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OUTLINE

• Introduction to plasmas and discharges

• The microelectronics revolution

• Plasma etching for microelectronics fabrication

• Dual frequency capacitive discharges for microelectronics etching
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INTRODUCTION TO
PLASMAS AND DISCHARGES
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PLASMAS AND DISCHARGES

• Plasmas:
A collection of freely moving charged particles which is,

on the average, electrically neutral
• Discharges:

Driven by voltage or current sources
Neutral particles are important
There are boundaries at which surface losses are important
The electrons are much hotter than the ions

• Device sizes ∼ 30 cm – 1 m
• Driving frequencies: DC to rf (13.56 MHz) to microwaves (2.45 GHz)
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PLASMA DENSITY VERSUS TEMPERATURE
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HIGH TEMPERATURE PLASMAS — FUSION

“Fission is not nature’s normal way of releasing nuclear energy... a few decades

hence, [when controlled fusion is achieved], energy may be free — just like the un-

metered air.” The famous engineer and mathematician John Von Neuman wrote

these words in 1954, while he was a member of the U.S. Atomic Energy Commission.

The main issue is economic feasibility
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LOW TEMPERATURE INDUSTRIAL DISCHARGES

Lighting,
Radiation
sources

Electricity

Mechanical
energy

HeatChemistry

Low temperature
plasma discharges

Plasma displays
Gas lasers
Fluorescent lamps
Arc lighting
Electron and ion beam sources

Electric power switch gear
MHD power generation

Plasma thrusters

p < 1 Torr
p > 1 Torr

Plasma-assisted materials processing

Microelectronics etching, deposition, oxidation, implantation, passivation
Liquid crystal display and solar cell depositions
Aerospace and automotive ceramic and metal coatings, films, paints
Metallurgical melting, refining, welding, cutting, hardening
Ceramics synthesis, ultrapure powders, nanopowders
Food packaging permeability barriers
Textile adhesion treatments
Medical materials bio-compatibility treatments, sterilization, cleaning
Architectural and automotive glass coatings
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THE MICROELECTRONICS REVOLUTION
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THE MICROELECTRONICS REVOLUTION

• Transistors/chip doubling every 11
2–2 years since 1959

• 500,000-fold decrease in cost for the same performance
• In 20 years one computer as powerful as all those

in Silicon Valley today

EQUIVALENT AUTOMOTIVE ADVANCE

• 4 million km/hr
• 1 million km/liter
• Never break down
• Throw away rather than pay parking fees
• 3 cm long × 1 cm wide
• Crash 3× a day
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THE INVENTION OF THE TRANSISTOR
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FIRST INTEGRATED CIRCUIT AND MICROPROCESSOR
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MOORE’S LAW

• “Transistors/chip double every 18 months” — Gordon Moore (1965)
(Transistor size shrinking; chip size growing)

• Now a self-fulfilling prophecy
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• “No exponential is forever. . .but we can delay ‘forever”’
(Gordon Moore, 2003)
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DOUBLE/TRI GATE TRANSISTORS

• Both structures can be built with current ic fabrication techniques
• CMOS can be scaled another 20 years!
• State of the art (2004):

– In manufacture:
50 nm (200 atoms) gate length
1.5 nm (5 atoms) gate oxide thickness

– Smallest fabricated CMOS transistor (FinFET, UC Berkeley):
12 nm (48 atoms) gate length

– Limiting gate length from simulations (desktop ic):
4 nm (16 atoms) gate length
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PLASMA ETCHING
FOR MICROELECTRONICS FABRICATION
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INTEGRATED CIRCUIT FABRICATION
AND PLASMA PROCESSING
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INTEGRATED CIRCUIT CROSS SECTION

• There are up to 10 layers, mostly interconnects (metal + dielectric)
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ANISOTROPIC ETCHING

︷ ︸︸ ︷ ︷ ︸︸ ︷
Wet Etching Ion Enhanced Plasma Etching
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ANISOTROPIC PLASMA ETCHING

1. Start with inert molecular gas CF4

2. Make discharge to create reactive species:
CF4 −→ CF3 + F

3. Species reacts with material, yielding volatile product:
Si + 4F −→ SiF4 ↑

4. Pump away product
5. CF4 does not react with Si; SiF4 is volatile
6. Source of anisotropy:

Energetic ions bombard trench bottom, but not sidewalls:
(a) Increase etching reaction rate at trench bottom
(b) Clear passivating films from trench bottom

Mask

Plasma
Ions
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EXTRAORDINARY PLASMA ETCHING CAPABILITIES

Trench etch (0.2 µm wide by 4 µm deep) in single crystal silicon
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DUAL FREQUENCY CAPACITIVE DISCHARGES
FOR MICROELECTRONICS ETCHING
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EVOLUTION OF ETCHING DISCHARGES

FIRST GEN-
ERATION

SECOND
GENER-
ATION

THIRD GEN-
ERATION ? ?
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WHY DUAL FREQUENCY CAPACITIVE DISCHARGE?

• Motivation for capacitive discharge
– Low cost
– Robust uniformity over large area
– Control of dissociation (fluorine)

• Motivation for dual frequency
– Independent control of ion flux and ion energy

High frequency voltage controls ion flux
Low frequency controls ion energy

• A critical application for dielectric etch
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TYPICAL OPERATING CONDITIONS

• R ∼ 15–30 cm, L ∼ 1–3 cm
• p ∼ 30–300 mTorr, C4F8/O2/Ar feedstock
• High frequency fh ∼ 27.1–160 MHz, Vh ∼ 200–500 V
• Low frequency fl ∼ 2–13.56 MHz, Vl ∼ 500–1500 V
• Absorbed powers Ph, Pl ∼ 500–3000 W

INDEPENDENT CONTROL

• Condition for independent control of ion flux and energy
ω2

h

ω2
l

� Vl

Vh
� 1

(M.A. Lieberman, J. Kim, J.P. Booth, J.M. Rax and M.M. Turner,

SEMICON Korea Etching Symposium, p. 23, 2003)

• Effective frequency concept to describe transition
(H.C. Kim, J.K. Lee, and J.W. Shon, Phys. Plasmas 10, 4545, 2003)
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GLOBAL MODEL OF DISCHARGE

• Asymmetric diode (plate areas Aa and Ab)

~ Vl

+

–

~ Vh

+

– L
sa2
sa1

sb1
sb2

Ab

Aa

(ωh)

(ωl)

• Low frequency Child law sheaths
• High frequency homogeneous sheaths
• Ion particle balance, and electron and ion power balance
• All high and low frequency heating terms

M.A. Lieberman, J. Kim, J.P. Booth, J.M. Rax and M.M. Turner,

SEMICON Korea Etching Symposium, p. 23 (2003)
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RESULTS FOR 27.1/2 AND 60/2 MHz

• Aa = 544 cm2, Ab = 707 cm2, L = 1.6 cm, p = 190 mTorr argon
fh = 27.1 MHz fh = 60 MHz
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The high/low frequency
decoupling is good
but not perfect

The high/low frequency
decoupling is better
but not perfect
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ELECTROMAGNETIC EFFECTS FOR HIGH FREQUENCY

• High frequency and large area ⇒ standing wave effects

• High frequency ⇒ high density ⇒ skin effects

• Previous studies of capacitive discharges mostly based on electro-
statics, not full set of Maxwell equations

=⇒ no standing wave or skin effects

(M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner,

Plasma Sources Sci. Technol. 11, 283 2002)
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CYLINDRICAL CAPACITIVE DISCHARGE

Consider only the high frequency source

~
+–

2R

s

s

2d 2lPlasma

Vh

z

r

Sheath

Sheath

Fields cannot pass through metal plates

(1) Vs excites radially outward wave in top vacuum gap
(2) Outward wave excites radially inward wave in plasma
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BASIC PHYSICS

• Plasma is (weakly) lossy dielectric slab

κp = 1 −
ω2

p

ω(ω − jνm)
where

ωp = (e2ne/ε0m)1/2 = plasma frequency
νm = electron-neutral collision frequency

• TM modes with Hφ ∼ ejωt

• Maxwell’s equations
∂Hφ

∂z
= −jωε0κpEr (inductive field)

1
r

∂(rHφ)
∂r

= jωε0κpEz (capacitive field)

∂Er

∂z
− ∂Ez

∂r
= −jωµ0Hφ

• Choose uniform density ne and sheath width s (arbitrary choice!)
• Solve with appropriate boundary conditions
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SURFACE WAVE MODE

• Power enters the plasma via a surface wave mode:

PlasmaStanding
wave

Decay
(weak)
Decay

Surface Wave Mode

λ
δ

s
2d
s

• Radial wavelength for surface wave (low density limit):

λ ≈ λ0√
1 + d/s

∼ λ0

3

with λ0 = c/f the free space wavelength
• Axial skin depth for surface wave:

δ ∼ c

ωp

• There are also evanescent modes leading to edge effects near r = R

21century9May05 29



University of California, Berkeley PLASMA

POWER DEPOSITION VERSUS RADIUS AT 13.56 MHz

• R = 50 cm, d = 2 cm, s = 0.4 cm (λ ≈ 9–10 m)
• Pcap (dash), Pind (dot) and Ptot (solid) as a function of r
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POWER DEPOSITION VERSUS RADIUS AT 40.7 MHz

• R = 50 cm, d = 2 cm, s = 0.4 cm (λ ≈ 3 m)
• Pcap (dash), Pind (dot) and Ptot (solid) as a function of r
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EXPERIMENTAL RESULTS FOR STANDING WAVES

20×20 cm discharge
p = 150 mTorr
50 W rf power

The standing wave ef-
fect is seen at 60 MHz
and is more pronounced
at 81.36 MHz

(A. Perret, P. Chabert, J-P Booth, J. Jolly, J. Guillon and Ph. Auvray,

Appl. Phys. Lett. 83, 243, 2003)
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SUPPRESSION OF STANDING WAVE EFFECTS

• Shaped electrode (and diel plate) eliminate standing wave effects

• Increased overall thickness in center compared to edge keeps voltage
across discharge section constant

• The electrode shape is a Gaussian, independent of the plasma prop-
erties

L. Sansonnens and J. Schmitt, Appl. Phys. Lett. 82, 182, 2003

P. Chabert, J.-L. Raimbault, J.-M. Rax, and A. Perret, Phys. Plasmas 11, 4081, 2004
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EXPERIMENTAL CONFIRMATION

• 5–250 mTorr argon, 50–300 W

H. Schmitt et al, J. Appl. Phys. 95, 4559 (2004)
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EXPERIMENT AT BERKELEY

• 100 mTorr argon, 27.3 MHz, 220 W
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CONCLUSIONS

• Plasma processing has a bright future in the 21st century
• Microelectronics fabrication drives the development of plasma pro-

cessing
• Moore’s law continues! CMOS can be scaled down to nano-sizes —

4nm–12nm gate lengths!
• Dual frequency capacitive discharges are used for next-generation

etching
• Global (volume-averaged) discharge models yield the conditions for

decoupling high and low frequencies
• Electromagnetic theory yields the standing wave and skin effects
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