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OUTLINE

• Introduction

• Summary of Plasma and Discharge Fundamentals

• Global Model of Discharge Equilibrium

— Break —

• Inductive Discharges

• Free Radical Balance in Discharges

• Adsorption and Desorption Kinetics

• Plasma-Assisted Etch Kinetics
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INTRODUCTION TO PLASMA DISCHARGES

AND PROCESSING
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THE NANOELECTRONICS REVOLUTION

• Transistors/chip doubling every 11
2–2 years since 1959

• 1,000,000-fold decrease in cost for the same performance

• In 2020: 6 nm gate length, 6×109 transistors, 73 GHz on-chip clock,
14–18 wiring levels

EQUIVALENT AUTOMOTIVE ADVANCE

• 4 million km/hr

• 1 million km/liter

• Never break down

• Throw away rather than pay parking fees

• 3 cm long × 1 cm wide

• Crash 3× a day
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RANGE OF NANOELECTRONICS APPLICATIONS

• Etching
Si, a-Si, oxide, nitride, III-V’s

• Ashing
Photoresist removal

• Deposition (PECVD)
Oxide, nitride, a-Si

• Oxidation
Si

• Sputtering
Al, W, Au, Cu, YBaCuO

• Polymerization
Various plastics

• Implantation
H, He, B, P, O, As, Pd
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EVOLUTION OF ETCHING DISCHARGES

FIRST GEN-
ERATION
(1 source,
multi-wafer,
low density)

SECOND
GENER-
ATION
(2 sources,
single wafer,
high density)

THIRD GEN-
ERATION
(multi-source,
single wafer,
moderate density)
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ISOTROPIC PLASMA ETCHING

1. Start with inert molecular gas CF4

2. Make discharge to create reactive species:
CF4 −→ CF3 + F

3. Species reacts with material, yielding volatile product:
Si + 4F −→ SiF4 ↑

4. Pump away product

ANISOTROPIC PLASMA ETCHING

5. Energetic ions bombard trench bottom, but not sidewalls:
(a) Increase etching reaction rate at trench bottom
(b) Clear passivating films from trench bottom

Mask

Plasma
ions
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PLASMA DENSITY VERSUS TEMPERATURE
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RELATIVE DENSITIES AND ENERGIES

Charged particle densities ≪ neutral particle densities
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NON-EQUILIBRIUM

• Energy coupling between electrons and heavy particles is weak

Input

Electrons Ions

Neutrals

strong

power

Walls

Walls

Walls

strong

strongweak

weak
weak

• Electrons are not in thermal equilibrium with ions or neutrals

Te ≫Ti in plasma bulk

Bombarding Ei ≫ Ee at wafer surface

• “High temperature processing at low temperatures”
1. Wafer can be near room temperature
2. Electrons produce free radicals =⇒ chemistry
3. Electrons produce electron-ion pairs =⇒ ion bombardment
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ELEMENTARY DISCHARGE BEHAVIOR

• Uniform density of electrons and ions ne and ni at time t = 0
• Low mass warm electrons quickly drain to the wall, forming sheaths

• Ion bombarding energy Ei
= plasma-wall potential Vp

• Separation into bulk plasma and sheaths occurs for ALL discharges
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SUMMARY OF PLASMA FUNDAMENTALS
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THERMAL EQUILIBRIUM PROPERTIES

• Electrons generally near thermal equilibrium
Ions generally not in thermal equilibrium

• Maxwellian distribution of electrons

fe(v) = ne

(
m

2πkTe

)3/2

exp

(

−mv2

2kTe

)

where v2 = v2
x + v2

y + v2
z

fe(vx)

vxvTe =
(kTe/m)1/2

• Electron energy distribution function (EEDF)

ge(E) ∝ E1/2 exp(−E/Te)

• Pressure p = nkT
For neutral gas at room temperature (300 K)

ng[cm
−3] ≈ 3.3× 1016 p[Torr]
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AVERAGES OVER MAXWELLIAN DISTRIBUTION

• Average energy
〈 12mv2〉 = 1

ne

∫
d3v 1

2mv2fe(v) = 3
2kTe

• Average speed

v̄e =
1

ne

∫

d3v vfe(v) =

(
8kTe

πm

)1/2

• Average electron flux lost to a wall

x

y

z
Γe

Γe =

∫ ∞

−∞

dvx

∫ ∞

−∞

dvy

∫ ∞

0

dvzvzfe(v) =
1

4
nev̄e [m−2-s−1]

• Average kinetic energy lost per electron lost to a wall

Ee = 2 Te
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FORCES ON PARTICLES

For a unit volume of electrons (or ions)

mne
due

dt
= qneE−∇pe −mneνmue

mass × acceleration = electric field force +
+ pressure gradient force + friction (gas drag) force

m = electron mass, ne = electron density, ue = electron flow velocity
q = −e for electrons (+e for ions), E = electric field
pe = nekTe = electron pressure
νm = collision frequency of electrons with neutrals

x

pe

pe(x) pe(x + dx) ue

Drag
force

Neutrals

x x + dx

∇pe
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BOLTZMANN FACTOR FOR ELECTRONS

• Electric field and pressure gradient forces almost balance
0 ≈ −eneE−∇pe

• Let E = −∇Φ and pe = nekTe:

∇Φ =
kTe

e

∇ne

ne
• Put kTe/e = Te (volts) and integrate to obtain:

ne(r) = ne0 eΦ(r)/Te

Φ

x

m
x

ne

ne0
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PLASMA DIELECTRIC CONSTANT ǫp

• RF discharges are driven at a frequency ω

E(t) = Re (Ẽ ejωt), etc
• Define ǫp from the total current in Maxwell’s equations

∇× H̃ = J̃c + jωǫ0Ẽ
︸ ︷︷ ︸

≡ jωǫpẼ

Total current J̃
• Conduction current J̃c = −eneũe is mainly due to electrons
• Newton’s law (electric field and neutral drag) is

jωmũe = −eẼ −mνmũe

• Solve for ũe and evaluate J̃c to obtain

ǫp ≡ ǫ0κp = ǫ0

[

1− ω2
pe

ω(ω − jνm)

]

with ωpe = (e2ne/ǫ0m)1/2 the electron plasma frequency
• For ω ≫ νm, ǫp is mainly real (nearly lossless dielectric)

For νm ≫ ω, ǫp is mainly imaginary (very lossy dielectric)
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PLASMA CONDUCTIVITY σp

• It is useful to introduce the plasma conductivity J̃c ≡ σpẼ

• RF plasma conductivity

σp =
e2ne

m(νm + jω)

• DC plasma conductivity (ω ≪ νm)

σdc =
e2ne

mνm

• The plasma dielectric constant and conductivity are related by:
jωǫp = σp + jωǫ0

• Due to Re(σp) [or Im(ǫp)], rf current flowing through the plasma
heats electrons (just like a resistor)

LiebermanMinicourse07 18



University of California, Berkeley PLASMA

SUMMARY OF DISCHARGE FUNDAMENTALS
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ELECTRON COLLISIONS WITH ARGON

• Maxwellian electrons collide with Ar atoms (density ng)
dne

dt
= νne = Kng ne

ν = collision frequency [s−1], K(Te) = rate coefficient [m3/s]

• Electron-Ar collision processes
e + Ar −→ Ar+ + 2e (ionization)
e + Ar −→ e + Ar∗ −→ e + Ar + photon (excitation)
e + Ar −→ e + Ar (elastic scattering)

e

Ar
Ar

e

• Rate coefficient K(Te) is average over Maxwellian distribution

of cross section σ [m2] × relative velocity v for the process
K(Te) = 〈σv〉Maxwellian
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ELECTRON-ARGON RATE COEFFICIENTS
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ION COLLISIONS WITH ARGON

• Argon ions collide with Ar atoms

Ar+ + Ar −→ Ar+ + Ar (elastic scattering)
Ar+ + Ar −→ Ar + Ar+ (charge transfer)

Ar
Ar

Ar+

Ar+

Ar

Ar

Ar+

Ar+

• Total cross section for room temperature ions σi ≈ 10−14 cm2

• Ion-neutral mean free path

λi =
1

ngσi

• Practical formula

λi[cm] =
1

330 p
, [p in Torr]

• Ion-neutral collision frequency
νi = ng v̄i/λi

with v̄i = (8kTi/πM)1/2
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THREE ENERGY LOSS PROCESSES

1. Define collisional energy Ec lost per electron-ion pair created

KizEc ≡ KizEiz + KexEex + Kel(2m/M)(3Te/2)

=⇒ Ec(Te) [voltage units]

Eiz, Eex, and (3m/M)Te are energies lost by an electron due to an
ionization, excitation, and elastic scattering collision

2. Electron kinetic energy lost to walls
Ee = 2 Te

3. Ion kinetic energy lost to walls is mainly due to the dc potential V̄s

across the sheath
Ei ≈ V̄s

• Total energy lost per electron-ion pair lost to walls

ET = Ec + Ee + Ei
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COLLISIONAL ENERGY LOSSES
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BOHM (ION LOSS) VELOCITY uB

Plasma Sheath Wall

Density ns

uB

• Due to formation of a “presheath”, ions arrive at the plasma-sheath
edge with directed energy kTe/2

1

2
Mu2

i =
kTe

2

• At the plasma-sheath edge (density ns), electron-ion pairs are lost
at the Bohm velocity

ui = uB =

(
kTe

M

)1/2
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AMBIPOLAR DIFFUSION AT HIGH PRESSURES

• Plasma bulk is quasi-neutral (ne ≈ ni = n) and the electron and
ion loss fluxes are equal (Γe ≈ Γi ≈ Γ)

• Fick’s law
Γ = −Da∇n

with ambipolar diffusion coefficient Da = kTe/Mνi

• Density profile is sinusoidal

0
x

ns

n0

Γwall Γwall

l/2−l/2

• Loss flux to the wall is
Γwall = nsuB ≡ hln0uB

• Edge-to-center density ratio is

hl ≡
ns

n0
=

π

l

uB

νi
• Applies for pressures > 100 mTorr in argon
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AMBIPOLAR DIFFUSION AT LOW PRESSURES

• The diffusion coefficient is not constant
• Density profile is relatively flat in the center and falls sharply near

the sheath edge

0
x

ns

n0

Γwall Γwall

l/2−l/2

• The edge-to-center density ratio is

hl ≡
ns

n0
≈ 0.86

(3 + l/2λi)
1/2

where λi = ion-neutral mean free path [p. 22]
• Applies for pressures < 100 mTorr in argon
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AMBIPOLAR DIFFUSION IN
LOW PRESSURE CYLINDRICAL DISCHARGE

R

l

Plasma

ne = ni = n0

nsl = hl n0

nsR = hR n0

• For a cylindrical plasma of length l and radius R, loss fluxes to axial
and radial walls are

Γaxial = hln0uB , Γradial = hRn0uB

where the edge-to-center density ratios are

hl ≈
0.86

(3 + l/2λi)
1/2

, hR ≈
0.8

(4 + R/λi)
1/2

• Applies for pressures < 100 mTorr in argon
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GLOBAL MODEL OF DISCHARGE EQUILIBRIUM
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PARTICLE BALANCE AND Te

• Assume uniform cylindrical plasma absorbing power Pabs

R

l

PlasmaPabs

ne = ni = n0

• Particle balance
Production due to ionization = loss to the walls

Kizngn0πR2l = (2πR2hln0 + 2πRlhRn0)uB

• Solve to obtain

Kiz(Te)

uB(Te)
=

1

ngdeff

where

deff =
1

2

Rl

Rhl + lhR

is an effective plasma size
• Given ng and deff =⇒ electron temperature Te

• Te varies over a narrow range of 2–5 volts
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ELECTRON TEMPERATURE IN ARGON DISCHARGE
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ION ENERGY FOR LOW VOLTAGE SHEATHS

• Ei = energy entering sheath + energy gained traversing sheath
• Ion energy entering sheath = Te/2 [voltage units]
• Sheath voltage determined from particle conservation in the sheath

Plasma Sheath

+ −

Γi Γi

Γe

V̄s

Insulating
wall

Density ns

Γi = nsuB, Γe =
1

4
nsv̄e

︸ ︷︷ ︸

e−V̄s/Te

with v̄e = (8eTe/πm)1/2 Random flux
at sheath edge

• The ion and electron fluxes must balance

V̄s =
Te

2
ln

(
M

2πm

)

or V̄s ≈ 4.7 Te for argon
• Accounting for the initial ion energy, Ei ≈ 5.2 Te
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ION ENERGY FOR HIGH VOLTAGE SHEATHS

• Large ion bombarding energies can be gained near rf- or
dc-driven electrodes embedded in the plasma

+− −+

Clarge

V̄s V̄s

+− V̄s

~
Ṽrf

~
Ṽrf

Low voltage
sheath ∼ 5.2 Te

Plasma

Plasma

V̄s ∼ 0.4 Ṽrf

V̄s ∼ 0.8 Ṽrf

s

• The sheath thickness s is given by the Child Law

J̄i = ensuB =
4

9
ǫ0

(
2e

M

)1/2
V̄

3/2
s

s2

• Estimating ion energy is not simple as it depends on the type of
discharge and the application of rf or dc bias voltages
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POWER BALANCE AND n0

• Assume low voltage sheaths at all surfaces
ET (Te) = Ec(Te)

︸ ︷︷ ︸
+ 2 Te

︸︷︷︸
+ 5.2 Te

︸ ︷︷ ︸

Collisional Electron Ion
• Power balance

Power in = power out

Pabs = (hln02πR2 + hRn02πRl) uB eET
• Solve to obtain

n0 =
Pabs

AeffuBeET
where

Aeff = 2πR2hl + 2πRlhR

is an effective area for particle loss

• Density n0 is proportional to the absorbed power Pabs

• Density n0 depends on pressure p through hl, hR, and Te
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PARTICLE AND POWER BALANCE

• Particle balance =⇒ electron temperature Te

(independent of plasma density)

• Power balance =⇒ plasma density n0

(once electron temperature Te is known)
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EXAMPLE 1

• Let R = 0.15 m, l = 0.3 m, ng = 3.3 × 1019 m−3 (p = 1 mTorr at
300 K), and Pabs = 800 W

• Assume low voltage sheaths at all surfaces

• Find λi = 0.03 m. Then hl ≈ hR ≈ 0.3 and deff ≈ 0.17 m [pp. 22,
28, 30]

• From the Te versus ngdeff figure, Te ≈ 3.5 V [p. 31]

• From the Ec versus Te figure, Ec ≈ 42 V [p. 24]. Adding Ee = 2Te ≈
7 V and Ei ≈ 5.2Te ≈ 18 V yields ET = 67 V [p. 23]

• Find uB ≈ 2.9× 103 m/s and find Aeff ≈ 0.13 m2 [pp. 25, 34]

• Power balance yields n0 ≈ 2.0× 1017 m−3 [p. 34]

• Ion current density Jil = ehln0uB ≈ 2.9 mA/cm2

• Ion bombarding energy Ei ≈ 18 V [p. 32]
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EXAMPLE 2

• Apply a strong dc magnetic field along the cylinder axis
=⇒ particle loss to radial wall is inhibited

• For no radial loss, deff = l/2hl ≈ 0.5 m

• From the Te versus ngdeff figure, Te ≈ 3.3 V

• From the Ec versus Te figure, Ec ≈ 46 V. Adding Ee = 2Te ≈ 6.6 V
and Ei ≈ 5.2Te ≈ 17 V yields ET = 70 V

• Find uB ≈ 2.8× 103 m/s and find Aeff = 2πR2hl ≈ 0.043 m2

• Power balance yields n0 ≈ 5.8× 1017 m−3

• Ion current density Jil = ehln0uB ≈ 7.8 mA/cm2

• Ion bombarding energy Ei ≈ 17 V

=⇒ Small drop in Te and significant increase in n0

EXPLAIN WHY!
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IMPROVEMENTS TO GLOBAL MODEL
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NON-MAXWELLIAN ELECTRON DISTRIBUTIONS

• Global model theory with EEDF [p. 13]

ge ∝ E1/2 exp(−cEx)
x = 1⇒ Maxwellian; x = 2⇒ Druyvesteyn

(J.T. Gudmundsson, Plasma Sources Sci. Technol. 10, 76, 2001)

• 1D PIC simulations with “inductive source”-type excitation,
5 cm gap, 13.56 MHz
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(D. Monahan, “Modelling the Electronegative Discharge,” PhD Thesis submitted to

Dublin City University, June 2007; Prof. Miles Turner, supervisor)
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NON-UNIFORM BULK PLASMA

• Global model assumes a uniform bulk plasma (density n0)
dropping sharply to a sheath edge density ns

• The actual low-pressure profile is more like a piece of a circle

n

x

n0´
n0

ns

Actual

hl =
ns

n0
=⇒ h′

l =
ns

n′
0
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PIC SIMULATION RESULTS

(Monahan, 2007)
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ELECTRON HEATING

• Discharges can be distinguished by electron heating mechanisms

(a) Ohmic (collisional) heating (capacitive, inductive discharges)

(b) Stochastic (collisionless) heating (capacitive, inductive
discharges)

(c) Resonant wave-particle interaction heating (electron cyclotron
resonance and helicon discharges)

• Achieving adequate electron heating is a central issue

• Although the heated electrons provide the ionization required to
sustain the discharge, the electrons tend to short out the applied
heating fields within the bulk plasma
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INDUCTIVE DISCHARGES

DESCRIPTION AND MODEL
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MOTIVATION

• Independent control of plasma density and ion energy

• Simplicity of concept

• RF rather than microwave powered

• No source magnetic fields
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CYLINDRICAL AND PLANAR CONFIGURATIONS

• Cylindrical coil

• Planar coil
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HIGH DENSITY REGIME

• Inductive coil excites a decaying electromagnetic wave in plasma

z

Coil

Plasma

Ẽ

H̃

Window

Decaying wave

δp

• Wave decays exponentially into plasma

Ẽ = Ẽ0 e−z/δp , δp =
c

ω

1

Im(κ
1/2
p )

where κp = plasma dielectric constant [p. 17]

κp = 1− ω2
pe

ω(ω − jνm)

For typical high density, low pressure (νm ≪ ω) discharge

δp ≈
c

ωpe
=

(
m

e2µ0ne

)1/2

∼ 1–2 cm
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TRANSFORMER MODEL

• For simplicity consider long cylindrical discharge

Plasma

l

R
b

z

N turn coil Ĩrf

Ĩpδp

• Current Ĩrf in N turn coil induces current Ĩp in 1-turn
plasma skin

=⇒ A transformer
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PLASMA RESISTANCE AND INDUCTANCE

• Plasma resistance Rp

Rp =
1

σdc

circumference of plasma loop

average cross sectional area of loop
where

σdc =
e2nes

mνm

[p. 18]

=⇒ Rp =
πR

σdclδp

• Plasma inductance Lp

Lp =
magnetic flux produced by plasma current

plasma current
• Using magnetic flux = πR2µ0Ĩp/l

=⇒ Lp =
µ0πR2

l
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COUPLING OF COIL TO PLASMA

• Model the source
as a transformer

Coil Plasma

Ṽrf = jωL11Ĩrf + jωL12Ĩp

Ṽp = jωL21Ĩrf + jωL22Ĩp

• Transformer inductances

L11 =
magnetic flux linking coil

coil current
=

µ0πb2N 2

l

L12 = L21 =
magnetic flux linking plasma

coil current
=

µ0πR2N
l

L22 = Lp =
µ0πR2

l
• Plasma resistance Vp = −IpRp
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SOURCE CURRENT AND VOLTAGE

• Solve for impedance Zs = Ṽrf/Ĩrf seen at coil terminals

Zs = jωL11 +
ω2L2

12

Rp + jωLp
≡ Rs + jωLs

• Equivalent circuit at coil terminals

Rs = N 2 πR

σdclδp

Ls =
µ0πR2N 2

l

(
b2

R2
− 1

)

• Power balance =⇒ Ĩrf

Pabs =
1

2
Ĩ2
rfRs

• From source impedance =⇒ Vrf

Ṽrf = ĨrfZs
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EXAMPLE

• Assume plasma radius R = 10 cm, coil radius b = 15 cm, length l = 20 cm,
N = 3 turns, gas density ng = 6.6×1014 cm−3 (20 mTorr argon at 300 K),
ω = 85 × 106 s−1 (13.56 MHz), absorbed power Pabs = 600 W, and low
voltage sheaths

• At 20 mTorr, λi ≈ 0.15 cm, hl ≈ hR ≈ 0.1, and deff ≈ 34 cm [pp. 22, 28,
30]

• Particle balance (Te versus ngdeff figure) yields Te ≈ 2.1 V [p. 31]
• Collisional energy losses (Ec versus Te figure) are Ec ≈ 110 V [p. 24].

Adding Ee + Ei = 7.2Te yields total energy losses ET ≈ 126 V [p. 23]
• uB ≈ 2.3 × 105 cm/s and Aeff ≈ 185 cm2 [pp. 25, 34]
• Power balance yields ne ≈ 7.1 × 1011 cm−3 and nse ≈ 7.4 × 1010 cm−3

[p. 34]

• Use nse to find skin depth δp ≈ 2.0 cm [p. 46]; estimate νm = Kelng (Kel

versus Te figure) to find νm ≈ 3.4 × 107 s−1 [p. 21]
• Use νm and nse to find σdc ≈ 61 Ω−1-m−1 [p. 18]
• Evaluate impedance elements Rs ≈ 23.5 Ω and Ls ≈ 2.2 µH; |Zs| ≈

ωLs ≈ 190 Ω [p. 50]

• Power balance yields Ĩrf ≈ 7.1A; from impedance Ṽrf ≈ 1360 V [p. 50]
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MATCHING DISCHARGE TO POWER SOURCE

• Consider an rf power source connected to a load

~

+

−
Source Load

ṼT

ZT

Ĩ

Ṽ

+

−

ZL

• Source impedance ZT = RT + jXT is given
Load impedance ZL = RL + jXL

• Time-average power delivered to load Pabs = 1
2Re (Ṽ Ĩ∗)

• For fixed source ṼT and ZT , to maximize power delivered to load,

XL = −XT

RL = RT
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MATCHING NETWORK

• Insert lossless matching network between power source and coil

Power source Matching network Discharge coil

• Continue EXAMPLE with Rs = 23.5 Ω and ωLs = 190 Ω; assume
RT = 50 Ω (corresponds to conductance of 1/50 Ω−1)

• Choose C1 such that the conductance seen looking to the right at
terminals AA’ is 1/RT = 1/50 Ω−1

=⇒ C1 = 71 pF

• Choose C2 to cancel the reactive part of the impedance seen at AA’

=⇒ C2 = 249 pF

• For Pabs = 600 W, the 50 Ω source supplies Ĩrf = 4.9 A
• Voltage at source terminals (AA’) = IrfRT = 245 V
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PLANAR COIL DISCHARGE

• Magnetic field produced by planar coil

• RF power is deposited in ring-shaped plasma volume

Plasma

z

N turn coil
Ĩrf

Ĩp

δp

Primary
inductance

Coupling
inductance

Plasma
inductance

¾

• As for a cylindrical discharge, there is a primary (L11), coupling
(L12 = L21) and secondary (Lp = L22) inductance
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PLANAR COIL FIELDS

• A ring-shaped plasma forms because

Induced electric field =

{ 0, on axis
max, at r ≈ 1

2Rwall

0, at r = Rwall

• Measured radial variation of Br (and Eθ) at three distances below
the window (5 mTorr argon, 500 W)
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INDUCTIVE DISCHARGES

POWER BALANCE
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RESISTANCE AT HIGH AND LOW DENSITIES

• Plasma resistance seen by the coil [p. 50]

Rs = Rp
ω2L2

12

R2
p + ω2L2

p

• High density (normal inductive operation)

Rs ∝ Rp ∝
1

σdcδp
∝ 1√

ne

• Low density (skin depth > plasma size)
Rs ∝ number of electrons in the heating volume ∝ ne

Rs

ne

∝ ne

∝ 1
√

ne

plasmasizeδp ∼
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POWER BALANCE

• Drive discharge
with rf current

• Power absorbed by discharge is Pabs = 1
2 |Ĩrf |2Rs(ne)

Power lost by discharge Ploss ∝ ne [p. 34]

• Intersection gives operating point; let Ĩ1 < Ĩ2 < Ĩ3

ne

Ploss

Pabs = 1
2 Ĩ2

1Rs

Pabs = 1
2 Ĩ2

2Rs

Pabs = 1
2 Ĩ2

3Rs

Power

• Inductive operation impossible for Ĩrf ≤ Ĩ2, the critical current
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CAPACITIVE COUPLING OF COIL TO PLASMA

• For Ĩrf below the critical current Ĩ2, there is only a weak capacitive
coupling of the coil to the plasma

Plasma

z

Ĩp

+

−
Ṽrf

coupling
Capacitive

• A small capacitive power is absorbed
=⇒ low density capacitive discharge

ne

Ploss

Pabs = 1
2 Ĩ2

1Rs

Pabs = 1
2 Ĩ2

3Rs

Power

Cap

Ind

Cap Mode Ind Mode
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MEASURMENTS OF ARGON ION DENSITY

• Above 100 W, discharge is inductive and ne ∝ Pabs

• Below 100 W, a weak capacitive discharge is present
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FREE RADICAL BALANCE IN DISCHARGES
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ONE-DIMENSIONAL SLAB MODEL

• N2 discharge with low fractional ionization (ng ≈ nN2
)

• Determine Te:
Assume R≫ l = plate separation. Then ion particle balance is

KizngnilA ≈ 2nisuBA
where nis = hlni. This yields [p. 30]

Kiz(Te)

uB(Te)
≈ 2hl

ngl
=⇒ Te

• Determine ni and Γis:
The overall discharge power balance is [p. 34]

Pabs ≈ 2AeET nisuB
This yields

nis ≈
Pabs

2eET uBA
and

Γis ≈ nisuB

• Determine ion bombarding energy [p. 32]

Ei = 5.2 Te
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FREE RADICAL BALANCE

• For nitrogen:

e + N2
Kdiss−→ 2N + e

• Assume low fractional dissociation and that the only loss of N atoms
is due to a vacuum pump Sp (m3/s)

Al
dnN

dt
= Al 2Kdissngni − SpnNS = 0

• Solving for the free radical density at the surface

nNS =
2Alng

Sp
Kdissni

• The flux of N atoms is

ΓNS =
1

4
nNS v̄N

where v̄N = (8kTN/πMN)1/2

• But how does Kdiss(Te) depend on discharge pressure?
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DISSOCIATION RATE COEFFICIENT

• Assume Kdiss and Kiz have Arrhenius forms

Kdiss = Kdiss0 e−Ediss/Te

Kiz = Kiz0 e−Eiz/Te

• Eliminating Te from these equations yields

Kdiss = C0K
Ediss/Eiz

iz

where C0 = Kdiss0/K
Ediss/Eiz

iz0

• Using ion particle balance [p. 62] to eliminate Kiz yields

Kdiss = C0

(
2hluB

ngl

)Ediss/Eiz

• In this form, Kdiss depends only weakly on Te, and the dependance
of Kdiss on ngl is made explicit

• Inserting ni [p. 62] and Kdiss [above] into nNS [p. 63] yields

nNS = 2C0
Pabs

eET Sp

(
ngl

2hluB

)1−Ediss/Eiz

Typically, Ediss/Eiz ≈ 0.3–0.5
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RECOMBINATION, REACTION AND LOADING EFFECT

• Recall that [p. 64]:

nNS = 2C0
Pabs

eET Sp

(
ngl

2hluB

)1−Ediss/Eiz

• Consider a recombination coefficient γrec for N atoms on the walls
and a reaction coefficient γreac for N atoms on a substrate.
The pumping speed Sp is replaced by:

Sp −→ Sp + γrec
1

4
v̄N(2A−Asubs) + γreac

1

4
v̄NAsubs

• Note that nNS is reduced due to recombination and reaction losses

• nNS now depends on the substrate area Asubs, a loading effect
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ADSORPTION AND DESORPTION KINETICS
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ADSORPTION

• Reaction of a molecule with the surface

A + S
Ka−→←−
Kd

A: S

• Physisorption (due to weak van der Waals forces)
U

x

1–3 Å

0.01–0.25 V

• Chemisorption (due to formation of chemical bonds)
U

x

1–1.5 Å

0.4–4 V
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STICKING COEFFICIENT

• Adsorbed flux

Γads = sΓA =
1

4
sv̄AnAS

s(θ, T ) = sticking coefficient
θ = fraction of surface sites covered with absorbate

• Langmuir kinetics
s(θ, T) = s0(T)(1− θ)

s

s0

0 0 1 θ

Langmuir

• Zero-coverage sticking coefficient s0 ∼ 10−6–1

s0

0 0

1

T
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DESORPTION

• Rate constant
A: S −→ A + S

Kdesor = K0 e−Edesor/T [s−1]

where Edesor = Echemi or Ephysi

K0 ∼ 1014–1016 s−1 physisorption

∼ 1013–1015 s−1 chemisorption
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ADSORPTION-DESORPTION KINETICS

• Consider the reactions

A + S
Ka−→←−
Kd

A: S

• The adsorption flux is

Γads = KanASn′

0(1− θ)

n′
0 = area density (m−2) of adsorption sites

nAS = the gas phase density at the surface

Ka = s0
1

4
v̄A/n′

0 [m3/s]

• The desorption flux is

Γdesor = Kdn
′

0θ

Kd = Kd0 e−Edesor/T [s−1]
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LANGMUIR ISOTHERM

• Equate adsorption and desorption fluxes, Γads = Γdesor

θ =
KnAS

1 +KnAS

where K = Ka/Kd

0
0

1

5 10

θ

nASK

• Note that T ↑ ⇒ K ↓ ⇒ θ ↓

• Example: 2XeF2(g) + Si(s)→
SiF4(g) + 2Xe

log ER

1/T

θ    1 with
Kr   as T

θ     0 and
Kr   as T

450 K

LiebermanMinicourse07 71



University of California, Berkeley PLASMA

PLASMA-ASSISTED ETCH KINETICS
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ION-ENHANCED PLASMA ETCHING

1. Low chemical etch rate of silicon in XeF2 etchant gas
2. Tenfold increase in etch rate with the addition of argon ion bom-

bardment of the substrate, simulating plasma-assisted etching
3. Very low “etch rate” due to the physical sputtering of silicon by the

ion bombardment alone
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STANDARD MODEL OF ETCH KINETICS

• O atom etching of a carbon substrate

C(s) CO(s)

θ θ1 –

O + CO

Ka Ki Kd YiKi

• Let n′
0 = active surface sites/m2

• Let θ = fraction of surface sites covered with C : O bonds

O(g) + C(s)
Ka−→ C : O (O atom adsorption)

C : O
Kd−→ CO(g) (CO thermal desorption)

ion + C : O
YiKi−→ CO(g) (CO ion-assisted desorption)
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SURFACE COVERAGE

• The steady-state surface coverage is found from
dθ

dt
= KanOS(1− θ)−Kdθ − YiKinisθ = 0

• nOS is the neutral gas density near the surface

nis is the ion density at the plasma edge

• Ka is the rate coefficient for O-atom adsorption

Kd is the rate coefficient for thermal desorption of CO

Ki is the rate coefficient for ions incident on the surface

• Yi is the yield of CO molecules desorbed per ion incident on a fully
covered surface

Typically Yi ≫ 1 and Yi ∝
√Ei − Ethr (as for sputtering)

=⇒ θ =
KanOS

KanOS + Kd + YiKinis
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ETCH RATES

• The flux of CO molecules leaving the surface is
ΓCO = (Kd + YiKinis) θ n′

0 (m−2-s−1)
with n′

0 = number of surface sites/m2

• The vertical etch rate is

Ev =
ΓCO

nC
(m/s)

where nC is the carbon atom density of the substrate

• The vertical (ion-enhanced) etch rate is

Ev =
n′

0

nC

1

1

Kd + YiKinis
+

1

KanOS

• The horizontal (non ion-enhanced) etch rate is

Eh =
n′

0

nC

1

1

Kd
+

1

KanOS
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NORMALIZED ETCH RATES

EnC

Kdn0´

0

KanOS

Kd

0

2

4

6

8

10

4 8 12 16 20 24

Vertical (Ev)

Horizontal (Eh)

YiKinis = 5 Kd

• High O-atom density⇒ highest anisotropy Ev/Eh = 1+YiKinis/Kd

• Low O-atom density ⇒ low etch rates with Ev/Eh → 1
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SIMPLEST MODEL OF ION-ENHANCED ETCHING

• In the usual ion-enhanced regime YiKinis ≫ Kd

1

Ev
= nC




1

Yi Kinisn
′

0
︸ ︷︷ ︸

+
1

KanOSn′

0
︸ ︷︷ ︸





Γis ΓOS

• The ion and neutral fluxes and the yield (a function of ion energy)
determine the ion-assisted etch rate

• The discharge parameters set the ion and neutral fluxes and the ion
bombarding energy
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ADDITIONAL CHEMISTRY AND PHYSICS

• Sputtering of carbon
ΓC = γsputKinisn

′

0

• Associative and normal desorption of O atoms,
C : O −→ C + O(g)

2C : O −→ 2C + O2(g)

• Ion energy driven desorption of O atoms
ions + C : O −→ C + O(g)

• Formation and desorption of CO2 as an etch product

• Non-zero ion angular bombardment of sidewall surfaces

• Deposition kinetics (C-atoms, etc)
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CONCLUSIONS

• Plasma discharges are widely used for materials processing and are
indispensible for microelectronics fabrication

• The charged particle balance determines the electron temperature
and ion bombarding energy to the substrate =⇒ Yi(Ei)

• The energy balance determines the plasma density and the ion flux
to the substrate =⇒ Γis

• A transformer model determines the relation among voltage, cur-
rent, and power for inductive discharges

• The neutral radical balance determines the flux of radicals to the
surface =⇒ ΓOS

• Hence the discharge parameters (power, pressure, geometry, etc) set
the ion and neutral fluxes and the ion bombarding energy

• The ion and neutral fluxes and the yield (a function of ion energy)
determine the ion-assisted etch rate
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