
PLSI: A Portable VLSI Flow

By Palmer Dabbelt

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, Univer-

sity of California at Berkeley, in partial satisfaction of the requirements for the degree of

Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Krste Asanovic

Research Advisor

(Date)

Professor Jonathan Bachrach

Second Reader

(Date)



PLSI: A Portable VLSI Flow

Copyright 2017

by

Palmer Dabbelt



i

Contents

Contents i

List of Figures ii

1 Introduction 1
1.1 Research Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Implementation 3
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Core Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 SOC Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Technology Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Synthesis Tool Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Place and Route Tool Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 17
3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusion 30
4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



ii

List of Figures

2.1 A high-level overview of PLSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The core-generator addon for Hwacha . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 An example memory that needs to be mapped . . . . . . . . . . . . . . . . . . . 9
2.4 An example ASIC SRAM macro description . . . . . . . . . . . . . . . . . . . . 10
2.5 An example technology JSON file . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 An example PLSI configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Example Rocket Floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Generalized version of the example floorplan from Figure 2.7 . . . . . . . . . . . 15
2.9 Concrete version of the example floorplan from Figure 2.7, on SAED32 . . . . . 16

3.1 PLSI CAD Configuration for DefaultConfig . . . . . . . . . . . . . . . . . . . . 18
3.2 PLSI Floorplan for DefaultConfig . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 ICC Floorplan for DefaultConfig . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 ICC QoR Report for DefaultConfig . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 PLSI CAD Configuration for SmallBOOMConfig . . . . . . . . . . . . . . . . . 22
3.6 PLSI Floorplan for SmallBOOMConfig . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 ICC Floorplan for SmallBOOMConfig . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 ICC QoR Report for SmallBOOMConfig . . . . . . . . . . . . . . . . . . . . . . 25
3.9 PLSI CAD Configuration for EOS24Config . . . . . . . . . . . . . . . . . . . . . 26
3.10 PLSI Floorplan for EOS24Config . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 ICC Floorplan for EOS24Config . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 ICC QoR Report for EOS24Config . . . . . . . . . . . . . . . . . . . . . . . . . 29



i

Abstract

PLSI: A Portable VLSI Flow

by

Palmer Dabbelt

Master of Science in Computer Science

University of California, Berkeley

Krste Asanovic, Chair

This report presents PLSI, a portable VLSI flow designed to enable RTL-based computer

architecture research. The interesting part of PLSI are the tools that implement the various

rules and the interchange formats that are passed between the various tools. The funda-

mental driving design decision behind PLSI is that computers are better than performing

repetitive, arithmetic-laden tasks than humans are. When implementing PLSI I took my ex-

perience from working with a handful of tapeout teams. This report present implementations

of Rocket, Hwacha, and BOOM on the Synopses 32nm Educational Technology.



ii

Acknowledgments

I would like thank my fellow graduate students: Colin Schmidt and Ben Keller for helping

work on our chips, Andrew Waterman and Yunsup Lee for giving me lot of advice during

my studies, Chris Celio for providing BOOM, as well as the Berkeley Architecture Research

Group. Without them, as well as the numerous other contributors to both Rocket Chip and

the general RISC-V ecosystem, I would never have had all the infrastructure I needed to

even start this thesis.

I would also like to thank my advisors Krste Asanovic and Jonathan Barchrach for

providing advice throughout my graduate studies, as well as John Kubiatowicz who was my

advisor for my first two years at Berkeley. I would also like to thank Dave Patterson, who

helped while finishing my thesis.

Finally, I would like to thank Lulu Li and my parents for always being around when I

need them.



1

Chapter 1

Introduction

Computer architecture research has historically been handicapped by a lack of high quality

baselines. Thanks to the advent of RISC-V and Rocket Chip, there are now high quality

baseline implementations of multiple families of microarchitectures available for free and with

permissive licenses, along with silicon-proven results for some benchmarks. Unfortunately

there is no existing VLSI flow that allow architecture researchers to reproduce these results

and to obtain numbers for their proposed ideas.

PLSI is designed to be this flow: specifically PLSI is designed to allow computer architec-

ture researchers to quickly get VLSI numbers, allowing them to do RTL based research. To

achieve this, PLSI uses standard commercial VLSI tools and flows whenever possible – for

this thesis only the Synopsys-based flow is demonstrated, but there are experimental flows

for both Cadence and open-source tools. In addition to being portable between multiple

tools vendors, PLSI is designed to be portable to multiple designs (to enable researchers to

build their own cores) and to multiple processes (since researchers tend to have access to an

odd set of technologies).

The specific contributions of PLSI are:

• A macro synthesis tool used to map user’s memories to various flavors of ASIC SRAMs.

• A modular, technology-independent floorplanning framework.

• Criteria for ensuring the commercial CAD tools produce reasonable results.



CHAPTER 1. INTRODUCTION 2

• Usability improvements from a good top-level Makefile that allows the entire flow to

be automated and reproducible.

This thesis presents results for three Chisel-based cores (Rocket, BOOM, and Hwacha)

mapped to Synopsys’s educational 32nm technology via the Synopsys tools.

1.1 Research Funding

Research partially funded by DARPA Award Number HR0011-12-2-0016 and ASPIRE Lab

industrial sponsors and affiliates Intel, Google, HPE, Huawei, LGE, Nokia, NVIDIA, Oracle,

and Samsung.



3

Chapter 2

Implementation

PLSI is designed to be portable to multiple technologies, CAD tool vendors, and processor

generators. As such it has a modular system of addons that can be mixed and matched in

order to produce a chip. Users are expected to define the following variables, which will be

used to control the flow:

• CORE GENERATOR: Selects the core generator, which generates the RTL for the chip.

• SOC GENERATOR: Selects the SOC injector, which adds chip-specific RTL to the core.

This includes things like top-level IOs.

• TECHNOLOGY: The technology to map to.

• SYNTHESIS TOOL: The synthesis tool to run.

• PAR TOOL: The place and route tool to run.

• FORMAL TOOL: The formal verification tool to run.

• SIGNOFF POWER TOOL: The tool to be used for signoff power analysis.

• SIMULATOR: The simulator to use when verifying the design.

It is also possible to pass configuration information to each step in the flow by setting

the following variables



CHAPTER 2. IMPLEMENTATION 4

• CORE CONFIG: This configuration is passed to the core generator and specifies things

like cache sizes.

• CORE SIM CONFIG: This configures the simulations that will be run. This only exists at

the core level as the rest of the steps in the flow are expected to read the core’s test

list and figure out duplicate tests when necessary.

• SOC CONFIG: Configures the SOC generator, allowing users to set things like the inter-

face width.

• MAP CONFIG: Specifies how the SOC will be mapped to a technology, including things

like the corner and target frequency.

2.1 Overview

A top-level Makefile sequences the entire chip build; which includes running all the CAD

tools, testing the designs after every tool is run, and interpreting the results. A high-level

overview of the PLSI flow can be seen in Figure 2.1.

The interesting part of PLSI are the tools that implement the various rules and the inter-

change formats that are passed between the various tools. The fundamental driving design

decision behind PLSI is that computers are better than performing repetitive, arithmetic-

laden tasks that humans are. When implementing PLSI I took my experience from working

with a handful of tapeout teams.

This design philosophy is probably best explained with an example. Early in the design

of the RISC-V ISA we flip-flopped a few times between the 64-bit ISA having 4KiB pages

vs it having 8KiB pages. This resulted in our designs with a 16KiB L1 data cache moving

between 2 sets of 8 KiB and 4 sets of 4 KiB. Propagating this change from the ISA spec to

GDS required the intervention of a half dozen students and involved months of latency.

• The ISA designer changes the spec. This spec change is already automatically propa-

gated so this step is easy.



CHAPTER 2. IMPLEMENTATION 5

Core
Generator

Simulation
Files

Core
HDL

check-core

SOC
Generator

check-soc

SOC
HDL

Technology
Config JSON

PLSI
Config

Technology
Elaboration

PCAD
Mapper

Map
HDL

check-map

Synthesis
Tool

Post-Syn
HDL

check-syn

Formal
Verification

signoff-syn
Place+Route

Tool

Post-PAR
HDL

check-par

Formal
Verification

signoff-syn

Signoff
Power

Signoff
DRC/LVS

Signoff
Timing

Floorplan
JSON

Floorplan
Generator

Floorplan
Config

User Input

PLSI Tool

PLSI File Format

Tool Wrapper

Output

Figure 2.1: A high-level overview of PLSI



CHAPTER 2. IMPLEMENTATION 6

• The RTL lead on the chip needed to trigger a merge of the upstream RTL into the

tapeout RTL, since this ISA change was incompatible with existing binaries. This in-

compatibility wasn’t usually found until software failed to run, which required extensive

debugging.

• A new memory macro wrapper needed to be added to the list of known memory macros.

This list was duplicated multiple times, so this required talking to a handful of people.

• The verification scripts needed to be modified to run simulations, as the names of the

memory macros had changed.

• The floorplan needed to be updated to reflect the new macro names.

• Someone needs to produce new post-PAR power numbers, which we never actually did.

All this manual labor and communication was required in order to perform effectively no

useful work: we were using 4 KiB SRAMs so we ended up having the same macros put in

the same places. Contrast the old flow with the PLSI flow for performing the same change:

• The ISA designer changes the spec.

• The ISA designer runs ”make” to produce post-PAR performance numbers.

This is really the key to PLSI: since everyone can run the flow, making a small change

doesn’t require involving everyone in the project. This allows everyone working on the project

to get actual work done as opposed to spending their time propagating other people’s trivial

changes. This isn’t a new idea: this sort of continuous integration flow is common to many

software development methodologies, it’s just that for some reason it doesn’t seem to have

propagated to how people are building chips.

2.2 Core Generators

PLSI was designed to support RTL-based research into microarchitectures by quickly pro-

viding ground-truth power numbers for a large number of core designs. Thus the whole point



CHAPTER 2. IMPLEMENTATION 7

CORE_DIR ?= $(CORE_GENERATOR_ADDON)/src/rocket-chip

RC_CORE_ADDONS = hwacha

CORE_TOP = ExampleTop

include src/addons/core-generator/rocketchip/vars.mk

Figure 2.2: The core-generator addon for Hwacha

of PLSI is that it is easy to port to new cores. Porting PLSI to a new core generator based

on Rocket Chip is extremely easy: users simply need to point PLSI at their fork of Rocket

Chip. For example, Figure 2.2 shows how little code is required to port PLSI to the Hwacha

vector unit.

Porting PLSI to a core generator that isn’t based on Rocket Chip is a bit more involved.

The most interesting part of porting to PLSI is producing the list of macros that the core

requires. There is a custom FIRRTL backend in PLSI that allows Chisel-based designs to

easily generate PLSI macro configurations (this tool is automatically used for Rocket-Chip-

based projects).

2.3 SOC Generators

The SOC generation step converts a processor into an actual chip. This means inserting

things like pads, clock receivers, etc. For performing evaluations of microarchitectures there

is a “nop” SOC generator, which just doesn’t do anything. This provides a simple way of

evaluating a design without getting into the complexities of chip building. This was the only

SOC generator used for this thesis.

In addition to the “nop” SOC generator, there is also a “bar-testchip” SOC generator.

This SOC generator generates a controller and phy that transparently shims all top-level

decoupled interfaces over a low-speed, single-ended interface that is feasible to implement

using the standard digital IO pads that a popular commercial foundry provides. This is

designed to provide a simple mechanism for building research-style test chips: it alleviates

the need to maintain chip-specific IO harnesses. The process is completely automated: a



CHAPTER 2. IMPLEMENTATION 8

PLSI tool reads to top-level Verilog of the target design (using a Verilog parser I wrote),

infers the decoupled interfaces, generates an ASIC top-level wrapper and a test harness for

both FPGAs and simulation.

2.4 Technology Mapping

The technology mapping step converts generic macro implementations to those that are

specific to a particular technology. This step is important to maintaining portability of

designs to multiple technologies: RTL writers should never describe a technology-specific

concept in their code but should instead describe a generic version of that concept, which

the mapping step then maps to a technology-specific implementation. This is really just a

synthesis tool, but it handles all the things that commercial synthesis tools don’t understand.

The most important example of this is mapping sequential memories to SRAMs on ASIC

targets. This is something that traditional synthesis tools can’t do because it’s impossible

to safely infer ASIC SRAMs from synthesizeable Verilog. Chisel and FIRRTL handle this

mismatch by having an explicit memory visible to the RTL programmer, which has been

designed such that it can be mapped to ASIC SRAMs. PLSI uses this information to generate

ASIC SRAM wrappers which can then be passed on to the remainder of the CAD flow.

Macro JSON Files

PCAD, the set of open-source CAD tools written for this thesis and used by PLSI, has

standardized on JSON as the interchange format between every step in the flow because it’s a

well supported format. The technology mapping step expects a list of all the macros that need

to be implemented and a list of all the macros available to the technology. Figure 2.3 shows

an example of one of the branch predictor memories in one of the BOOM configurations,

and Figure 2.4 shows the ASIC SRAM that will be used to implement that memory on the

32nm EDK.



CHAPTER 2. IMPLEMENTATION 9

{

"type": "sram",

"name": "h_table_ext",

"depth": 32768,

"width": 1,

"ports": [

{

"clock port name": "RW0_clk",

"mask granularity": 1,

"output port name": "RW0_rdata",

"input port name": "RW0_wdata",

"address port name": "RW0_addr",

"mask port name": "RW0_wmask",

"chip enable port name": "RW0_en",

"write enable port name": "RW0_wmode"

}

]

},

Figure 2.3: An example memory that needs to be mapped

PCAD Macro Compiler

In order to map technology-agnostic macros to technology-specific macros, I implemented

what is in effect a synthesis tool with a limited scope. This tool is an optimizing synthesis

tool that uses some very simple optimization techniques. The only macro type I bother

optimizing is the memories because they’re the only macros that I can compile that have

any optimizations potential.

Technology JSON Files

All the technology-specific information in PLSI is described within a single file: the technol-

ogy configuration file. Defining all technology-specific information in this manner is what

allows PLSI backends to be portable to multiple technologies.

An example technology JSON file is shown in Figure 2.5. As you can see, technology

JSON files describe where to download a technology tarball from, how to extract that tar-

ball, and the contents of that tarball. It is possible to use scripts that operate on the



CHAPTER 2. IMPLEMENTATION 10

{

"family": "1rw",

"width": 8,

"name": "SRAM1RW1024x8",

"ports": [

{

"write enable port name": "WEB",

"clock port polarity": "positive edge",

"output port polarity": "active high",

"write enable port polarity": "active low",

"address port polarity": "active high",

"chip enable port polarity": "active low",

"clock port name": "CE",

"input port name": "I",

"output port name": "O",

"chip enable port name": "CSB",

"read enable port name": "OEB",

"input port polarity": "active high",

"address port name": "A",

"read enable port polarity": "active low"

}

],

"type": "sram",

"depth": 1024

},

Figure 2.4: An example ASIC SRAM macro description

post-extracted technology PDKs to generate library fragments: for example, a script reads

TSMC’s memory compiler documentation PDF to produce the list of SRAMs that compiler

is capable generating, which can then be passed to the PLSI macro compiler in order to map

arbitrary Chisel memories to TSMC SRAMs.

When porting PLSI to a new technology it should only be necessary to create a new

technology JSON file (presumably patterned off a similar existing technology JSON file). In

practice, some modifications to all the tools that consume the technology JSON files will

be necessary, but the goal is that with each new technology these modifications will become

simpler and simpler.



CHAPTER 2. IMPLEMENTATION 11

{

"name": "An example technology",

"tarballs": [

"path": "tech.tar",

"homepage": "http://example.com/technology",

],

"libraries": [

{

"nldm liberty file": "tech.tar/lib/stdcell/tt0p9v25c.lib",

"verilog file": "tech.tar/lib/stdcell.v",

"corner": {

"nmos": "typical",

"pmos": "typical",

"temperature": "25 C"

},

"supplies": {

"VDD": "0.9 V",

"GND": "0 V"

}

},

{

"nldm liberty file": "tech.tar/lib/sram1024x8/tt0p9v25c.lib",

"provides": [

"type": "sram",

"width": 8,

"depth": 1024,

"ports": [

{

"read port name": "R",

...

}

]

],

...

}

]

}

Figure 2.5: An example technology JSON file



CHAPTER 2. IMPLEMENTATION 12

{

"clocks": [

{

"name": "clock",

"period": "1250ps",

"par derating": "250ps"

}

],

"scenerios": [

{

"corner": {

"nmos": "typical",

"pmos": "typical",

"temperature": "25 C"

},

"supplies": {

"VDD": "1.05 V",

"GND": "0 V"

}

}

]

}

Figure 2.6: An example PLSI configuration file

PLSI Configuration File

PLSI must be provided with a configuration file in order to configure the mapping phase.

This configuration file contains the additional information needed to run the VLSI flow that

is not present as part of the core generator. An example PLSI configuration file is show in

Figure 2.6, which is the default configuration file for mapping Rocket Chip’s DefaultConfig

to the Synopsys 32nm educational PDK. It’s important to note that while this config file is

specific to a technology, it is independent of the CAD tool vendors.

The PLSI configuration file is used to drive all the CAD tools that are run, including

both the proprietary ones via wrappers written for PLSI and tools like the macro mapper

that were written specifically for PLSI. It allows users to control chip-related settings that

do not come from RTL, like the clock speed and MCMM scenarios.



CHAPTER 2. IMPLEMENTATION 13

2.5 Synthesis Tool Driver

In order to be portable to multiple CAD tool vendors, PLSI expects that pre-existing synthe-

sis tools are wrapped up with a script that converts the vendor-agnostic PLSI file formats

into vendor-specific formats, runs the synthesis tool, and verifies that the run completed

without errors. As a study in portability, there are three synthesis tools supported: “yosys”,

an open-source synthesis tool; “dc”, Synopsys’s Design Compiler; and “genus”, Cadence’s

GENUS synthesis tool. Only basic features are supported for “yosys” and “genus”, while

“dc” is the tool that was regularly used.

These wrapper scripts are pretty straight-forward. In order to avoid copyright violations,

users are expected to have downloaded tarballs of the vendor’s base set of scripts. PLSI

then patches these scripts with patches that are generated by reading the various synthesis

inputs (the post-map verilog, technology description file, and PLSI configuration file). For

example, in order to produce a list of modules that need to be retimed PLSI will read the

generated Verilog, pattern match module names against those known to need retiming, and

setup the cooresponding synthesis constraints.

2.6 Floorplanning

One of the more painful steps of producing ASIC results is floorplanning. Our floorplanning

scripts have traditionally been non-portable even for similar designs on the same process,

much less across different processes. In order to allow floorplanning to be portable to multiple

designs, tools, and processes users write floorplan fragments in a Python DSL that was

created for this project.

PLSI’s floorplanning system is based on generating hierarchical groups of placeable ele-

ments, specifying hints as to how they should be arranged, and nesting these groups. The

floorplanning DSL is designed to make it easy for users to produce legal first-cut floorplans

and then optimize them when trying to actually build a chip. This DSL handles the following

pain points for users:

• Matching Chisel-generated names to logical floorplan groups.



CHAPTER 2. IMPLEMENTATION 14

class RocketTilePlacer:

def __init__(self, config):

self.top = None

self.l1dd = []

self.l1dm = []

self.l1id = []

self.l1im = []

def insert(self, macro):

if macro.matches(config.rtl_top):

self.top = TopMacro(macro.name, macro.width, macro.height)

elif macro.matches("coreplex/rocketTiles/dcache/data"):

self.l1dd.append(macro)

elif macro.matches("coreplex/rocketTiles/dcache/MetadataArray"):

self.l1dm.append(macro)

elif macro.matches("coreplex/rocketTiles/frontend/icache/u"):

self.l1id.append(macro)

elif macro.matches("coreplex/rocketTiles/frontend/icache/tag_array/tag_array"):

self.l1im.append(macro)

else:

print("%s cannot be matched" % macro.name)

return False

return True

def list_constraints(self):

l1dd = TopLeftPlacer (self.top, self.top.tl(), sorted(self.l1dd))

l1dm = TopLeftPlacer (self.top, l1dd.bl(), sorted(self.l1dm), self.top.width * 0.75)

l1id = BottomLeftPlacer(self.top, self.top.bl(), sorted(self.l1id))

l1im = BottomLeftPlacer(self.top, l1id.tl(), sorted(self.l1im), self.top.width * 0.75)

return l1dd.place() + l1dm.place() + l1id.place() + l1im.place()

Figure 2.7: Example Rocket Floorplan

• Shaping logical floorplan groups.

• Ordering macros within logical floorplan groups.

SRAM Floorplanning

The vast majority of the floorplanning work has gone into handling SRAM macros for ASICs,

since those are by far the most important QoR constraints when building high performance

processors. The floorplanning step is semi-automated: it’s designed to make it easy for users

to write first-cut floorplans that apply to multiple design configurations while still allowing

them to fine-tune floorplans for maximum performance on the designs that end up being

interesting.

Figure 2.7 shows the floorplanning script for a single Rocket core without an L2. As you

can see, users can write any Python code they want to control floorplans in as much detail



CHAPTER 2. IMPLEMENTATION 15

C
o
re

L1D$ Data
L1D$ Tags

L1I$ Tags

L1I$ Data

Figure 2.8: Generalized version of the example floorplan from Figure 2.7

as they want – even providing absolute coordinates for every floorplanable block if they so

desire. The canonical way to write floorplans in PLSI is to use the demonstrated helpers to

write floorplans in a more technology-agnostic way.

For example, the floorplan demonstrated in Figure 2.7 should work on any of the tech-

nologies I have had access to, and should work for any reasonable configuration of Rocket.

This floorplan puts the data RAMs for the instruction and data caches on opposite sides

of the chip and puts the metadata RAMs in between, limiting the width of the metadata

blocks to 75% of the total chip width in order to avoid entirely blocking off the data RAMs

on pathological technologies (like SAED32, the 32nm Synopsys Educational Technology)

where Rocket’s L1 metadata maps very poorly to the available SRAMs.

Power Floorplanning

Almost no work has gone into power floorplanning in PLSI: a single power domain with

rings around the outside of the chip’s routeable area and a grid inside the rings on the

highest metal layers available for regular routing. This power floorplan should be sufficient

to evaluate microarchitectures and to build simple chips, but isn’t enough to build a big

chip.



CHAPTER 2. IMPLEMENTATION 16

Figure 2.9: Concrete version of the example floorplan from Figure 2.7, on SAED32

2.7 Place and Route Tool Driver

Much like the synthesis tool driver, the place and route tool driver takes in various vendor-

agnostic file formats, converts them to vendor-specific formats when necessary, runs the

vendor’s synthesis tool, checks to see that there are no errors, and then produces the results

for other steps to use.

The only PAR tool driver was for ICC, since it is the only one that works with the 32nm

Synopsys educational PDK.



17

Chapter 3

Results

PLSI has been implemented and works for multiple Rocket Chip based designs. This section

presents the results for Rocket, BOOM, and Hwacha on Synopsys’ 32nm Educational PDK

produced via the Synopsys tools. In addition to presenting the results, there is a discussion

of the validity of the results.

These results were all run using the latest version of Rocket Chip that supported the

various configurations when this thesis was being written. The exact versions of Rocket

Chip differ between the various targets because all the forks aren’t up to date at all times,

but they’re all tagged as git submodules in the thesis repository. Newer versions of Rocket

Chip have removed support for the L2 cache, which is why the Hwacha configuration (which

is based on an older version of Rocket Chip) is the only configuration that has an L2 cache

attached.

Rocket



CHAPTER 3. RESULTS 18

{

"clocks": [

{

"name": "clock",

"period": "1250ps",

"par derating": "250ps"

}

],

"scenarios": [

{

"corner": {

"nmos": "typical",

"pmos": "typical",

"temperature": "25 C"

},

"supplies": {

"VDD": "1.05 V",

"GND": "0 V"

}

}

]

}

Figure 3.1: PLSI CAD Configuration for DefaultConfig



CHAPTER 3. RESULTS 19

class RocketTilePlacer:

def __init__(self, config):

self.top = None

self.l1dd = []

self.l1dm = []

self.l1id = []

self.l1im = []

def insert(self, macro):

if macro.matches(config.rtl_top):

self.top = TopMacro(macro.name, macro.width, macro.height)

# Version Break

elif macro.matches("coreplex/RocketTile/DCache/data"):

self.l1dd.append(macro)

elif macro.matches("coreplex/RocketTile/DCache/MetadataArray"):

self.l1dm.append(macro)

elif macro.matches("coreplex/RocketTile/icache/icache"):

self.l1id.append(macro)

elif macro.matches("coreplex/RocketTile/icache/icache/tag_array/tag_array"):

self.l1im.append(macro)

# Version Break

elif macro.matches("coreplex/rocketTiles/dcache/data"):

self.l1dd.append(macro)

elif macro.matches("coreplex/rocketTiles/dcache/MetadataArray"):

self.l1dm.append(macro)

elif macro.matches("coreplex/rocketTiles/frontend/icache"):

self.l1id.append(macro)

elif macro.matches("coreplex/rocketTiles/frontend/icache/u"):

self.l1id.append(macro)

elif macro.matches("coreplex/rocketTiles/frontend/icache/tag_array/tag_array"):

self.l1im.append(macro)

else:

print("%s cannot be matched" % macro.name)

return False

return True

def list_constraints(self):

l1dd = TopLeftPlacer (self.top, self.top.tlf(), sorted(self.l1dd), True)

l1dm = TopLeftPlacer (self.top, l1dd.bl(), sorted(self.l1dm), False)

l1id = BottomLeftPlacer(self.top, self.top.blf(), sorted(self.l1id), True)

l1im = BottomLeftPlacer(self.top, l1id.tl(), sorted(self.l1im), False)

return l1dd.place() + l1dm.place() + l1id.place() + l1im.place()

Figure 3.2: PLSI Floorplan for DefaultConfig



CHAPTER 3. RESULTS 20

Figure 3.3: ICC Floorplan for DefaultConfig



CHAPTER 3. RESULTS 21

Timing Path Group ’clock’

-----------------------------------

Levels of Logic: 34.00

Critical Path Length: 1.52

Critical Path Slack: -0.16

Critical Path Clk Period: 1.35

Total Negative Slack: -18.73

No. of Violating Paths: 988.00

Worst Hold Violation: 0.00

Total Hold Violation: 0.00

No. of Hold Violations: 0.00

-----------------------------------

Cell Count

-----------------------------------

Hierarchical Cell Count: 609

Hierarchical Port Count: 18116

Leaf Cell Count: 115987

Buf/Inv Cell Count: 16638

Buf Cell Count: 7235

Inv Cell Count: 9403

CT Buf/Inv Cell Count: 689

Combinational Cell Count: 94266

Sequential Cell Count: 21721

Macro Count: 60

-----------------------------------

Area

-----------------------------------

Combinational Area: 258124.149879

Noncombinational Area:

144030.016922

Buf/Inv Area: 48915.350153

Total Buffer Area: 31126.03

Total Inverter Area: 17789.32

Macro/Black Box Area:

1009378.968750

Net Area: 381408.759989

Net XLength : 2435133.75

Net YLength : 2365051.00

-----------------------------------

Cell Area: 1411533.135552

Design Area: 1792941.895541

Net Length : 4800185.00

Design Rules

-----------------------------------

Total Number of Nets: 125786

Nets With Violations: 316

Max Trans Violations: 14

Max Cap Violations: 308

Figure 3.4: ICC QoR Report for DefaultConfig



CHAPTER 3. RESULTS 22

{

"clocks": [

{

"name": "clock",

"period": "1600ps",

"par derating": "400ps"

}

],

"scenerios": [

{

"corner": {

"nmos": "typical",

"pmos": "typical",

"temperature": "25 C"

},

"supplies": {

"VDD": "1.05 V",

"GND": "0 V"

}

}

]

}

Figure 3.5: PLSI CAD Configuration for SmallBOOMConfig

BOOM



CHAPTER 3. RESULTS 23

class BoomTilePlacer(RocketTilePlacer):

def __init__(self, config):

self.top = None

self.l1dd = []

self.l1dm = []

self.l1id = []

self.l1im = []

self.l1ht = []

self.l1pt = []

self.l1ei = []

def insert(self, macro):

if macro.matches(config.rtl_top):

self.top = TopMacro(macro.name, macro.width, macro.height)

# Version Break

elif macro.matches("coreplex/BOOMTile/DCache/data"):

self.l1dd.append(macro)

elif macro.matches("coreplex/BOOMTile/DCache/MetadataArray"):

self.l1dm.append(macro)

elif macro.matches("coreplex/BOOMTile/HellaCache/MetadataArray"):

self.l1dm.append(macro)

elif macro.matches("coreplex/BOOMTile/HellaCache/meta"):

self.l1dm.append(macro)

elif macro.matches("coreplex/BOOMTile/icache/icache"):

self.l1id.append(macro)

elif macro.matches("coreplex/BOOMTile/icache/icache/u"):

self.l1id.append(macro)

elif macro.matches("coreplex/BOOMTile/HellaCache/data"):

self.l1dd.append(macro)

elif macro.matches("coreplex/BOOMTile/icache/icache/tag_array/tag_array"):

self.l1im.append(macro)

elif macro.matches("coreplex/BOOMTile/core/bpd_stage/br_predictor/counters/p_table/p_table/p_table"):

self.l1pt.append(macro)

elif macro.matches("coreplex/BOOMTile/core/bpd_stage/br_predictor/counters/h_table/h_table/h_table"):

self.l1ht.append(macro)

elif macro.matches("coreplex/BOOMTile/core/bpd_stage/br_predictor/brob/entries_info/entries_info"):

self.l1ei.append(macro)

else:

print("%s cannot be matched" % macro.name)

return False

return True

def list_constraints(self):

l1dd = TopLeftPlacer (self.top, self.top.tlf(), sorted(self.l1dd), True)

l1dm = TopLeftPlacer (self.top, l1dd.bl(), sorted(self.l1dm), False)

l1ht = BottomLeftPlacer(self.top, self.top.blf(), sorted(self.l1ht), True)

l1pt = BottomLeftPlacer(self.top, l1ht.tl(), sorted(self.l1pt), False)

l1id = BottomLeftPlacer(self.top, l1pt.tl(), sorted(self.l1id), False)

l1im = BottomLeftPlacer(self.top, l1id.tl(), sorted(self.l1im), False)

l1ei = BottomLeftPlacer(self.top, l1im.tl(), sorted(self.l1ei), False)

return l1dd.place() + l1dm.place() + l1ht.place() + l1pt.place() + l1id.place() + l1im.place() + l1ei.place()

Figure 3.6: PLSI Floorplan for SmallBOOMConfig



CHAPTER 3. RESULTS 24

Figure 3.7: ICC Floorplan for SmallBOOMConfig



CHAPTER 3. RESULTS 25

Timing Path Group ’clock’

-----------------------------------

Levels of Logic: 53.00

Critical Path Length: 3.56

Critical Path Slack: -1.56

Critical Path Clk Period: 2.00

Total Negative Slack: -1282.67

No. of Violating Paths: 10636.00

Worst Hold Violation: 0.00

Total Hold Violation: 0.00

No. of Hold Violations: 0.00

-----------------------------------

Cell Count

-----------------------------------

Hierarchical Cell Count: 1165

Hierarchical Port Count: 76737

Leaf Cell Count: 226528

Buf/Inv Cell Count: 39474

Buf Cell Count: 20757

Inv Cell Count: 18717

CT Buf/Inv Cell Count: 2089

Combinational Cell Count: 187351

Sequential Cell Count: 39177

Macro Count: 186

-----------------------------------

Area

-----------------------------------

Combinational Area: 548249.859481

Noncombinational Area:

260366.723512

Buf/Inv Area: 141541.690599

Total Buffer Area: 94002.53

Total Inverter Area: 47539.16

Macro/Black Box Area:

3912562.714844

Net Area: 1230432.321193

Net XLength : 7458008.00

Net YLength : 7564863.50

-----------------------------------

Cell Area: 4721179.297837

Design Area: 5951611.619030

Net Length : 15022872.00

Figure 3.8: ICC QoR Report for SmallBOOMConfig



CHAPTER 3. RESULTS 26

{

"clocks": [

{

"name": "clock",

"period": "2500ps",

"par derating": "2500ps"

}

],

"scenerios": [

{

"corner": {

"nmos": "typical",

"pmos": "typical",

"temperature": "25 C"

},

"supplies": {

"VDD": "1.05 V",

"GND": "0 V"

}

}

]

}

Figure 3.9: PLSI CAD Configuration for EOS24Config

Hwacha (with L2)

3.1 Discussion

The results in this section are meant to be suitable for doing computer architecture research,

not for building an actual chip. As such they skip the signoff sections of the flow that, from

my experience when building chips, don’t have meaningful effects on QoR but take a lot of

time to get right.

The simplest configuration run for this thesis was the default Rocket configuration, De-

faultConfig. This contains Rocket, 64-bit a 5 stage in-order core, with 32 KiB split L1

caches and a floating-point unit. This configuration and floorplan gets very good perfor-

mance (1.5GHz) on commercial 28nm technologies, but it appears that the 32nm Synopsys



CHAPTER 3. RESULTS 27

class HwachaTilePlacer(RocketTilePlacer):

def __init__(self, config):

self.top = None

self.l1dd = []

self.l1dm = []

self.l1id = []

self.l1im = []

self.hid = []

self.him = []

self.hrf = []

self.l2d = []

self.l2m = []

def insert(self, macro):

if macro.matches(config.rtl_top):

self.top = TopMacro(macro.name, macro.width, macro.height)

elif macro.matches("DefaultCoreplex/tiles/HellaCache/data"):

self.l1dd.append(macro)

elif macro.matches("DefaultCoreplex/tiles/HellaCache/meta"):

self.l1dm.append(macro)

elif macro.matches("DefaultCoreplex/tiles/icache/icache"):

self.l1id.append(macro)

elif macro.matches("DefaultCoreplex/tiles/icache/icache/u"):

self.l1id.append(macro)

elif macro.matches("DefaultCoreplex/tiles/icache/icache/tag_array/tag_array"):

self.l1im.append(macro)

elif macro.matches("DefaultCoreplex/tiles/Hwacha/icache/icache"):

self.hid.append(macro)

elif macro.matches("DefaultCoreplex/tiles/Hwacha/icache/icache/u"):

self.hid.append(macro)

elif macro.matches("DefaultCoreplex/tiles/Hwacha/icache/icache/tag_array/tag_array"):

self.him.append(macro)

elif macro.matches("DefaultCoreplex/tiles/Hwacha/vus/vxuInst/laneInst/bankInst/rfInst/HwSRAMRF/HwSRAMR"):

self.hrf.append(macro)

elif macro.matches("DefaultCoreplex/tiles/Hwacha/vus/vxuInst/laneInst/bankInst/rfInst/HwSRAMRF/HwSRAMRF"):

self.hrf.append(macro)

elif macro.matches("DefaultCoreplex/L2HellaCacheBank/data_array/array"):

self.l2d.append(macro)

elif macro.matches("DefaultCoreplex/L2HellaCacheBank/meta/meta"):

self.l2m.append(macro)

else:

print("%s cannot be matched" % macro.name)

return False

return True

def list_constraints(self):

l1dd = TopLeftPlacer (self.top, self.top.tlf(), sorted(self.l1dd), True, 0.2)

l1dm = TopLeftPlacer (self.top, l1dd.bl(), sorted(self.l1dm), False, 0.2)

l1id = TopLeftPlacer (self.top, l1dm.bl(), sorted(self.l1id), False, 0.2)

l1im = TopLeftPlacer (self.top, l1id.bl(), sorted(self.l1im), False, 0.2)

hrf = BottomLeftPlacer(self.top, self.top.blf(), sorted(self.hrf), True, 0.2)

hid = BottomLeftPlacer(self.top, hrf.tl(), sorted(self.hid), False, 0.2)

him = BottomLeftPlacer(self.top, hid.tl(), sorted(self.him), False, 0.2)

l2d = TopRightPlacer (self.top, self.top.trf(), sorted(self.l2d), True, 0.8)

l2m = TopRightPlacer (self.top, l2d.br(), sorted(self.l2m), False, 0.8)

return l1dd.place() + l1dm.place() + l1id.place() + l1im.place() + hrf.place()

+ hid.place() + him.place() + l2d.place() + l2m.place()

Figure 3.10: PLSI Floorplan for EOS24Config



CHAPTER 3. RESULTS 28

Figure 3.11: ICC Floorplan for EOS24Config

EDK is significantly slower.

The PLSI configuration used to generate DefaultConfig is shown in Figure 3.1 and is

pretty boring: there’s a little bit of derating for PAR, but that’s just about as good as I’m

able to do for anything. The post-PAR results show that it’s close to meeting timing, and

that there aren’t too many DRC errors so the results are probably believable.

The Hwacha results are, however, a whole different story. As you can see from the PLSI

configuration file, the physical design here gets very bad QoR – there’s a 50% clock rate

difference between the post-PAR and post-synthesis results. While some of this can be

attributed to Rocket Chip’s memories not mapping well to the 32nm EDK’s SRAMs (which

have to write masks), a significant part of this is probably due to the poor floorplan quality.

From looking at Figure 3.11, you can see how the floorplan generated from Figure 3.10 is

quite bad: you can see how the L2 is too wide and too short, which results in there being

no space for the actual core logic.



CHAPTER 3. RESULTS 29

Timing Path Group ’clock’

-----------------------------------

Levels of Logic: 29.00

Critical Path Length: 5.63

Critical Path Slack: -0.73

Critical Path Clk Period: 5.00

Total Negative Slack: -2.61

No. of Violating Paths: 27.00

Worst Hold Violation: 0.00

Total Hold Violation: 0.00

No. of Hold Violations: 0.00

-----------------------------------

Cell Count

-----------------------------------

Hierarchical Cell Count: 3517

Hierarchical Port Count: 145207

Leaf Cell Count: 786039

Buf/Inv Cell Count: 144033

Buf Cell Count: 65811

Inv Cell Count: 78222

CT Buf/Inv Cell Count: 3501

Combinational Cell Count: 686589

Sequential Cell Count: 99450

Macro Count: 608

-----------------------------------

Area

-----------------------------------

Combinational Area: 1875823.402210

Noncombinational Area:

659483.367816

Buf/Inv Area: 463893.370644

Total Buffer Area: 283467.90

Total Inverter Area: 180425.47

Macro/Black Box Area:

10255909.371094

Net Area: 3823554.904260

Net XLength : 28303776.00

Net YLength : 25156786.00

-----------------------------------

Cell Area: 12791216.141120

Design Area: 16614771.045380

Net Length : 53460560.00

Design Rules

-----------------------------------

Total Number of Nets: 850635

Nets With Violations: 13080

Max Trans Violations: 1133

Max Cap Violations: 12164

Figure 3.12: ICC QoR Report for EOS24Config



30

Chapter 4

Conclusion

The goal of producing PLSI was to make it easy to generate VLSI results for computer

architecture research, and I think it’s at least gotten part of the way there. Right now the

biggest obstacle in using PLSI is the semi-automated floorplanning flow.

4.1 Future Work

A Useable Educational Technology

I was limited to using the Synopsys 32nm EDK to evaluate PLSI for this thesis. Unfortu-

nately, optimizing designs for this technology results in design that don’t match any real

technology I’ve seen because the cost of some key structures doesn’t match real technologies.

In order to actually be able to do RTL-based computer architecture research without

relying on the benevolence of other research groups, we need an educational technology

that produces results that match those produced by real designs. Since we’re using this for

computer architecture research instead of VLSI or CAD research, this doesn’t actually need

things like a realistic DRC deck.

I think this is the most important future work for PLSI



CHAPTER 4. CONCLUSION 31

Benchmarking and Power

This report presents no results from actually simulating the designs that were pushed through

the tools. PLSI supports obtaining post-PAR power numbers, but the 32nm Synopsys EDK’s

power models wouldn’t be good enough to draw any conclusions from. There’s two problems

here: the lack of write masks means many more SRAM macros are emitted than is reasonable,

and I get a lot of warnings from the tools about SRAMs not having power models.

DRC and LVS Fixing

I was hoping to have my designs LVS clean and set a low threshold for DRC errors, but

it looks like the 32nm Synopsys EDK has some problems that prevent you from producing

DRC clean results using it – I specifically ran into a lot of nets with redundant via errors

that looked like some sort of tech file vs DRC deck mismatch. While I tried a few ways to

fix this, I didn’t have enough time to get it fixed properly so just gave up.

We’ve had these sorts of problems on real technologies as well, so I think this actually

warrants writing a proper tool. This tool would read DRC decks, technology files, and a set

of DRC errors. It would then modify the technology file in order to elide these DRC errors.

Clock Estimation

Even when using the PLSI flow, users still have to manually write clock constraints for every

clock in their design. This is an impediment when doing RTL-based computer architecture

research as you can’t know if each of your design points are producing reasonable QoR

without performing some manual optimization on each of them.

Based on my experience trying to get good QoR from our designs, it should be possible

to apply some simple heuristics to our RTL inputs in order to determine the achievable clock

period of a design to with 25%, which is good enough that the CAD tools won’t blow up

when asked to meet that timing constraint.



CHAPTER 4. CONCLUSION 32

Trace Based SRAM Selection

Given a well designed microprocessor, the most important constraint should be how it maps

to SRAMs. Even when using PLSI this process still requires manual intervention: while PLSI

might make the selection of SRAMs automatic, the cost function still requires an engineer

to intuit how memories should be mapped given their design constraints. For PLSI this was

easy: we just select the fastest SRAM every time – now that we’re past the end of Dennard

Scaling this isn’t the right thing to do.

The right way to fix this is to use simulation traces to drive the cost function for SRAM

selection, which will actually select the SRAM configuration the user desires. This is really

just the same as trace-based synthesis, but for SRAMs.

An Accuracy vs Effort Curve for Physical Design

While some might consider GDS the holy grail of accuracy when evaluating designs, getting

accurate results actually requires significant effort. It would be interesting to attempt to

optimize extant designs to see how accurate their results actually are, and to compare these

results with those produced by methodologies that requires less effort.


	Contents
	List of Figures
	Introduction
	Research Funding

	Implementation
	Overview
	Core Generators
	SOC Generators
	Technology Mapping
	Synthesis Tool Driver
	Floorplanning
	Place and Route Tool Driver

	Results
	Discussion

	Conclusion
	Future Work


