 38]
- With bulk plasma thickness $d = l 2s_m = 8 \text{ cm}, \lambda_i/d \approx 0.125$
- $h_l = n_s/n_0 \approx 0.325$ [p. 43] and $d_{\text{eff}} = d/2h_l = 12.3$ cm [p. 46]
- With $n_g d_{\text{eff}} \approx 1.23 \times 10^{19} \text{ m}^{-2}$, the T_e versus $n_g d_{\text{eff}}$ figure [p. 47] yields T_e $\approx 3.1 \text{ V}$
- Bohm velocity $u_B \approx 2.7 \times 10^3$ m/s [p. 41]
- \mathcal{E}_c versus T_e figure [p. 40] yields $\mathcal{E}_c \approx 47$ V and $\mathcal{E}_c + 2T_e \approx 53$ V.
- Use the $K_{\rm el}$ versus T_e figure [p. 37] to find $\nu_m \approx K_{\rm el} n_g \approx 1.0 \times 10^7 \ {\rm s}^{-1}$

EXAMPLE 1 (CONT'D)

- Evaluate ohmic and stochastic electron heating [p. 76 or 84] $P_{\Omega} \approx 0.0145 \, \widetilde{V}_s^{1/2}$ [W] $P_s \approx 0.0121 \, \widetilde{V}_s$ [W]
- Use $\tilde{V}_s \approx V_{\rm rf}/2 = 250$ V in above to find $P_\Omega \approx 0.229$ W and $P_s \approx 3.03$ W
- Electron power balance [p. 84] yields $n_s \approx 1.37 \times 10^{15} \text{ m}^{-3}$
- Since $h_l \approx 0.325$, $n_0 \approx 4.23 \times 10^{15} \text{ m}^{-3}$
- Using $\mathcal{E}_i \approx 0.83 \,\widetilde{V}_s$ [p. 76] yields $\mathcal{E}_i \approx 208 \,\mathrm{V}$
- $J_i = e n_s u_B \approx 0.59 \text{ A/m}^2 \text{ [p. 76]}$
- The Child law [p. 76] gives $s_m \approx 0.90$ cm
- $J_{\rm rf} \approx 1.23 \,\omega \epsilon_0 \widetilde{V}_s / s_m \approx 25.8 \,\mathrm{A/m^2}$ [p. 76]
- Total power balance [p. 84] gives $P_{\rm abs} \approx 30.8$ W
- s_m reasonably close to the initial estimate \implies iteration over d is not useful

University of California, Berkeley

EXAMPLE 2

- Let p = 3 mTorr argon at 300 K, l = 10 cm, A = 1000 cm², f = 13.56 MHz and $P_{abs} = 200$ W
- As before, $h_l \approx 0.325$, $\underline{T}_e \approx 3.1$ V, $u_B \approx 2.7 \times 10^3$ m/s, and $\mathcal{E}_c + 2\underline{T}_e \approx 53$ V.
- Because n_g and T_e are the same, P_{Ω} and P_s are the same functions of \widetilde{V}_s as in EXAMPLE 1
- Using $P_{\rm abs} = 200$ W, we obtain the equation for the rf sheath voltage \widetilde{V}_s [p. 84]

$$200 = \left(0.0145\widetilde{V}_s^{1/2} + 0.0242\widetilde{V}_s\right) \left(1 + \frac{0.83\widetilde{V}_s}{53}\right)$$

- A numerical solution gives $\widetilde{V}_s = 687 \text{ V}$
- Then $V_{\rm rf} \approx 2\widetilde{V}_s \approx 1374$ V and $\mathcal{E}_i = 0.83 \widetilde{V}_s \approx 570$ V
- Use this in total power balance [p. 84] to find $n_s \approx 3.72 \times 10^{15} \text{ m}^{-3}$ and $n_0 \approx 1.14 \times 10^{16} \text{ m}^{-3}$
- We then find $\bar{J}_i \approx 1.6 \text{ A/m}^2$, $s_m \approx 1.16 \text{ cm}$, and $J_{\text{rf}} \approx 54.9 \text{ A/m}^2$

CAPACITIVE RF DISCHARGES

ASYMMETRIC SYSTEMS

ASYMMETRIC RF DISCHARGE

• Powered electrode area A_a smaller than grounded area A_b

 $\overline{V}_a = dc$ sheath voltage from plasma to powered electrode a $\overline{V}_b = dc$ sheath voltage from plasma to grounded electrode b $\widetilde{V}_a = rf$ voltage amplitude across sheath a $\widetilde{V}_b = rf$ voltage amplitude across sheath b

$$\overline{V}_a = 0.83 \, \widetilde{V}_a, \qquad \overline{V}_b = 0.83 \, \widetilde{V}_b, \qquad \widetilde{V}_{\rm rf} = \widetilde{V}_a + \widetilde{V}_b$$

• A negative DC bias voltage $V_{\text{bias}} = \overline{V}_b - \overline{V}_a$ appears

DEPENDENCE OF VOLTAGES ON AREAS

- Given \widetilde{V}_{rf} , A_a and A_b , what are \overline{V}_a , \overline{V}_b and \overline{V}_{bias} ?
- Voltage ratio $\overline{V}_a/\overline{V}_b$ depends on area ratio A_b/A_a

$$\frac{\overline{V}_a}{\overline{V}_b} = \left(\frac{A_b}{A_a}\right)^q$$

q = area ratio scaling exponent

- Experiments show $q \sim 1\text{--}2.5$
- Collisionless Child law gives q = 4

COLLISIONLESS CHILD LAW ANALYSIS

- Electrodes and plasma are good conductors, so \overline{V}_a is the same everywhere along electrode a
- Capacitive sheath [p. 76] $I_{\rm rf} \propto \frac{\overline{V}_a A_a}{s_a}$
- Child law [p. 76]

$$n_a \propto \frac{\overline{V}_a^{3/2}}{s_a^2}$$

• Eliminating s_a

$$I_{\rm rf} \propto \overline{V}_a^{1/4} n_a^{1/2} A_a$$

University of California, Berkeley

COLLISIONLESS CHILD LAW ANALYSIS (CONT'D)

• Similarly

$$I_{
m rf} \propto \overline{V}_b^{1/4} n_b^{1/2} A_b$$

• Set currents at sheaths a and b equal and solve for $\overline{V}_a/\overline{V}_b$

$$\frac{V_a}{\overline{V}_b} = \left(\frac{n_b}{n_a}\right)^2 \left(\frac{A_b}{A_a}\right)$$

• Simplest assumption for plasma is equal densities at the sheath edges a and b

$$\frac{\overline{V}_a}{\overline{V}_b} = \left(\frac{A_b}{A_a}\right)^4$$

COLLISIONAL CHILD LAW SHEATH SCALING

- For pressures above 3–10 mTorr, ions suffer collisions with neutrals in the sheaths
- The Child law is modified to the scaling

$$n_a \propto \frac{\overline{V}_a^{3/2}}{s_a^{5/2}}$$

• This leads to

$$\frac{\overline{V}_a}{\overline{V}_b} = \left(\frac{A_b}{A_a}\right)^{2.5}$$

• The weaker scaling q = 2.5 is more in agreement with experiments

VARIATION OF DENSITIES

- Plasma density near powered electrode is usually larger than near grounded electrode
- This leads to additional modifications in scaling

INDUCTIVE DISCHARGES

TRANSFORMER MODEL AND MATCHING

- University of California, Berkeley -

MOTIVATION

- High density (compared to capacitive discharge)
- Independent control of plasma density and ion energy
- Simplicity of concept
- RF rather than microwave powered
- No source magnetic fields

CYLINDRICAL AND PLANAR CONFIGURATIONS

University of California, Berkeley

LiebermanShortCourse15 **PLASMA**

EARLY HISTORY

• First inductive discharge by Hittorf (1884)

• Arrangement to test discharge mechanism by Lehmann (1892)

LiebermanShortCourse15

PLASMA

University of California, Berkeley -

TRANSFORMER MODEL

• For simplicity consider a long cylindrical discharge

• Current $\tilde{I}_{\rm rf}$ in \mathcal{N} turn coil induces current \tilde{I}_p in 1-turn plasma skin

 \Rightarrow A transformer
PLASMA RESISTANCE AND INDUCTANCE

• Plasma resistance R_p

 $R_p = \frac{1}{\sigma_{\rm dc}} \frac{\rm circumference of plasma loop}{\rm average \ cross \ sectional \ area \ of \ loop}$

where

$$\sigma_{\rm dc} = \frac{e^2 n_{es}}{m \nu_m} \qquad [p. 33]$$

LiebermanShortCourse1

with n_{es} = density at plasma-sheath edge

$$\implies R_p = \frac{\pi R}{\sigma_{\rm dc} l \delta_p}$$

• Plasma inductance L_p

 $L_p = \frac{\text{magnetic flux produced by plasma current}}{\text{plasma current}}$

• Using magnetic flux = $\pi R^2 \mu_0 \tilde{I}_p / l$

$$\Longrightarrow L_p = \frac{\mu_0 \pi R^2}{l}$$

COUPLING OF COIL TO PLASMA

• Model the source as a transformer

$$\begin{split} \widetilde{V}_{\rm rf} &= j\omega L_{11}\widetilde{I}_{\rm rf} + j\omega L_{12}\widetilde{I}_p \\ \widetilde{V}_p &= j\omega L_{21}\widetilde{I}_{\rm rf} + j\omega L_{22}\widetilde{I}_p \end{split}$$

Transformer inductances magnetic flux linking coil = $\frac{\mu_0 \pi b^2 \mathcal{N}^2}{\mu_0 \pi b^2 \mathcal{N}^2}$ $L_{11} =$ coil current magnetic flux linking plasma _ $\mu_0 \pi R^2 \mathcal{N}$ $L_{12} = L_{21} =$ coil current $L_{22} = L_p = \frac{\mu_0 \pi R^2}{1}$ 102LiebermanShortCourse15 - PLASMA

SOURCE CURRENT AND VOLTAGE

• Put $\widetilde{V}_p = -\widetilde{I}_p R_p$ in transformer equations and solve for the impedance $Z_s = \widetilde{V}_{\rm rf}/\widetilde{I}_{\rm rf}$ seen at coil terminals

$$Z_s = j\omega L_{11} + \frac{\omega^2 L_{12}^2}{R_p + j\omega L_p} \equiv R_s + j\omega L_s$$

• Equivalent circuit at coil terminals

$$R_s = \mathcal{N}^2 \frac{\pi R}{\sigma_{\rm dc} l \delta_p}$$
$$L_s = \frac{\mu_0 \pi R^2 \mathcal{N}^2}{l} \left(\frac{b^2}{R^2} - 1\right)$$

LiebermanShortCourse

• Power balance $\Longrightarrow I_{\rm rf}$

$$P_{\rm abs} = \frac{1}{2} \tilde{I}_{\rm rf}^2 R_s$$

• From source impedance $\Longrightarrow V_{\rm rf}$ $\widetilde{V}_{\rm rf} = \widetilde{I}_{\rm rf} Z_s$

EXAMPLE

- Assume plasma radius R = 10 cm, coil radius b = 15 cm, length l = 20 cm, $\mathcal{N} = 3$ turns, gas density $n_g = 6.6 \times 10^{14}$ cm⁻³ (20 mTorr argon at 300 K), $\omega = 85 \times 10^6$ s⁻¹ (13.56 MHz), absorbed power $P_{\rm abs} = 600$ W, and low voltage sheaths
- At 20 mTorr, $\lambda_i \approx 0.15$ cm, $h_l \approx h_R \approx 0.1$, $d_{\text{eff}} \approx 34$ cm [p. 38, 44, 46]
- Particle balance (T_e versus $n_g d_{\text{eff}}$ figure [p. 47]) yields T_e ≈ 2.1 V
- Collisional energy losses (\mathcal{E}_c versus T_e figure [p. 40]) are $\mathcal{E}_c \approx 110$ V. Adding $\mathcal{E}_e + \mathcal{E}_i = 7.2 T_e$ yields total energy losses $\mathcal{E}_T \approx 126$ V [p. 39]
- $u_B \approx 2.3 \times 10^5 \text{ cm/s} \text{ [p. 41]} \text{ and } A_{\text{eff}} \approx 185 \text{ cm}^2 \text{ [p. 50]}$
- Power balance yields $n_e \approx 7.1 \times 10^{11} \text{ cm}^{-3}$ and $n_{se} \approx 7.4 \times 10^{10} \text{ cm}^{-3}$ [p. 50]
- Use n_{se} to find skin depth $\delta_p \approx 2.0$ cm [p. 99]; estimate $\nu_m = K_{\rm el} n_g$ ($K_{\rm el}$ versus T_e figure [p. 37]) to find $\nu_m \approx 3.4 \times 10^7$ s⁻¹
- Use ν_m and n_{se} to find $\sigma_{dc} \approx 61 \ \Omega^{-1} \text{-m}^{-1}$ [p. 33]
- Evaluate impedance elements $R_s \approx 23.5 \ \Omega$ and $L_s \approx 2.2 \ \mu\text{H}$; $|Z_s| \approx \omega L_s \approx 190 \ \Omega$ [p. 103]
- Power balance yields $I_{\rm rf} \approx 7.1$ A; from source impedance $|Z_s| = 190 \Omega$, $\widetilde{V}_{\rm rf} \approx 1360$ V [p. 103]

MATCHING DISCHARGE TO POWER SOURCE

• Consider an rf power source connected to a discharge

- Source impedance $Z_T = R_T + jX_T$ is given Discharge impedance $Z_L = R_L + jX_L$
- Time-average power delivered to discharge $P_{\rm abs} = \frac{1}{2} \operatorname{Re} (\widetilde{V} \widetilde{I}^*)$
- For fixed source \widetilde{V}_T and Z_T , maximize power delivered to discharge

$$\begin{aligned} X_L &= -X_T \\ R_L &= R_T \end{aligned}$$

• Maximum time-average power delivered to discharge

$$P_{\text{abs}} = \frac{1}{8} \frac{|\widetilde{V}_T|^2}{R_T}$$

LiebermanShortCourse15

SM

University of California, Berkeley

MATCHING NETWORK

• Insert lossless matching network between power source and coil

А

 C_2 :

 $R_{T}=50 \Omega$

Power source Matching network Discharge coil

 C_1

 $L_{\rm s}$

 $R_{\rm s}$

LiebermanShortCourse1

- Continue EXAMPLE [p. 104] with $R_s = 23.5 \ \Omega$ and $\omega L_s = 190 \ \Omega$; assume $R_T = 50 \ \Omega$ (corresponds to a conductance $1/R_T = 1/50 \ S$)
- Choose C_1 such that the conductance seen looking to the right at terminals AA' is 1/50 S

$$\implies C_1 = 71 \text{ pF}$$

• Choose C_2 to cancel the reactive part of the impedance seen at AA'

$$\implies C_2 = 249 \text{ pF}$$

- For $P_{\rm abs} = 600$ W, the 50 Ω source supplies $\tilde{I}_{\rm rf} = 4.9$ A
- Voltage at source terminals (AA') = $\tilde{I}_{rf}R_T = 245$ V

PLANAR COIL DISCHARGE

• Magnetic field produced by planar coil

• RF power is deposited in a ring-shaped plasma volume

• As for a cylindrical discharge, there is a primary (L_{11}) , coupling $(L_{12} = L_{21})$ and secondary $(L_p = L_{22})$ inductance

PLANAR COIL FIELDS

• A ring-shaped plasma forms because

Induced electric field =
$$\begin{cases} 0, & \text{on axis} \\ \max, & \text{at } r \approx \frac{1}{2} R_{\text{wall}} \\ 0, & \text{at } r = R_{\text{wall}} \end{cases}$$

• Measured radial variation of B_r (and E_{θ}) at three distances below the window (5 mTorr argon, 500 W, Hopwood et al, 1993)

INDUCTIVE DISCHARGES

POWER BALANCE

University of California, Berkeley -

109

LiebermanShortCourse15

- PLASMA

RESISTANCE AT HIGH AND LOW DENSITIES

• Plasma resistance seen by the coil [p. 103]

$$R_{s} = R_{p} \frac{\omega^{2} L_{12}^{2}}{R_{p}^{2} + \omega^{2} L_{p}^{2}}$$

- High density (normal inductive operation) [p. 103] $R_s \propto R_p \propto \frac{1}{\sigma_{\rm dc} \delta_p} \propto \frac{1}{\sqrt{n_e}}$
- Low density (skin depth > plasma size) $R_s \propto$ number of electrons in the heating volume $\propto n_e$

POWER BALANCE WITHOUT MATCHING

• Drive discharge with rf current

- Power absorbed by discharge is $P_{\rm abs} = \frac{1}{2} |\tilde{I}_{\rm rf}|^2 R_s(n_e)$ [p. 110] Power lost by discharge $P_{\rm loss} \propto n_e$ [p. 50]
- Intersection (red dot) gives operating point; let $\tilde{I}_1 < \tilde{I}_2 < \tilde{I}_3$

LiebermanShortCourse1

SM

CAPACITIVE COUPLING OF COIL TO PLASMA

• For \tilde{I}_{rf} below the minimum current \tilde{I}_2 , there is only a weak capacitive coupling of the coil to the plasma

112

LiebermanShortCourse15

SMA

MEASURMENTS OF ARGON ION DENSITY

- Above 100 W, discharge is inductive and $n_e \propto P_{\rm abs}$
- Below 100 W, a weak capacitive discharge is present

SOURCE EFFICIENCY

- The source coil has some winding resistance R_{coil}
- R_{coil} is in series with the plasma resistance R_s
- Power transfer efficiency is

$$\eta = \frac{R_s}{R_s + R_{\rm coil}}$$

• High efficiency \implies maximum R_s

- Power transfer efficiency decreases at low and high densities
- Poor power transfer at low or high densities is analogous to poor power transfer in an ordinary transformer with an open or shorted secondary winding

University of California, Berkeley