a2 United States Patent

Asanovic et al.

US007287140B1

US 7,287,140 B1
Oct. 23,2007

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND TECHNIQUE FOR
FINE-GRAINED COMPUTER MEMORY
PROTECTION

(75) Inventors: Krste Asanovie, Cambridge, MA (US);

Emmett J. Witchel, Austin, TX (US)

(73) Assignee: Massachusetts Institute of

Technology, Cambridge, MA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 399 days.
(21) Appl. No.: 10/899,776
(22) Filed: Jul. 27, 2004
Related U.S. Application Data

(60) Provisional application No. 60/490,482, filed on Jul.
28, 2003.

(51) Imt. CL
GO6F 12/14 (2006.01)

(52) US.CL ..o 711/163; 711/208; 726/27

(58) Field of Classification Search 711/163,

711/208; 726/27
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

5,390,310 A 2/1995 Welland

5,627,987 A 5/1997 Nozue et al.

5,845,129 A 12/1998 Wendorf et al.

5,890,189 A 3/1999 Nozue et al.

6,003,123 A 12/1999 Carter et al.
2003/0009638 Al* 1/2003 Sharma et al. 711/145

OTHER PUBLICATIONS

Handy, Jim, The Cache Memory Book, 1998, Academic Press Inc.,
274 edition, pp. 156-157.%

'/50

Tanenbaum, Andrew S., Modern Operating Systems, 2001,
Prentice-Hall Inc., 2°? edition, p. 645.*

Witchel; “Mondriaan Memory Protection;” thesis submitted to
Massachusetts Institute of Technology; Feb. 2004; pp. 1-135.
Witchel et al.; “Mondriaan Memory Protection;” Jobtalk [slide]
Presentation at University of Southern CA, Los Angeles; Mar. 6,
2003; 66 sheets.

Witchel et al.; “Mondrix: A Linus Kernel with Mondriian Memory
Protection;” Operating Systems Design & Implementation, Sixth
Symposium; Submitted May 26, 2004; 14 sheets.

Witchel et al.; “Mondrian Memory Protection for Single Address
Space Operating Systems;” Architectural Support for Programming
Languages and Operating Systems, International Conference; sub-
mitted Mar. 15, 2002; 26 sheets.

Witchel et al.; “Mondrian Memory Protection;” Architectural Sup-
port for Programing Languages and Operating Systems, Interna-
tional Conference; paper presented Oct. 5, 2002; 13 sheets.

(Continued)

Primary Examiner—Brian R. Peugh

Assistant Examiner—Jared 1 Rutz

(74) Attorney, Agent, or Firm—Daly, Crowley, Mofford &
Durkee, LLP

(57) ABSTRACT

A fine-grained memory protection system and technique
provide computer memory protection at least to a word
granularity. A permissions table having permission values
associated with a computer memory is arranged as protec-
tion domains. The permissions table can be cached in a
protection lookaside buffer (PLD) and/or in sidecar regis-
ters. A software calls across protection domains (a cross-
domain call) can be facilitated with a switch gate and a
return gate. In some embodiments, a gate table is provided
to store the switch gates and return gates, each having gate
values. In some embodiments, a stack permission stable
allows stack frames to be associated with the cross-domain
call.

45 Claims, 17 Drawing Sheets

52e

Memory
Addresses

52f

52g-—
52h

52i~—

Permissions Key

GOa\D None

60b

Read-Only

60c% Read-Write
GOdv@ Execute-Read

—_—— e N

52 54

56 58

Protection Domains

US 7,287,140 B1
Page 2

OTHER PUBLICATIONS

Witchel et al; “Mondrian Memory Protection;” Architectural Sup-
port for Programing Languages and Operating Systems, Interna-
tional Conference; slide presentation; Oct. 5, 2002; 34 sheets.
Witchel et al.; “Hardware Works, Software Doesn’t: Enforcing
Modularity with Mondriaan Memory Protection;” Hot Topics in
Operating Systems Workshop; paper submitted Jan. 10, 2003; 6
sheets.

Witchel et al.; “Hardware Works, Software Doesn’t: Enforcing
Modulartiy with Mondriaan Memory Protection;” Hot Topics in
Operating Systems Workshop; presented May 18, 2003; 6 sheets.

Witchel et al.; “Hardware Works, Software Doesn’t: Enforcing
Modulartiy with Mondriaan Memory Protection;” Hot Topics in
Operating Systems Workshop; slides presented May 18, 2003; 29
sheets.

Witchel et al.; “Hardware Works, Software Doesn’t: Enforcing
Modulartiy with Mondriaan Memory Protection;” Hot Topics in
Operating Systems Workshop; Jun. 17, 2003.

Introduction to Throughput Computing: Sun Microsystems: 2003;
18 pages.

* cited by examiner

U.S. Patent Oct. 23, 2007 Sheet 1 of 17 US 7,287,140 B1

’/10
f12
CPU
14 16a 16 16b 18
14a Address Registers Sidecar Registers
14b — e S o 72 Protection
14 S~ le > el | Lookaside -
R i e Buffer (PLB)
20 16d~, ~16c
o] Program | > e)
Counter
‘ 22 4 7\
Y L 24 |
Gate Protection Domain
——n Lookaside ID Register
27
Buffer (GLB) | ~ f?G 28
Instruction 26{ Base Registers Stack Frame Registers
Cache 26b\—4| Perm. Tbl. Bse. H~ | sb |-28a|
25 - Gate Tbl. Bse. I fb |\28b
CDST Register Stk Thl. Bse. (1] | sl } o8¢
.
26¢
f30
y L 32 1] /4 34
Cross Domain Call
Stack Stack
Gate Table <oré]
2 Stack Permission
(Switch and Return) - e TableZ ™
36 38
f42 i f40
' i
emory ermissio
Supervisor — Table”
7
Memory

FIG. 1

US 7,287,140 B1

Sheet 2 of 17

Oct. 23,2007

U.S. Patent

pesy-ansaxg

SIUM-pesY

Ajuo-peay

BUON

N

—P09

.

309

+—a09

—E09

Aay| suoissiwliag

89

B N

¢ OIA

SuIeWO(UONY310.d
9¢ 14 s

~

N

AR

g

7

——1¢G

Hi-—uygg
——bgg

-

S8sSaIppy
Aowap

——-9CS
— —PZS

BRI R RR AN IR RARRRERRANERRRE NS nn“::”mm“.”.”.”.?“.“.”.”.”.“.”.”.“.\\/UNm

— —4¢s
~ '444%0

ecs

U.S. Patent Oct. 23, 2007 Sheet 3 of 17 US 7,287,140 B1

100
112 ¥y
Address (30)
102 104
Address (30) Perm (2)
106a—qxo| 9% 00 |—106
114__Binary
search [1083, 00100020] 198 01 |—108
11934,00100040] 1'% 00 f—110
150
-

Address From Program (Bits 31-0)

Root Index (10) Mid Index (10) | Leaf Index (6) | Leaf Offset (6)

Bits (31-22)) Bits (21-12) } Bits (11-6)) Bits (5-0) 7
150a 150b 150¢ 150d

FIG. 4

US 7,287,140 B1

Sheet 4 of 17

Oct. 23,2007

U.S. Patent

. SpIOM
(9 @Nr»& Pzl AAq ¥
<MY ‘02X0 ‘8901X0>—
<0y '8X0 ‘0901X0>—F
2291~
az9L —
QIR0 R0 RO 00 | 00 | 00 | 00 ROLXNOLNNOL N
991~ 4L0LX0-0P01X0 Ag PAUMQ 008\ UOISSIULISG
<MY “06XQ ‘D44X0> —
N /
D IO NN IRR0 TN LN IR0 N 10 D N TR o R e koL
R HHARTNS A T R
poL~ 4E0LX0-000LX0 AQ PAUMO 0128 UOISSILLIAY ez, =
091

0801X0

0v0LX0

0001X0

US 7,287,140 B1

Sheet 5 of 17

Oct. 23,2007

U.S. Patent

- 1SE7 — LPIN »-— 0PI —— 1804 —»(7) 8dA]
(G)ueq (g) wiad (p)1osyo | (2)wued (M1wsyo | (2)wied (B)19syo | (2) wued (g)10sHO L
momm\ uomNL uomNL QomNL mommk
,/omm
QSNJ
v0Z— (qzxg) $x20g-qns g Joj unag (G1)pasnup L [evoe

20¢—{ (0%) 81981 |12A8| Jamo) 0} g

(1)pasnupn 0 [—ecoe

QNON\

ﬂ 00¢

(1) adAL

US 7,287,140 B1

Sheet 6 of 17

Oct. 23,2007

U.S. Patent

AT salhq v
I
P29 <MY ‘8 ‘OL> =IseT <MY ‘02X0 ‘8901X0>
oz9z 4 <0Y (2) ‘8>=LPIN 217 <OY ‘8X0 ‘0901X0>
929z — <3INON “(S) ‘€> =0PINN 0Z92
<MYd ‘(02) ‘LL->=1s11d azoz— |
<MH ‘€ ‘91> =Ise)
orz /<M L) S =PIN . L epgp o707
<My “(0) ‘SL> =0PIN
<MY ‘(£1) ‘1> =18114 <MY ‘06X0 ‘Od44x0>
4L01X0-0v0L %0 4€01X0-0001X0 suawbas J8sn
Ag paumo Aq paumo aoedg
uswbas 37y wewbas 37y 09z~ Sseippy

0801x0

0v01X0

0001Lx0

US 7,287,140 B1

Sheet 7 of 17

Oct. 23,2007

U.S. Patent

POSE

6 OIA

20G¢€ qose BOGE 209¢
/
_
(2) wiad (2€) punog (2¢g) eseg (L) pIeA (z€)ippy
ledapIs 1918168y ssalppy
oge - 09g

US 7,287,140 B1

Sheet 8 of 17

Oct. 23,2007

U.S. Patent

q0tv

Vol "OI4d

q80v

Va4

181700}

vdd

Xqg}

84 X

X dad

oLy~

yoy— 8 dI-ad

\
cov—

qa80v

alen uney K

g 01 31D YoUMg
suolissiuliad amndax3 [
suoissiuad oN]

H 100} Xq} egoY
BOLY{| 181X eZ LY
X ad \
-—1500
191700} A081S IBD
ulewoq sso1)
._J oLP
varad So0%

yoy—8dl-dd <¢0y—Vv dl-Ad

01 ‘OIA

80t

100}

—y
-

‘181 00}

10d

90v

US 7,287,140 B1

Sheet 9 of 17

Oct. 23,2007

U.S. Patent

POLY

Xq}

N8l X

X dd

oLy

I0I “OIA

480y —

PcLy

1Sddo

vovy— 8 dI-dd

801

{:00)

N0y

¢0vy— Vv di-ad

1817004

<— $Jd

-

egq0v

Va4

181700}

vad

xq

q80¥

181X

X dd

oLy’

01 ‘OIA
N
80Y
1sao
ommv 181700y (907
pop— 8 QI-Qd Zoy—V QI-Ad

U.S. Patent Oct. 23, 2007 Sheet 10 of 17 US 7,287,140 B1

r 452

450
/

Address (32b)

Switch/Return (1b) Unused (15b)

Destination PD-ID (16b)

_ 454 \Usse
FIG. 11

f 470

K 458

-—sb

Locals (e.g., char buf{1 2];')

Parameter N

Parameter N-1

Parameter 1 (e.g.,buf)

Caller frame | Return Address

Callee frame | Child EBP

Saved Registers

Locals

FIG. 12

- g

U.S. Patent Oct. 23, 2007 Sheet 11 of 17 US 7,287,140 B1

/‘ 500

502 504 506 508

N N

/—

o 2
0 O n
> D © 2
o c 8 £o]
3 QL — o
) X < =
m —
S|l 5| § | ¢
= O £ g
= =
Protection 0 1 2,3,....N N+1,... N+M
Domain IDs
(PD-IDs)

FIG. 13

U.S. Patent Oct. 23, 2007 Sheet 12 of 17 US 7,287,140 B1

o

Select Range of Memory | — 602
Addresses

'

Associate Words in Selected Range
with Metadata Values

Provide Permissions Table =B 606

Store Protection Domains |
. . 608
Having Segments in
Permissions Table

Y

Provide Protection Lookaside | — 610
Buffer (PLB)

l

Store Portion of Permissions | — 612
Table to PLB

'

Provide Sidecar Registers

'

Store Segment Base, Bounds,
and Segment Permission Value
to Sidecar Registers

To FIGS. 15, 18

FIG. 14

U.S. Patent

Oct. 23,2007 Sheet 13 of 17

/ 650

From FIG. 14

Associate First Protection

Domain with Source | — 652

Software Portion

'

Associate Second Protection
Domain with Destination
Software Portion

|

Associate Switch Gate Values | — 656

with Source Software Portion

'

Associate Return Gate Values

with Destination Software — 658

Porticn

To FIGS. 16, 17

FIG. 15

US 7,287,140 B1

U.S. Patent

Oct. 23,2007

From FIG. 15

Sheet 14 of 17

/ 700

702
Provide Gate Table | — 70
Store Switch Gate Values and 704

Return Gate Values to Gate
Table

3

Provide Gate Lookaside Buffer | — 706

(GLB)

l

Store Portion of Gate Tableto | — 708

GLB

710

"Gate-Present"

Program Address
Identified ?

712
/.

714
[_

Do Not Re-Load the GLB on
GLB Miss

Re-Load the GLB on GLB Miss

End

FIG. 16

US 7,287,140 B1

U.S. Patent Oct. 23, 2007

From FIG. 15

752
[_

Provide Cross-Domain-Call
Stack

I

Sheet 15 of 17

e 750

-

Proceed to Next Program

.]
Instruction

Clear "Gate-Present”

Switch
Gate Values
Detected ?

Bit in Instruction Cache
764
Return N

Gate Values
Detected ?

766
f

Store Source Memory Address
and/or Identity of Source
Software Protection Domain
and/or Stack Frame Base
Address to Cross-Domain-
Call Stack

Recall Source Memory
Address and/or Identity of
Source Software Protection
Domain and/or Stack Frame
Base Address to Cross-
Domain-Call Stack

l /- 760

l

768
/.

Operate with Destination
Protection Domain

Operate with Source
Protection Domain

End

FIG. 1

7

US 7,287,140 B1

U.S. Patent Oct. 23, 2007 Sheet 16 of 17 US 7,287,140 B1

802
Provide Stack Base (SB) Register |~

'

804
Provide Frame Base (FB) Register |~

'

806
Provide Stack Limit (SL) Register =

'

Associate First Stack Permission | — 808
Value with Range SB to FL

'

Associate Second Stack Permission | — 810
Value with Range FL to SL

l
(end)

FIG. 18

U.S. Patent Oct. 23, 2007 Sheet 17 of 17 US 7,287,140 B1

From FIG. 18

/ 850

Provide Stack Permissions Table t~ 852

'

Identify Third Address Range of — 854
Memory Stack

|

Assign Third Stack Permission _— 856
Value to Third Address Range

l

Identify Fourth Address Range of | — 858
Memory Stack

'

Assign Fourth Stack Permission _— 860
Value to Third Address Range

'

Store Third and Fourth Address _— 862
Ranges to Stack Permissions Table

'

Store Third and Fourth Stack
Permission Values to Stack | — 864
Permissions Table

FIG. 184

US 7,287,140 B1

1

SYSTEM AND TECHNIQUE FOR
FINE-GRAINED COMPUTER MEMORY
PROTECTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §
119(e) of U.S. Provisional Application No. 60/490,482 filed
Jul. 28, 2003, which application is incorporated herein by
reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
Contract No. F30602-00-2-0562 awarded by the Defense
Advanced Research Projects Agency (DARPA) and Con-
tract No. CCR-0093354 awarded by the National Science
Foundation (NSF). The government has certain rights in the
invention.

FIELD OF THE INVENTION

This invention relates generally to computer memory
protection, and, more particularly, to a system and technique
that can provide memory protection to a fine granularity of
computer memory.

BACKGROUND OF THE INVENTION

Computers are known to crash and/or otherwise malfunc-
tion. Often, the crash or malfunction is associated with a
running computer program that corrupts a memory area in
the computer’s random access memory (RAM) used by
another running program. Such corruption may be caused,
for example, by one computer program overwriting a
memory area used by another computer program. Such
corruption can also be caused by malicious software, for
example, a computer virus. In order to reduce the potential
for memory conflicts and resulting corruption, certain con-
ventional protection mechanisms described below, can limit
the ability of a computer program to corrupt a portion of the
RAM used by another computer program.

Even though it may be desirable to protect a memory area
used by a computer program from corruption by another
computer program, it is often advantageous for computer
programs or processes to share data stored in the computer
RAM memory. In some conventional computer environ-
ments, sharing is provided by copying the contents of a
memory region used by a computer program to another
region of RAM, which is then used by another computer
program. While such copying protects the original memory
region from corruption by the other computer program, the
copying process is relatively slow, resulting in slow com-
puter operation.

Conventional commercially available computer operating
systems (OSs) typically provide protection of memory por-
tions among different program processes, and between all
user processes and trusted memory supervisor code. In
addition, conventional operating systems typically support
flexible sharing of data in computer RAM memory to allow
software applications to cooperate efficiently.

Conventional computer architectures and operating sys-
tems provide a linear addressing scheme, in which each
software process has a separate linear demand-paged virtual
address space. Each address space has a single protection

20

25

30

35

40

45

50

55

60

65

2

domain that defines protections to memory in the address
space, shared by all threads that run within the process. With
this arrangement, a software thread can only have a different
protection domain if it runs in a different address space. With
this arrangement, sharing is only possibly at page granular-
ity, where a single physical memory page can be mapped
into two or more virtual address spaces. A page in computer
memory has a size that is typically on the order of four
kilobytes. Therefore, with this arrangement, protected shar-
ing has a relatively coarse granularity of four kilobytes.

Although the above-described addressing scheme is now
common in OS designs and hardware implementations, it
has significant disadvantages when used for protected shar-
ing of memory spaces. For example, pointer-based data
structures can be shared only if the shared memory region
resides at the same virtual address for all participating
processes. Also, all words within a page must have the same
permissions. As described above, a conventional memory
page has a size in the vicinity of four kilobytes, which
provides memory protection regions having only a coarse
memory permission granularity. Furthermore, interpretation
of a pointer depends on addressing context, and any transfer
of control between software modules requires a time-con-
suming context switch, for example, with a software call to
another software module. The coarse granularity of protec-
tion regions, the time consuming overhead of providing
protected memory via software calls, and the time consum-
ing overhead of inter-process communication limits the
ways in which conventional protected sharing can be used
by software applications.

Although software designers are creative in working
around the above limitations to implement protected
memory sharing for some software applications, each soft-
ware application requires considerable custom engineering
effort to attain high performance.

In some cases, such as web browsers or kernel modules,
software designers sacrifice memory protection robustness
in favor of performance, e.g., processing speed, by foregoing
hardware memory protection and placing all software mod-
ules in the same address space. It should be apparent that this
arrangement can lead to computer crashes as software
modules compete for the same memory space.

In contrast to systems that place all software modules in
the same address space, to provide memory protection, some
conventional computer architectures and operating systems,
e.g., Linux on x86 or Windows XP on x86, associate each
software process with its own memory address space. How-
ever, such systems can have increased complexity and
run-time overhead, as described above, from managing
multiple address contexts.

Some software systems benefit from an ability to provide
extensibility, wherein new software modules (sometimes
referred to as “plug-ins”) can be linked to existing software
modules to provide enhanced functionality. Architects of
these systems generally do not use conventional operating
system protection support, which, as described above, pro-
vides a separate address space for each software module.
Instead, the plug-in occupies the same memory space as the
program to which it is linked, providing good processing
speed at the expense of potential memory corruption. For
example, the Apache web server has a plug-in for the
interpretation of perl code in web pages. For another
example, browsers can receive plug-ins to interpret portable
document format (PDF) documents, a format provided by
software from ADOBE® Systems Incorporated, San Jose,
Calif. Linking a plug-in to an existing computer program
makes communication between the computer program and

US 7,287,140 B1

3

the plug-in fast and flexible, but because there is no protec-
tion between the plug-in and the software program to which
it is linked in the same address space, the linkage can lead
to memory corruption, or open a security hole in a server
(e.g., from a buffer overrun).

Embedded systems, e.g., systems having microcontrollers
with embedded code, can have similar problems. Embedded
systems are often organized having a set of tasks (sometimes
including an operating system) that share physically
addressed memory. Without inter-task memory protection,
an error in part of the embedded system can make the entire
embedded system unreliable. Similarly, loadable OS kernel
modules (such as in Linux) all run in the kernel’s unpro-
tected address space, leading to potential reliability and
security problems.

As described above, so-called “demand-paged virtual
memory systems,” in order to provide multiple protection
domains, can place each thread in a separate address space
and then map physical memory pages to the same virtual
address in each address context. These systems have a
coarse protection granularity only to the memory page level.

So called “page-group systems,” such as HP-PARISC and
PowerPC, partition memory protection domains according
to which page-groups (collections of memory pages) are
accessible. Every protection domain that has access to a
page-group sees the same permissions for all pages in the
group. Page-group systems have coarse granularity corre-
sponding to a page or multiple pages.

So called “domain-page systems” have an explicit pro-
tection domain identifier, and each protection domain can
specify a permission value for each page. Permissions are
managed only at page granularity.

So-called “capability systems” are an extension of seg-
mented architectures where a “capability” is a special
pointer that contains both location and protection informa-
tion for a segment of memory. Although designed for
protected sharing, capability systems do not function well
for the common case of shared data structures that contain
pointers. Capability systems do not support multiple
memory protection domains, since threads sharing the data
structure use its pointers (capabilities) and therefore see the
same permissions for objects accessed via the shared struc-
ture. Also, many capability systems provide a relatively poor
ability to revoke protection permissions, and, in order to
revoke permissions, require an exhaustive sweep of the
memory. Some capability systems perform an indirect
lookup on each capability use, which adds considerable
run-time overhead.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method for
providing fine-grained protection of contents of a computer
memory used in a computer includes selecting a range of
memory addresses within the computer memory and asso-
ciating each word in the range of memory addresses with a
respective metadata value, wherein a selected word in the
range of memory addresses is associated with a first meta-
data value and words adjacent to the selected word are
associated with second and third metadata values respec-
tively.

In accordance with another aspect of the present inven-
tion, a computer apparatus having a central processing unit
(CPU) includes a computer memory having a range of
memory addresses addressable by the CPU and a permis-
sions table associated with the computer memory for asso-
ciating each word in the range of memory addresses with a

—

0

20

25

30

35

40

45

50

55

60

65

4

respective metadata value, wherein a selected word in the
range of memory addresses is associated with a first meta-
data value and words adjacent to the selected word are
associated with second and third metadata values respec-
tively.

In one particular embodiment, for both the above method
and system, each metadata value is selected from among a
read-only value, a write-only value, a read-write value, an
execute-read value, an execute-write value, an execute-read-
write value, an execute-only value, and a no-permission
value, and can further comprise at least one of a cache
coherence state value, a not-cached state value, a cached-
exclusive state value, a cached-modified state value, and a
cached-shared state value.

With these particular arrangements, memory protection
can be provided at a granularity of one word.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention, as well as the
invention itself may be more fully understood from the
following detailed description of the drawings, in which:

FIG. 1 is a block diagram of a computer system adapted
to provide fine-grained memory protection;

FIG. 2 is a diagram showing a plurality of protection
domains associated with memory addresses in accordance
with a permissions table shown in FIG. 1;

FIG. 3 is a diagram illustrating an exemplary sorted
segment table (SST) in accordance with the permissions
table shown in FIG. 1;

FIG. 4 is a diagram illustrating an exemplary multi-level
permissions table address in accordance with the permis-
sions table shown in FIG. 1;

FIG. 5 is a diagram illustrating an exemplary permission
vector associated with a multi-level permissions table in
accordance with the permissions table shown in FIG. 1;

FIG. 6 is a diagram illustrating an exemplary bit alloca-
tion for upper level entries in the exemplary multi-level
permissions table;

FIG. 7 is a diagram illustrating an exemplary bit alloca-
tion for a mini-sorted-segment table (mini-SST) in accor-
dance with the permissions table shown in FIG. 1;

FIG. 8 is a diagram illustrating an exemplary multi-level
permissions table having an associated mini-SST in accor-
dance with the permissions table shown in FIG. 1;

FIG. 9 is a diagram illustrating an exemplary sidecar
register bit allocation in accordance with the sidecar regis-
ters shown in FIG. 1;

FIGS. 10-10C are diagrams illustrating an exemplary
program call and return structure using switch and return
gates;

FIG. 11 is a diagram illustrating switch and return gate
values in accordance with a gate table shown in FIG. 1;

FIG. 12 is a diagram illustrating operation of stack frame
registers, shown in FIG. 1;

FIG. 13 is a diagram illustrating memory supervisor and
kernel protection domains;

FIG. 14 is a flow chart showing a method associated with
the permissions table and the sidecar registers in accordance
with the permissions table and sidecar registers shown in
FIG. 1;

FIG. 15 is a flow chart showing a method associated with
software cross-domain calls;

FIG. 16 is a flow chart showing a method associated with
software cross-domain calls in accordance with a gate table
and a gate lookaside buffer shown in FIG. 1;

US 7,287,140 B1

5

FIG. 17 is a flow chart showing a method associated with
software cross-domain calls in accordance with a cross-
domain call stack shown in FIG. 1;

FIG. 18 is a flow chart showing a method in accordance
with stack permissions associated with stack frame registers
shown in FIG. 1; and

FIG. 18A is a flow chart showing a method in accordance
with a stack permissions table shown in FIG. 1.

DETAILED DESCRIPTION OF THE
INVENTION

Before describing the system and technique for fine-
grained computer memory protection, some introductory
concepts and terminology are explained. The term “block™ is
used herein to describe an address range in computer
memory that is aligned on a power-of-two address boundary,
and which has a size that is a power-of-two.

The term “segment,” as used herein, describes any
bounded portion of computer memory, which may or may
not align on a power-of-two address boundary, and which
may or may not have a size which is a power-of-two.

As is known, a computer has a largest addressable
memory space often referred to as a virtual memory. Often,
the physical memory associated with the computer has a size
less than the virtual memory size. Therefore, the computer
often has a mapping or a translation from a virtual memory
space to a physical memory space.

As used herein, the term “function” or “software func-
tion” applies to a portion of operational software code that
can be called within a software program. In some instances
software functions identified below are conventional, e.g.,
the function malloc used in C code. In other instances
non-conventional software functions used in the system and
technique of the present invention are identified by name
below. It should, however, be appreciated that names given
below to particular functions associated with the system and
technique of the present invention are illustrative only, and
that other names could equally well be used.

The term “frame” or “activation frame,” as used herein,
refers to a portion of a memory stack currently being used.

Referring now to FIG. 1, a system 10 for computer
memory protection includes a central processing unit (CPU)
12 coupled to a memory 30. The memory 30 includes a
permissions table 40 stored in a privileged space of the
memory 30. The permissions table 40 holds metadata values
arranged as “protection domains.” Protection domains are
described more fully in conjunction with FIGS. 2 and 13
below. Metadata values stored in the permissions table 40
can each include, but are not limited to, a respective per-
mission value. Exemplary permission values are shown in
Table 1 below. Permission values can include, but are not
limited to, a read-only value, a write-only value, a read-write
value, an execute-read value, an execute-write value, an
execute-read-write value, an execute-only value, and a no-
permission value. The no-permissions value corresponds to
no access rights. The metadata values stored in the permis-
sions table 40 can also include other respective information,
for example, a cache coherence state value, a not-cached
state value, a cached-exclusive state value, a cached-modi-
fied state value, and a cached-shared state value.

—

0

20

25

30

35

40

45

50

55

60

65

TABLE 1
Perm Value Type
00 no perm
01 read-only
10 read-write
11 execute-read

As used herein, the term permissions table is used to refer
to both the physical portion of the memory 30 that holds the
metadata values, and also to a data structure used to hold the
metadata values. There are a variety of alternative data
structures in which the metadata values can be stored in the
permissions table 40. The data structure within the permis-
sions table 40 can be seclected to optimize a variety of
factors, including but not limited to, memory space over-
head, access time, utilization by a permission lookaside
buffer (PLB) 18 more fully described below, and a time
required to modify the permissions table 40 when permis-
sions change. Exemplary data structures that describe the
permissions table are shown in FIGS. 3-9 below.

The permissions table 40 holds addresses associated with
the memory 30 and metadata values (including a permission
value) associated with each address, all arranged as protec-
tion domains. Each protection domain encompasses a range
of memory addresses, which can be a full range of virtual
memory addresses, or which can be a full range of physical
memory addresses. However, in other embodiments, the
protection domains are associated with less than the full
range of virtual and/or physical memory addresses. Each
protection domain has one or more segments, each segment
spanning a portion of the range of memory addresses, and
each segment having particular metadata values including a
particular permission value so that each memory address
associated with the segment has the same permission value.
Each protection domain provides permission values
assigned to each word in the range of memory addresses,
and the permission values can be different for different
protection domains. It should be understood that permission
values are associated with individual words in the range of
memory addresses, and each word can have a different
permission value. Protection domains are discussed in more
detail in conjunction with FIGS. 2 and 14.

In some embodiments of the present invention, all seg-
ments are blocks. However, in other embodiments, some or
all of the segments are not blocks.

In one particular embodiment, the memory 30 can be
comprised of a variety of types of memory, including but not
limited to, one or more of a dynamic random access memory
(DRAM), a static random access memory (SRAM), a hard
disk, a flash memory, a floppy disk, and a peripheral
memory, for example an external digital tape recorder.

A protection lookaside buffer (PLB) 18 holds information
associated with one or more protection domains, (i.e.,
addresses and associated metadata values) provided by the
permissions table 40. In one particular embodiment, the PLB
18 is located within static random access memory, for
example, within a cache memory having fast access speed to
the CPU 12.

In one particular embodiment, the PLLB 18 holds power-
of-two blocks associated with the one or more protection
domains. However, in other embodiments, the PL.B 30 holds
non-power-of-two segments associated with the one or more
protection domains.

The PLB 18 can cache recently used memory addresses
and associated permission values, avoiding long searches

US 7,287,140 B1

7

through the permissions table 40. The PLB 18 can be
re-filled from the permissions table 40 using either hardware
or software. Entries in the PLB 18 include one or more
protection domains and can also include protection domain
identifiers to identify each of the one or more protection
domains stored within the PLB 18.

The CPU 12 includes address registers 14, here shown as
three address registers 14a, 14b, 14¢, each associated with a
respective sidecar register 16a, 165, 16c. The sidecar reg-
isters 16 are described in more detail in conjunction with
FIG. 10. Let is suffice here to say that a sidecar registers
holds information obtained from the PLB 18, and/or from
the permissions table 40 which can include respective per-
mission values (or, more generally, metadata values) asso-
ciated with address ranges that can be associated with
addresses held in the address registers 14a, 145, 14¢c. A
sidecar register 164 is also associated with a program
counter 20, allowing an instruction within the program
counter 20, associated with an address in the memory 30, to
have rapid access to associated permission values.

Each sidecar register 16a-16¢ can cache a base, a bounds,
and permission values for the last segment within a protec-
tion domain accessed by a corresponding address register
14a-14c. When an address within an address register 14a-
14¢ or within the program counter 20 results in a sidecar
register miss, i.e., an address not found in the range of the
corresponding sidecar register, one or more of the sidecar
registers 16a-16d can re re-loaded from the PLB 18. If the
sidecar register cannot be re-loaded from the PLB 18, the
PLB 18 can be reloaded from the permissions table 40 and
the sidecar registers 16 can then be re-loaded from the PLB
18 or directly from the permissions table 40. Like entries in
the PLB 18, the entries in the sidecar registers 16 can be
tagged with a protection domain identifier.

The sidecar registers 16 can improve performance since
they hold permission values corresponding to a segment
along with segment address bounds, unlike the PLB 18,
which, in one particular embodiment, has a segment bound-
ary index limited to a power-of-two, e.g., a block.

A protection domain identifier (ID) register 24 holds a
protection domain identifier value identifying a protection
domain currently being used by the CPU 12. The protection
domain identifier (ID) register 24 points to the protection
domain currently being used, and which has corresponding
information in the PLB 18 and in the sidecar registers 16.

The protection domain identifier (ID) register 24 can also
hold information to distinguish a kernel mode from a user
mode. Kernel mode enables access to privileged control
registers (not shown) and privileged instructions.

In one particular embodiment, a particular protection
domain identified by the protection domain identifier (ID)
register 24, for example, protection domain 0, can have
permission values that allow a software portion using pro-
tection domain 0 to manage other protection domains, e.g.,
to have full privileges throughout the range of memory
addresses.

Base registers 26 include a permissions table base register
26a holding an address within the permissions table 40
corresponding to a base of the protection domain currently
being used.

The memory 30 also includes a stack memory 30 and a
stack permissions table 38. The stack permissions table 38
holds stack permission values, e.g., permission values as in
Table 1, each associated with a particular range of addresses
within the stack memory 34, unlike the permission values
held in the permissions table 40 which are each associated
with a segment within the larger full range of memory

20

25

30

35

40

45

50

55

60

65

8

addresses of the memory 30. A stack table base register 26¢
holds an address corresponding to the portion of the stack
permissions table 38 currently being used. With this arrange-
ment, the stack memory 34 can be managed to have per-
mission values associated with particular ranges of
addresses within the stack memory 34.

Stack permissions within the stack permissions table 38
must be treated differently from regular memory permis-
sions within the permission table 40. Stacks are used by
threads that move between protection domains, and should
not be accessible to other threads in the same protection
domain. The stack permissions table 38 provides fine-grain
stack permissions, i.e., which can be different on each word
of the stack memory 34, and can have access permissions
only visible to the owning thread, i.e., “thread-local” per-
missions.

Two forms of thread-local stack permissions can be
maintained. In a first type, stack frame registers 28 designate
a current stack frame as read-writeable and previous stack
frames as read-only. In a second type, the stack permissions
table 38 allows individual words of the stack frames to be
made thread-writeable to support existing calling conven-
tions with parameters that point to stack-allocated data
structures.

The stack frame registers 28 partition the stack memory
34 into two regions: a read-only region between an
addresses held in an sb (stack base) register 284 and in an fb
(frame base) register 285, and a read-write region between
addresses held in the fb register 285 and an sl (stack limit)
register 28¢. Calls from one software portion to another
software portion using another protection domain, a so-
called “cross-domain call,” grows the read-only region of
the stack memory 34 by saving the current value of the fb
register 285 and moving the current stack pointer into the fb
register 285. For example, in an x86 architecture, this
operation is equivalent to moving “esp” into the tb register
28b. The cross-domain call is described more fully below in
conjunction with FIGS. 10-10C.

The stack frame registers 28 allow fast creation of an
activation frame on a cross-domain call and provide an
efficient mechanism for read-only stack parameters. To
support stack-allocated return parameters, the thread-local
stack permissions table 38 encodes whether a given stack
address is read-writable by the thread, for example, using
one bit per word. The contents of the stack permissions table
38 can be cached in the PLB 18 along with information from
the permissions table 40. A location in the stack memory 34
is read-writable if it lies between the read-only and read-
write register addresses (i.e., between tb 286 and sl 28¢), or
if its stack write permissions bit is set as indicated in the
stack permissions table 38.

A memory supervisor 42, described more fully below in
conjunction with FIG. 13, can flush stack permissions infor-
mation from the PLB 18 when a thread is de-scheduled. The
computer system implementation does not restrict permis-
sions on stack-allocated data structures. Every protection
domain has read-write permissions to the kernel stacks.

Program instructions can be associated with “gate infor-
mation,” including, but not limited to a switch gate, and a
return gate. The switch gate can, for example, be associated
with a software call instruction and can identify an address
and a protection domain identifier (PD-ID) associated with
a destination software portion to which the call instruction
directs software flow. The return gate can, for example, be
associated with a software return instruction and can identify
an address and a PD-ID associated with a source software
portion to which the return instruction returns software flow.

US 7,287,140 B1

9

However, in another embodiment, the return gate does not
identify the PD-ID associated with the source software
portion, since it can be separately stored at the time of the
software call. The gate information is described more fully
in conjunction with FIG. 11 below, and function of the gates
is described more fully in conjunction with FIGS. 10-10C.

The memory 30 can also include a gate table 36 having
the above-described gate information. Entries in the gate
table are described in more detail in conjunction with FIG.
11. The entries in the gate table 36 allow a running software
program to switch protection domains upon a software call
and return to the original protection domain upon returning
from the software call. Base registers 26 include a gate table
base register 265 holding an address within the gate table
corresponding to a region of the gate table 36 currently being
used.

A gate lookaside buffer (GLB) 22 holds a portion of the
gate information contained in the gate table 36. In one
particular embodiment, the GLB 22 is located within static
random access memory, for example, in a cache memory
having fast access speed to the CPU 12. If the GLB 22 does
not contain requested gate information, for example,
because a requested address is out of the range of the GLB
22, the GLB 22 can be re-loaded from the gate table 36.

It will be apparent that most program instructions are not
associated with a switch gate or a return gate. It would not
be desirable to check the GLB 22 and/or the gate table 36
each time a program instruction is encountered having no
associated gate. Therefore, in one particular embodiment, as
program instructions are encountered which have no asso-
ciated gate, those instruction can be tagged, for example
with a single “gate-present” bit; within an instruction cache
27. When an instruction having a clear gate-present bit, i.e.,
a no-gate program address, is subsequently retrieved from
the instruction cache 27, it is not necessary to look in the
GLB 22 or in the gate table 36 to identify a gate associated
with the instruction.

A cross-domain call stack 32 allows an address (i.e., a
return address) associated, for example, with a software call
instruction to be stored along with an associated protection
domain identifier upon a software call from a source soft-
ware portion. Upon returning from the destination software
portion, the protection domain identifier associated with the
address can, therefore, be recalled from the cross-domain
call stack 32. This operation is described more fully in
conjunction with FIGS. 10-10C.

A cross-domain stack top (CDST) register 25 points to a
top of the cross-domain call stack 32. In one particular
embodiment, the cross-domain call stack 32 can be imple-
mented, for example, with a combination of an on-chip
top-of-stack buffer (e.g., within the CPU 12 of FIG. 1), along
with the cross-domain call stack 32 within the memory 30.

In operation, every memory access during a software
program is checked to see if the protection domain associ-
ated with the memory access has appropriate access permis-
sion for the memory access. First, an associated sidecar
register, e.g., 16a, can be checked, and, if the address of the
memory access cannot be identified in the sidecar register
164, the PLLB 18 can be checked and the sidecar register,
e.g., 16a, can be re-loaded from the PLB 18. If the address
of the memory access cannot be identified in the sidecar
register, e.g., 16a, or the PLB 18, then both the PLB 18 and
the sidecar register, e.g., 16a, can be reloaded from the
permissions table 40.

Each sidecar register 16 can cache the last permissions
table segment accessed by a respective address register 14 or
by the program counter 20. The information stored in the

20

25

30

35

40

45

50

55

60

65

10

sidecar registers 16, which identifies permission values
associated with entire segments, can map a wider address
range than the PLB 18 from which it was fetched. The
sidecar registers, therefore, can avoid both lookups in the
PLB 18 and also PLB misses.

The permissions, gate, and stack tables 40, 36, 38 jointly
describe protection domain “access permissions,” i.e., the
operations that software associated with the protection
domain can perform on the memory 30 such as execute a
return gate or write to a location in the memory 30. A portion
of the memory 30, is “accessible” if there is some way for
software associated with a protection domain to access it
without causing a fault, i.e., by reading, writing, or execut-
ing. Memory is “shared” when it is accessible by more than
one software portion associated with a respective more than
one protection domain.

The memory supervisor 42, which in one particular
embodiment, can be software running in the memory 30,
provides a variety of functions to control access permissions
to the memory 30. For example, the memory supervisor 42
can manage permission values, protection domain owner-
ships, export permissions, and the creation and deletion of
protection domains, each of which is described more fully
below.

The memory supervisor 42 provides a hardware-indepen-
dent interface to allow higher-level software to request a
change in access permissions to the memory 30. The
memory supervisor 42 can also check memory requests
against permissions policy, and can translate valid requests
into modifications to the permissions table 40, the gate table
36, and/or the stack permissions table 38. The memory
supervisor 42 can also be responsible for revoking permis-
sions when required, e.g., when a memory region is freed or
when a protection domain is deleted. It may be desirable to
use the memory supervisor 42 to modify or revoke permis-
sions rather than other software because the other software,
running in another protection domain, may not revoke or
modify permission in the permissions table 40 correctly. The
memory supervisor 42 can keep track of how memory
regions are shared among protection domains, i.e., which
protection domains have been given access permissions to
particular memory regions.

Memory “ownership” is a component of permissions
policy that can be implemented entirely within the memory
supervisor 42. A protection domain can have authority on
permissions and use of a memory region associated with the
protection domain. Every address space is divided into
non-overlapping regions, where each region can be owned
by exactly one protection domain. The memory supervisor
itself owns all of memory initially. An “owner” protection
domain can set arbitrary access permissions on memory that
it owns, and can grant arbitrary access permissions, or
export permissions, on that memory to other protection
domains. Memory ownership can have a coarser resolution
than memory protection, and can change less frequently.

The memory supervisor 42 can maintain ownership infor-
mation using a sorted list of memory regions and their
owners, which are protection domains. In one particular
embodiment, the only way for a protection domain to cede
ownership of memory that it owns is to create a new
protection domain using that memory. In another embodi-
ments, the memory supervisor 42 could provide a change
ownership (e.g., chown) call, which would allow a protec-
tion domain to give ownership of a memory region to
another protection domain.

The memory supervisor 42 also implements “export per-
missions,” which describe how a protection domain can

US 7,287,140 B1

11

grant permissions to another protection domain. Ownership
conveys unlimited export permissions, but non-owner pro-
tection domains can have restricted export permissions.
With this arrangement, an owner protection domain can give
another protection domain (e.g., protection domain X) read-
write access permissions on a buffer, but limit it to read-only
export permissions. Software associated with protection
domain X can read and write the buffer, but cannot grant
read-write permissions on the buffer to another software
portion associated with a third protection domain Y. The
memory supervisor 42 can implement a limited form of
export permissions, based on ownership and access permis-
sions. An owner can export permissions freely, while a
non-owner can export only up to its access permissions
level.

Dynamic memory allocation can still be managed by a
software kernel. This allows main kernel allocators to
remain outside the memory supervisor 42, and lets the kernel
retain custom memory allocators, i.e., allocators that manage
their own free list such as the Linux “inode” allocator. The
memory supervisor 42 can provide special API calls (e.g.,
perm alloc and perm free) to support allocators, which
provide memory to other protection domains. A protection
domain (e.g., protection domain X) can call an allocator
protection domain (e.g., protection domain Z), and, in
response, the allocator protection domain can determine the
start address and length of the memory that X will receive.
The allocator protection domain can then call the memory
supervisor 42 to establish permissions for the protection
domain X on the memory it has chosen. The memory
supervisor 42 determines that the permissions are for the
protection domain X by reading the cross-domain call stack
32, so it cannot be fooled by a misbehaving allocator. An
allocator protection domain can either own the memory it
allocates, which is the fast path used by so-called slab and
page allocators, or it can have export permissions, which is
used by custom allocators because they do not own the
memory they allocate; they get it from the slab or page
allocator.

The memory supervisor 42 can also be responsible for
managing thread-local stack permissions. Threads can only
change control permissions in their active frame, and the
memory supervisor 42 can reject permission change requests
for memory between the most recently saved frame base, fb
28b, and the stack base, sb 26¢. If a thread grants write
permission on a frame, it must revoke permissions on the
frame before the frame returns. On scheduling events, the
kernel instructs the memory supervisor 42 to save and reload
the thread-local CPU registers (sb 284, tb 285, s1 28¢, CDST
25, and the stack table base register 26¢)

The memory supervisor 42 can manage the creation and
deletion of protection domains. A protection domain can
create a new protection domain by “subdividing,” and
passing ownership of a region of its own memory to the new
child protection domain. The memory supervisor 42 can
track parental relationships between protection domains.
When a protection domain is deleted, ownership of its
memory regions can pass to its closest ancestor. The
memory supervisor 42 can also revoke permissions on
memory owned by the deleted protection domain from all
protection domains.

As described above, the memory supervisor 42 can pro-
vide an API and policies for managing memory ownership
and permissions. In one particular embodiment, two calls
can be used to set permissions on memory regions. For
example, a function “mprot” can set permission values for
the current protection domain while a function “mprot

20

25

30

35

40

45

50

55

60

65

12

export” can set permission values in another protection
domain. A function “pd subdivide” can create a new pro-
tection domain, while a function “pd free” can delete a
protection domain. Memory allocator protection domains
can call memory supervisor functions “perm alloc” and
“perm free” to give the caller of the allocator access per-
missions in the memory being allocated.

The memory supervisor policy can follow a few general
rules. For example, a non-owner cannot dictate permissions
to an owner; a non-owner cannot downgrade the permissions
of another protection domain; and a non-owner cannot
upgrade its own permissions.

A “group” protection domain is a collection of memory
regions, each with a specified permission. Group protection
domains are useful when multiple protection domains need
access to the same set of memory regions, and where the
memory segments in that set change over time.

A “regular” protection domain can create a “group”
protection domain and grant the group access permissions to
various memory regions. Another protection domain can
then “join” the group protection domain to gain the permis-
sions specified by the segments in the group.

Referring now to FIG. 2, protection domains 52-58 are
each associated with a range of memory addresses 62. The
memory addresses 62 can be a virtual memory addresses or
physical memory addresses. The memory addresses 62 can
include all virtual or physical memory addresses. However,
in another embodiment, the memory addresses 62 include
only a portion of the virtual or physical memory addresses.

Crosshatched regions shown in FIG. 2 each represent
corresponding segments, each having a respective permis-
sion 60a-60d (i.e., permission value). Permission values
60a-60d correspond to those shown above in Table 1.

A protection domain, for example, the protection domain
58, can be associated with more than one software thread.
Also, every software thread is associated with exactly one
protection domain at any point in its execution. A software
program or program portion associated with a protection
domain that wants to share data with another software
program or program portion must share at least a portion of
its address spaces, for example, by having a protection
domain with a segment provisioned as read-write.

While permission values 60a-60d are shown, as described
above, the permissions table 40 (FIG. 1) can hold metadata
values arranged as the protection domains, where the meta-
data values each include, but are not limited to, a respective
permission value. The metadata values stored in the permis-
sions table 40 can also include other information, for
example, a cache coherence state value, a not-cached state
value, a cached-exclusive state value, a cached-modified
state value, and a cached-shared state value. Therefore, it
will be apparent that, in other embodiments, the protection
domains 52-58 can be associated with both the permission
values 60a-60d as well as with other information.

Each memory region of a protection domain having a
contiguous permission value is a protection domain seg-
ment. For example, each of the memory regions 52a-521 is
a segment. Each protection domain can be different, each
having permissions set on arbitrary sized memory regions,
including memory regions (segments) of one word, or even
one byte.

In one particular embodiment, the system and technique
for fine-grained computer memory protection uses two-bit
permission values, as shown in Table 1 above. In other
embodiments, the system and technique can support more
than two permission bits or fewer than two permission bits,
different permission types, and/or other information.

US 7,287,140 B1

13

Every allocated region of memory, e.g., the memory 30 of
FIG. 1, is owned by one protection domain, and this own-
ership is maintained by a memory supervisor, e.g., the
memory supervisor 42 of FIG. 1. As described above, to
support the construction of protected subsystems, the owner
of a region can export protected views of the region to other
protection domains.

Some of the protection domains can be generated by the
software kernel, while others can be generated, for example,
by the memory supervisor 42 upon request by a software
application programs. The memory supervisor 42, described
in conjunction with FIG. 1, manages the protection domains.

Referring now to FIG. 3, an exemplary “sorted segment
table” (SST) 100, is but one permissions table structure in
which addresses and associated permission values can be
arranged (i.e., in the permissions table 40 of FIG. 1). One
particular embodiment of the SST 100 includes a linear array
of entries, for example, entries 106, 108, 110, each entry a
segment ordered by segment start addresses, for example,
segment start addresses 106a, 1084, 1104. Segments can be
any number of words (or bytes) in length, including, but not
limited to, one word (or byte), and start on any word (or
byte) boundary, but cannot overlap. In the exemplary
embodiment shown, each entry is four bytes wide, and
includes a 30-bit start address 102 (which is word aligned,
so only 30 bits are needed) and a 2-bit permission value field
104. The start address of a next segment is implicitly
identified by the end of a current segment, so segments with
no permission values can be used to encode gaps and to
terminate the list.

In operation, on a PLB miss (PLB 18, FIG. 1) associated
with a program address 112, a binary search 114 is per-
formed in the SST 100 to locate a segment containing an
address for which the search is conducted. The SST 100 is
a compact way of describing and storing addresses 102 and
associated permission values 104 in the permissions table 40
(FIG. 1), especially when the number of segments is small.
However, when the number of segments is large, the binary
search of the SST 100 can take many steps in order to locate
a segment. Also, because the segments are contiguous, they
must be copied, i.e., moved, when a new permission value
is inserted. Furthermore, the SST 100 can only be shared
between protection domains in its entirety, i.e., tWo protec-
tion domains have to have identical permissions maps.

It should be apparent that entries in the permissions table
40 (FIG. 1) encode both address ranges and permission
values associated with each of the address ranges, wherein
the address ranges are associated with the memory 30 of
FIG. 1.

Referring now to FIG. 4, a “multi-level permissions table”
(MLPT) provides an alternate permissions table structure in
which addresses and associated permission values can be
arranged (i.e., in the permissions table 40 of FIG. 1). An
MLPT address 150, forming a part of the MLPT entries in
the permission table 40, includes a root index 150a, a mid
index 1505, a leaf index 150c¢, and a leaf offset 150d. An
MLPT lookup algorithm, shown below, can be used to
perform a lookup within MLPT addresses in the permissions
table 40.

Below is shown pseudo-code for the MLPT lookup algo-
rithm described above.

PERM_ENTRY MLPT_lookup(addr_t addr) {

PERM_ENTRY e=root[addr>>22];

if(is_tbl_ptr(e)) {

PERM_TABLE*mid=e<<2;

e=mid[(addr>>12) & O0x3FF];

if(is_tbl_ptr(e)) {

20

25

30

35

40

45

50

55

60

65

14

PERM_TABLE*leaf=e<<2;
e=leaf] (addr>>6) & 0x3F];

}

return e;

The exemplary MLPT address 150 has thirty-two bits. In
one particular embodiment, entries in the root index 150a
map to 4 MB blocks. Entries in the mid index 1505 map to
4 KB blocks. Entries in the leaf index 150¢ map to sixty-four
byte blocks. Entries in the leaf offset 1504 map to individual
bytes, of which there are sixty-four. The MLPT address 150
can reduce space usage in the permission stable 40 by
sharing lower level tables across different protection
domains that share the same permissions map.

An MLPT structured permissions table (e.g., permissions
table 40) having an MLPT address 150 is indexed with an
address and returns a permissions table entry, which, in one
particular embodiment, is a vector of permission values, also
stored in the permissions table 40. Permission vectors are
described below in conjunction with FIG. 5. The base of the
root index 150q is held in a dedicated CPU register, e.g., the
permissions table base register 26a (FIG. 1).

The MLPT can form a trie structure, for which the root
index 150a points to and provides an index into a first level
table stored in the permission table 40. The first level table
indexed by the root index 1504 can point to a second level
table indexed into by the mid index 1505. The second level
table indexed by the mid index 1505 can point to a third level
table indexed into by the leaf index 150c¢ and by the leaf
offset 1504. The third level table indexed by the leaf index
150¢ can provide the permission values, for example, as a
permission vector. The leaf offset 1504 can index into the
permission vector identified by the leaf index 150c¢ in the
third level table to provide a permission value associated, for
example, with a particular word of the memory 30 (FIG. 1).
However, in an alternate embodiment, an entry in the third
level table can instead provide a pointer to a record having
permission values, which is held in an area of operating
system memory dedicated to such overflow records.

The entries in the first, second, and level third tables can
be either pointer entries to another table or a permission
value entry. The two types of entries are distinguished more
fully in conjunction with FIG. 6. However, let is suffice here
to say that any of the first, second, and third level tables can
provide permission values, each at different granularity. For
example, in one particular embodiment, if a permissions
value entry is found in the first level table, the granularity of
the permissions value entry can be 4 MB or less, if a
permissions value entry is found in the second level table,
the granularity of the permissions value entry can be 4 KB
or less, if a permissions value entry is found in the third level
table, the granularity of the permissions value entry can be
sixty-four bytes (sixteen words) or less. However, in other
embodiments, the first, second, and third level tables can
have more than or less than the granularities described
above. In still further embodiments, more than three or
fewer than three levels of tables can be provided.

Referring now to FIG. 5, a leaf level MLPT permission
entry can be provided, for example, in a permission vector
format, each vector having, for example, sixteen two-bit
values indicating the permissions for each of sixteen four-
byte words.

An exemplary address space 160 having four-byte words
is associated with segments 162a-162d collectively referred
to as segments 162. Permission vectors 164, 166, each

US 7,287,140 B1

15

contain sixteen permission values, each permission value
having two bits (see Table 1), and each permission value
associated with a four-byte word in the address space 160.

Segments 162, each corresponding to a group of contigu-
ous addresses having the same permission value, are repre-
sented with the tuple <base addr, length, permissions>, for
example <0xFFC, 0x50, RW>. Addresses and lengths are
given in bytes unless otherwise noted, and a word is four
bytes long. A user segment <OxFFC, 0x50, RW> is broken
up between three permission vectors, only the latter two 164,
166 of which are shown.

An address range “owns” a permissions table vector entry
if looking up any address in the range finds that vector. For
example, an address range 0x1000-0x103F owns the first
permission vector entry 164.

The permission values “00” in the permission vector 166,
corresponds to the segment 1625, having a no-permission
value as identified in Table 1.

Permission vectors 164, 166 are shown to contain per-
mission values, each associated with one word in the address
space 160. However, as described above for the first, second,
and third level tables associated with the MLPT address 150
of FIG. 4, permission vectors can be provided that identify
other permission values each associated with more than one
word in the address apace 160. For example, a permission
vector pointed to by an address in the mid index 1505 (FIG.
4) can represent individual permissions for eight 512 byte
sub-blocks within the 4 KB block mapped by a mid index
address entry 1505.

Referring now to FIG. 6, in one particular embodiment,
upper level permissions table entries 200, for example, a first
type of entry 202 in the MLPT, can include a pointer 2026
to a lower level table. However, to reduce space and
run-time overhead for large user segments, another type of
upper level permissions table entry 204 can hold a permis-
sions vector 2045 for a group of sub-blocks, for example, for
eight sub-blocks. The two types of permissions table entries
can be identified, for example, with a single bit 202a, 204a.

In one particular embodiment, described in conjunction
with F1G. 4 above, entries in the first level table, indexed, for
example, by the root index 150a of FIG. 4, and in the second
level table, indexed, for example, by the mid index 1505 of
FIG. 4, include either pointer entries (e.g., 202) or permis-
sion vectors (e.g., 204) and are therefore encoded as shown
in FIG. 6. However, in one particular embodiment, entries in
the third level table, indexed, for example, by the leaf index
150¢ of FIG. 4 include only permission vectors (e.g., 204),
and therefore, the third level table can use a different
encoding (not shown) in which all thirty-two bits are used to
encode permission values (2-bits each) for sixteen sub-
blocks (i.e., words) rather than eight.

Although permission vectors representing permission val-
ues for sixteen word portions of an address space as
described above provide a simple format for MLPT permis-
sions table entries, they do not take advantage of the fact that
most user segments are longer than a single word. Also, the
upper level permissions table entries 202, 204, FIG. 6 can be
inefficient at representing non-power-of-two sized user seg-
ments.

The sorted segment table (SST) 100 described in con-
junction with FIG. 3 demonstrates a more compact encoding
for abutting segments, wherein only segment base addresses
and associated permission values are needed because the
length of one segment is implicit in the base of the next. A
mini-sorted-segment table (mini-SST), described below in

20

25

30

35

40

45

50

55

60

65

16

conjunction with FIG. 7, uses the same technique to increase
the encoding density of an MLPT table entry having per-
missions values.

While two types of permission table entries 202, 204 are
shown, other types of permissions table entries are shown
and described in conjunction with FIG. 7 and Table 2 below.

Referring now to FIG. 7, a mini-sorted-segment table
entry 250, or mini-SST entry, provides an alternate structure
in which addresses and associated permission values can be
arranged (i.e., in the permissions table 40 of FIG. 1). The
mini-SST entry 250 includes both addresses and permission
values. In one particular embodiment, address bit encoding
can represent up to four segments, a “first” segment 2505, a
“mid0” segment 250c¢, a “midl” segment 2504, and a “last”
segment 250e, each having an offset value and a permission
value with a number of bits as indicated in parentheses.
Starting offset addresses and permission values are given for
each of four segments, allowing lengths of the first three
segments (first 2505, mid0 250¢, and midl 2504) to be
implicit in the starting offsets of an adjacent segment.
Length, “len,” of the last segment 250¢ is explicitly encoded.
In one particular embodiment, three of the offsets have four
bits and one of the offsets has five bits as shown. The
exemplary mini-SST entry 250 describes four segments
corresponding to a size of heap allocated objects, which is
usually greater than 16 bytes. However, in other embodi-
ments, the mini-SST entry can also describe more than four
or fewer than four segments.

Mini-SST entries encode permission values for a larger
region of memory than sixteen words (or sixteen sub-blocks)
described above in conjunction with FIG. 6. The first seg-
ment 2505 has an offset, which represents its starting point
as the number of sub-blocks (0-31) before the base address
of the owning range of the mini-SST entry 250. Segments
mid0 and midl 250c¢, 250d, respectively, begin and end
within 16 sub-blocks associated with the mini-SST 250
entry. The last segment 250e can start at any sub-block in the
mini-SST entry 250 except the first (a zero offset means the
last segment starts at the end address of the entry). The last
segment 250e has an explicit length, “len,” that extends up
to 31 sub-blocks from the end of the owning range of the
mini-SST entry 250. The largest address span for the mini-
SST entry 250 is seventy-nine sub-blocks (thirty-one before,
sixteen within, thirty-two after).

The mini-SST entry 250 reserves two bits for a “type”
value 250a. Table 2 below shows four possible type values
250a. A first type value, 00, indicates that an entry is a
pointer to a lower level table (e.g., 202, FIG. 6). A second
type value, 01, indicates that the entry is a mini-SST entry,
indicating permission values for four segments as described
above. A third type value, 10, indicates that the entry is a
permissions vector (e.g., 204, FIG. 6). A fourth type value,
11, indicates that the entry is a pointer to a mini-SST entry.

TABLE 2
Type Description
00 Pointer to next level table.
11 Mini-SST entry (4 segments spanning 79 sub-blocks).
01 Pointer to permission vector (16x2b).
10 Pointer to mini-SST+ (e.g., translation (6x32b)).

Upper level tables can contain pointers to lower level
tables. Any level table can have a mini-SST entry. Any level
can contain a pointer to a vector of permission values, which
are described above in conjunction with FIGS. 5 and 6. This
is necessary because mini-SST entries can only represent up

US 7,287,140 B1

17

to four abutting segments. If a region of memory contains
more than four abutting segments, the permission values can
be represented using a permission vector held in a separate
word of storage, and pointed to by the entry. Also, a pointer
can be used to point to a mini-SST entry and also to
additional information.

While four types of table entries are shown in Table 2, it
will be recognized that, in one particular embodiment
described above in conjunction with FIG. 6, the third level
table, which is the lowest level table, can also have a
different encoding (not shown) in which all thirty-two bits
are used to encode permission values (2-bits each) for
sixteen sub-blocks (i.e., words).

Table 2 shows but some of the different possible types of
entries that can be associated with the permissions table 40
of FIG. 1. It should be apparent, as described in conjunction
with FIG. 6, that leaf tables, i.e., the third, or lowest, level
table in the MLPT trie structure, do not have a type 00.

A mini-SST entry, e.g., 250, in the permissions table 40
(FIG. 1) can be used to increase the encoding density of an
individual MLPT entry permission vector entry in the upper
levels of the MLPT trie structure containing only eight
sub-blocks. The mini-SST entry 250 allows more sub-blocks
to be represented by each mini-SST entry, but only for a
limited number of segments. In one particular embodiment,
a mini-SST entry 250 can represent seventy-nine sub-blocks
but only four segments, each segment having a respective
contiguous permission value. In contrast, the permissions
vector entry can represent permission information for only
up to sixteen sub-block (i.e., words) at the third, or lowest,
level table, and only eight sub-blocks at the first and second
level tables, as described above. For example, as described
above, each permissions vector associated with a respective
mid index address 1505 of FIG. 4 can represent individual
permissions for eight 512 byte sub-blocks within the 4 KB
block mapped by a mid index address entry 1505.

In the mini-SST format, entries in a root table, which is
the first level table, can contain permissions for all 4 GB of
the 32-bit address space, entries in a mid level table, which
is the second level table, can contain permissions informa-
tion for 79*%256 KB=19.75 MB, and entries in a bottom level
table, which is the third level table, can contain permissions
information for 79 words=316 bytes. While each entry can
hold permissions information for a large piece of the address
space, the entries will overlap if they hold permissions for
more than 4 MB/4 KB/64 B of address space (for each level
table).

Referring now to FIG. 8, an example of use of a mini-SST
entry is shown. Segments 262a, 2625, 262¢, collectively
referred to as segments 262, are labeled for illustrative
purposes using a tuple, <base, length, permission >. Seg-
ment lengths shown in parentheses are represented implic-
itly as a difference in the base offsets of neighboring table
segments, and are therefore redundant in the illustrated
labeling.

A segment 262a owned by the address range 0x1000-
0x103F has segment information going back to OxFFC and
going forward to 0x104C. The segment mapped by the
mini-SST entry at address range 0x1000-0x103F has been
split across “first,” “mid0,” “midl,” and “last” mini-SST
segments 270. Therefore, single segment 262a can be rep-
resented by a mini-SST entry 270. Segments 262a, 2625,
262c¢, 262d can be represented by the mini-SST entry 272.

Mini-SST entries in the permissions table 40 (FIG. 1) can
contain overlapping address ranges. When an entry owned
by one range is changed, any other entries which overlap
with that range might also need updating. For example, if

20

25

30

35

40

45

50

55

60

65

18

part of the user segment starting at OXFFC is freed by
protecting a segment as <0x1040, 0xC, NONE>, it would be
necessary to read and write the entries for both 0x1000-
0x103F and 0x1040-0x107F even though the segment being
written does not overlap the address range 0x100-0x103F.
When a memory segment is modified, all entries overlap-
ping the modified segment must also be flushed from the
PLB 18 (FIG. 1).

The protection lookaside buffer (PLB) 18 (FIG. 1) caches
entries form the permissions table 40 (FIG. 1). The PLB 18
can use a ternary content addressable memory (CAM)
structure to hold address ternary tags that have a varying
number of significant bits. The PLB tags have to be some-
what wide, for example, 26 bits, to support fine-grain
addressing. Entries in the PLB 18 are also tagged with
protection domain identifiers (PD-IDs).

The ternary tags stored in the PLB 18 can contain addi-
tional low-order “don’t care” address bits to allow the tag to
match addresses beyond the owning address range. For
example, the tag 0x10XX, where XX are don’t care bits, will
match any address from 0x1000-0x10FF. On a re-fill of the
PLB 18, the tag is set to match addresses within the largest
naturally aligned power-of-two sized block for which the
entry has complete permissions information. Referring to
the example in FIG. 8, a reference to 0x1000 will pull in the
entry for the block 0x1000-0x103F and the PLB tag will
match any address in that range. A reference to 0x1040 will
bring in the entry for the block 0x1040-x107F, but this entry
can be stored with a tag that matches the range 0x1000-
0x107F because it has complete information for that natu-
rally aligned power-of-two sized block. This technique
increases effective PLB capacity by allowing a single PL.LB
entry to cache permissions for a larger range of addresses.

When permissions are changed for a region in the per-
missions table 40, it is often necessary to flush out-of-date
entries in the PLB 18. To avoid excessive flushing of the
PLB 18, a ternary search key can be used for the CAM tags
to invalidate potentially stale entries within one cycle. The
ternary search key has some number of low order “don’t
care” bits, to match all entries in the PLB 18 within the
smallest naturally aligned power-of-two sized block that
completely encloses the segment being modified (this is a
conservative scheme that may invalidate unmodified entries
that happen to lie in this range). A similar scheme is used to
avoid having two tags hit simultaneously in the PLB CAM
structure. On a PLB refill, all entries that are inside the range
of'a new tag are first searched for and then invalidated using
a single search cycle with low-order “don’t care” bits.

Referring now to FIG. 9, a sidecar register 350 (see also
164, FIG. 1), which holds information for one segment, is
associated with each address register, for example, the
address register 360 (see also 14, FIG. 1). The exemplary
sidecar register 350 includes a validity value 350q having
one bit, a base value 3505 having thirty-two bits, a bound
value 350c¢ having thirty-two bits, and a permission value
350d having two bits. The base value 3505 and the bounds
value 350c¢ identify a segment having the permission value
350d. Exemplary permission values are identified above in
Table 1.

The program counter 20 (FIG. 1) also has its own sidecar
register (e.g., 16d, FIG. 1) used to provide permission values
associated with instruction fetches.

On a request to the sidecar register 350, i.e., with a
“demand address” 360a, that results in a sidecar register
miss, i.e., the demand address is not found in the sidecar
register 350, the demand address 360a is looked up in the
PLB 18, and the sidecar register 350 is loaded with the

US 7,287,140 B1

19

validity value 350a, the base value 3505, the bounds value
350c, and the permission value 3504 associated with the
corresponding entry in the PLB 18.

On a request to the PLB 18 associated with a “demand
address” 360a that results in a PLB miss, i.e., the demand
address is not found in the PLB 18, the demand address 360a
is looked up in the permissions table 40 (FIG. 1), and a
protection domain associated with demand address 360q is
returned and entered into the PLB 18 (FIG. 1). A corre-
sponding validity value 350a, base value 35054, bounds value
350c¢, and permission value 3504 are loaded into the sidecar
register 350.

The address base and bounds 35056, 350c¢ of a memory
segment can be extended to maximum length (e.g., thirty-
two bits) in the sidecar register 350 to facilitate fast checking
of the base and bounds. For each access to memory 30 (FIG.
1) with a demand address, e.g., 360a, by the CPU 12 (FIG.
1), the demand address 360a is compared against the base
3506 and bounds 350c¢ in the sidecar register 350. If the
demand address lies within the range, the sidecar permission
value 3504 is used to identify the type of memory access that
is available.

As described above, if the above range check fails or if the
validity value indicates an invalid condition, the contents of
the sidecar register are deemed invalid, the PLB 18 is
searched for the correct permissions information, and the
sidecar register 350 is re-loaded from the PLB 18. If the
request to the PLB 18 results in a PLB miss, then the PLB
18 and one of more of the sidecar registers 16 (FIG. 1) are
re-loaded from the permissions table 40 (FIG. 1).

As described above, a segment corresponds to a range of
contiguous memory addresses, each of which has the same
permission value. Use of the sidecar registers 16 (FIG. 1)
increases permissions hit rate because they each hold infor-
mation associated with an entire segment. Any demand
address that is within the range of contiguous memory
addresses identified in the sidecar register will return a
permission value upon a request the sidecar register.

A request to the PLB 18 may not be as efficient as a
request to one of the sidecar registers 16. In one particular
embodiment, the PLB 18 can identify permission values for
only a part of a segment, because its index range is aligned
with a power-of-two sized block. For example, referring to
FIG. 8, a reference to 0x1040 will load the segment <OXFFC,
0x50, RW> into the sidecar register 350. If location OXFFC
is the demand address 360a, the result will be a permission
value hit from the sidecar register 350. However, requesting
the address OxFFC to the PL.B 18 will result in a permissions
value miss because it only indexes the range 0x1000-
0x107F.

Each of the sidecar registers 16 (FIG. 1) can be invali-
dated by way of the validity bit 3504, for example, by the
memory supervisor 42 (FIG. 1), when any protection values
are changed. Sidecar registers 16 can also be invalidated on
protection domain switches, e.g., during cross-domain calls.
However, as described above, the sidecar registers 16 can be
refilled rapidly from the PLB 18.

If the permissions table 40 (FIG. 1) is modified, any
process that caches data from the permissions table 40 must
be notified so it can invalidate its sidecar registers 350 (e.g.,
by the validity value 350a) and so it can also invalidate one
or more portions of information held in the PLB 18.

Referring now to FIGS. 10-10C, a cross-domain call
includes a source software portion 406 operating in asso-
ciation with a source protection domain PD-ID A 402, and
a destination software portion 408 operating in association
with a destination protection domain PD-ID B 404. Upon the

20

25

30

35

40

45

50

55

60

65

20

cross-domain call, a software thread can move between the
source software portion 406 and the destination software
portion 408. The cross-domain call can be initiated by any
control flow instruction, for example, by a subroutine call
instruction. An address in the source software portion asso-
ciated with a source of the call is marked with a switch gate,
having switch gate values. Similarly, an address in the
destination software portion associated with a return from
the call is marked with a return gate, having return gate
values. Switch gates having switch gate values and return
gates having return gate values are stored in the gate table 36
(FIG. 1). The switch gate values and return gate values are
described in conjunction with FIG. 11.

When the software thread moves between protection
domains, a cross-domain call stack 410 can be used to keep
track of the protection domain context to be used during and
after a software call. The cross-domain call stack 410 can be
the same as or similar to the cross-domain call stack 32 of
FIG. 1.

During program execution, software instructions are pro-
cessed to determine if they are associated with a switch gate
or with a return gate. When a switch gate is detected on a
subroutine call from the source software portion 406 to the
destination software portion 408, the hardware 10 (FIG. 1)
pushes a return address and the source PD-ID onto the
cross-domain call stack 410.

When a return gate 4085 is detected in the destination
software portion 408, the cross-domain call stack 410 is
popped, finding the return address and protection domain of
the source software portion 406. The system 10 checks the
return address against the return address being used by the
return instruction.

Referring in more detail to the specific example shown in
FIGS. 10-10C, PC1-PC4 indicate the contents of a program
counter, for example the program counter 20 of FIG. 1,
during four parts of a cross-domain call. Each of the FIGS.
10-10C correspond to a respective one of the four parts of
the cross-domain call, also identified by the program counter
PC1-PC4. Two different states of the cross-domain call stack
410 are shown, where first state 4104 is the same as first state
410c¢ and second state 4105 is the same as second state. The
first state 410a, 410¢ occurs at PC1 and PC4, respectively,
and the second state 4105, 4104 occurs at PC2 and PC3,
respectively. The CDST register 25 (FIG. 1) points to
locations 412a, 412¢ when in the first state and to locations
4105, 4104 when in the second state.

As an initial condition shown in FIG. 10, it is assumed
that a source software portion 406 operates in protection
domain A 402 before a “call foo” instruction 4064 at PC1.
The CDST register at 412a points to a location in the
cross-domain call stack 410qa associated with an earlier call
to the source software portion 406. It is assumed, but not
shown, that the source software portion 406 operating in
protection domain A 402 was earlier called by some other
software portion operating in a protection domain X, iden-
tified as PD X. At this initial condition, the cross-domain call
stack 410a contains the protection domain identifier, PD X,
an address, x_ret, which is a return address to the other
software portion, and a frame base pointer, tb X.

Upon reaching the call instruction, “call f0o,” 4064 in the
source software portion 406, the program jumps to and
identifies a switch gate 4065 (indicated by a dark box) within
the destination source software portion 406, while still
operating in protection domain A. As shown in FIG. 10B, the
processor switches to protection domain B in accordance
with information associated with and provided by the switch
gate 4065, and executes the first instruction 408a of “foo” (at

US 7,287,140 B1

21

PC2) in the destination software portion 408 in accordance
with the protection domain, PD B. The information associ-
ated with the switch gate 406a can be acquired, for example,
from the gate table 36 of FIG. 1 and/or from the gate
lookaside buffer 22 (FIG. 1). Gate information is described
in more detail in conjunction with FIG. 11.

The above described identification of the switch gate 4065
causes the processor to store one or more of a return address,
foo_ret, a frame base, b A, and a PD-ID, PD A, each
associated with the source software portion 406, generating
the second state 4105 of the cross-domain call stack 410.
The identification of the switch gate 4065 also causes the
processor to update the CDST register to point as indicated
at 4125.

In FIG. 10B, at PC3, a return gate 4085 is identified and
the processor verifies that it is returning to the caller’s
protection domain at the proper address (PC4). The proces-
sor can pop one or more of the return address, foo_ret, the
frame base, fb A, and the PD-ID, PD A, to return from the
call as shown in FIG. 10C, leaving the cross-domain call
stack 410 once again in the first state 4104. After the return,
the source software portion 406 again operates in accor-
dance with protection domain PD A.

As described above, in conjunction with return gate 4085,
the processor 12 (FIG. 1) checks that the return address
matches the saved address popped from the cross-domain
call stack 410.

Referring now to FIG. 11, gate information 450 stored in
the gate table 36 (FIG. 1) and/or in the gate lookaside buffer
22 (FIG. 1) can include, but is not limited to an address 452
corresponding to a switch gate or a return gate address, and
a switch/return gate identifier 454 to identify the type of
gate. If the gate information 450 corresponds to a switch
gate, the gate information 450 can also include a destination
protection domain identifier (PD-ID) 458.

As should be apparent, both switch and return gates can
include more information than regular memory permissions
stored in the permissions table 40 (FIG. 1), and so, can be
stored in a separate gate table 36 (FIG. 1) and cached with
a separate gate lookaside buffer (GLB) 22 (FIG. 1). The
number of gates, even for a large system, can be relatively
low (e.g., less than 1,000), because software modules tend to
have many more internal functions than exported entry
points. In one particular embodiment, the gates can be stored
in an open hash table to allow rapid retrieval on a GLB miss.

The memory supervisor 42 (FIG. 1) saves and restores the
CDST register 25 (FIG. 1) on a context switch. Though only
one cross-domain call stack 32 (FIG. 1) is shown, for
operating systems that maintain a kernel stack per process,
each process can have has its own cross-domain call stack.

The cross-domain call stack 32 (FIG. 1) is within the
memory 30 (FIG. 1), and, in one particular embodiment only
the memory supervisor 42 (FIG. 1) can access it. During
execution, hardware checks the destination PC 20 (FIG. 1)
of every instruction fetch for an associated switch or return
gate. As described above, if a switch gate is encountered, a
call state is saved on the cross-domain call stack 32 (dec-
rementing the CDST register 25 (FIG. 1)) and operation
resorts to a new protection domain (i.e., the PD-ID is
changed, along with the base pointer 26a (FIG. 1) to the
protection domain’s permissions table). If a return gate is
encountered, the CPU 12 (FIG. 1) reads (i.e., pops) the
cross-domain call stack 32 (FIG. 1) to find the saved return
address, then adjusts the CDST register 25 accordingly. The
return address for the return instruction is checked against
the saved address. If the address check succeeds, the pro-
tection domain is changed to the stored value and execution

20

25

30

35

40

45

50

55

60

65

22

resumes at the return address. If the address check fails, the
hardware generates a protection fault and execution resumes
in a memory fault handler (not shown).

As described above, the CPU 12 (FIG. 1) executes return
gates in the destination software protection domain, which
can cause problems if software running in a protection
domain calls a function that it also exports. Consider, for
example, a function “kmalloc.” The core kernel exports this
routine to modules, so it must place a return gate on its last
instruction. If the kernel were to call the “kmalloc” function
via a regular function call, the instruction with the return
gate would fault because a regular function call does not
push the state needed for a cross-domain return onto the
cross-domain call stack. Therefore a protection domain must
either mark the entry points to exported functions with a
switch gate, or it must duplicate exported functions.

In one particular embodiment, the entry point of exported
functions are marked with a switch gate as described above,
avoiding the task of classifying function calls as protection
domain crossing and non-protection domain crossing. With
this particular arrangement, the number of cross-domain
calls is increased. However, cross-domain calls that do not
actually change PD-ID cause less disruption to micro-
architectural caches. FIG. 10 shows a switch from the source
software portion 406 running in protection domain A 404 to
the destination software portion 408 running in protection
domain B 404. Switch gates are read in the caller’s protec-
tion domain, e.g., the destination software portion switch
gate 40656 (FI1G. 10) is only read by calls originating within
the source software portion 406.

In some embodiments, cross-domain calls require modi-
fications to hardware. For example, in a system where each
instruction is checked for the presence of a gate, the instruc-
tion cache 27 (FIG. 1) can include an additional “gate-
present” bit, as described in conjunction with FIG. 1, indi-
cating that an instruction address has a gate. If this bit is
clear, indicating that no gate is associated with the present
instruction address, then no further action needs to be taken
on a GLB miss. If the bit is set, indicating that a gate is
associated with the present instruction address, and the GL.B
22 (FIG. 1) misses, the GLB 22 must be re-filled from the
gate table 36 (FIG. 1). If the bit is set and there is a hit in the
GLB 22, gate values stored in the GL.B 22 are retrieved and
used.

Cross-domain calls can be fast because the number of
on-chip states that needs to be changed is small during the
cross-domain calls. CPU designers can also further accel-
erate cross-domain calls to enable the benefits of protected
execution. For example, traditional CPU micro-architectures
flush pipelines on a context switch, imposing a large over-
head. In one particular embodiment, protection domain
switches can be made considerably faster by associating
PD-ID values with each instruction in the pipeline, reducing
the need to flush the pipeline.

Referring now to FIG. 12, a stack memory has partitions
identified by addresses sb, fl, and sl, held in corresponding
stack frame registers 28 (FIG. 1). A stack region between sb
and fb addresses is read-only and a stack region between sb
and fb addresses is read-write. The above-described source
software portion, i.e., the caller, uses the caller frame
between sb and fb addresses and the above-described des-
tination software portion, i.e., the callee, uses the callee
frame between fb and sl addresses.

Establishing an activation frame, i.e., the stack memory
region between addresses, fb and sl, can be fast, and the
permissions for reading and writing in frame can be local to
the currently executing thread.

US 7,287,140 B1

23

When the kernel schedules a process, it calls the memory
supervisor 42 (FIG. 1) to activate the stack for that process,
i.e., to generate an activation frame between addresses, fb
and sl. The memory supervisor 42 also places the b and sl
addresses, in the corresponding stack frame registers 285,
28¢ (FIG. 1). These registers demarcate a read-write region
for the currently executing thread. The hardware allows
reads and writes to addresses between sl and tb (stacks grow
down so sl>fb). The fb address points to the base of the
current activation frame. The memory supervisor 42 man-
ages the save and restore of the stack frame registers 28. The
memory supervisor 42 allocates the stack for a given thread,
s0 it can initialize the sl register and validate the fb register.

As described above, on a cross-domain call, the CPU 12
(FIG. 1) saves the current value of the fb addresses to the
cross-domain call stack 32 (FIG. 1), and it copies the current
stack pointer into the fb register 285 (FIG. 1). The CPU 12
also checks that the new fb address is smaller than the old
fb addresses, insuring that on cross-domain calls, fb grows
down, but not below the sl address. The memory supervisor
42 insures that when a thread starts executing, the fb register
28b points within the stack memory for that thread. Since
cross-domain returns can only set the fb register 285 to a
value that was checked by either the memory supervisor 42
or the CPU 12, these mechanisms ensure that the fb register
265 always points within stack memory.

The memory supervisor 42 uses the sb register to mark the
region between the tb and sb addresses with read-only
permissions. The sb register is not necessary, because the fb
and sl addresses provide a read-writable frame. However
checking a table is more complicated than checking the base
and bounds of two registers, so the sb register provides a
useful optimization. The memory supervisor 42 (FIG. 1)
initializes the sb register using its knowledge of the size and
location of the stack. The supervisor saves and restores the
sb register along with fb and sl registers specific to a given
thread.

The stack permissions table 38 (FIG. 1) is a thread-local
table (not a domain-local table), which allows a thread to
pass permissions to successive frames of stack memory,
independent of the domain in which a thread executes.

If a called function, i.e. the destination, needs an activa-
tion frame, it must request permissions for the stack space,
and also make sure that permissions for the frame are
exclusive to the current thread. Because protection domains
take exclusive access to a frame before executing in the
frame, a frame’s permissions do not need to be revoked at
the end of a function for the caller’s safety. A callee that is
concerned about security could overwrite its activation
frame before returning to avoid leaking information.

Calls to establish a stack frame will be frequent and could
potentially be expensive. Stack frame registers 24 described
in conjunction with FIG. 1 can make the creation of a frame
fast, and can make permissions to read and write the frame
thread-local.

When the memory supervisor (e.g., 42, FIG. 1) makes a
stack frame current, it can fill the frame base register, fb 285
(FIG. 1), and the stack limit register, sl 28¢ (FIG. 1). As
described above, reads and writes are allowed to addresses
between sl and fb (stacks grow down). The value in the fb
register points to the base of the current activation frame. Its
initial value for a given thread’s quantum is specified when
a thread manager starts the thread. The memory supervisor
42 verifies the initial value in the fb register 285 to make sure
it is within the stack segment that is being activated. On a
cross-domain call, in one particular embodiment, the current
value of the fb register 285 can be pushed onto the cross-

20

25

30

35

40

45

50

55

60

65

24

domain call stack 32 (FIG. 1) as shown also in FIGS.
10-10C, and the current stack pointer is made the new value
of'the fb register 285. The system 10 (FIG. 1) checks that the
new value of the fb register 285 is smaller than the old value.
Thus the system 10 assures that the stack grows down, and
the memory supervisor 42 assures that it starts and ends at
the correct location, so the fb register 285 and the sl register
28b can only be used to gain permission to read and write
stack memory. The registers become part of the thread state,
which must be saved and restored.

Heap data is owned by a protection domain, so cross-
domain sharing of heap data can be accomplished when the
caller exports permissions to the callee. Protection domains
can set up shared buffers in advance of a cross-domain call.
In a producer-consumer relationship, the producer would
maintain read-write access on a buffer and flag value, while
the consumer has read-only access on the buffer and read-
write access on the flag. Once the permissions are estab-
lished, they do not need to be modified for every call.

Referring now to FIG. 13, a chart 500 shows how a kernel
address space can be split into multiple protection domains
0-N+M. The protection domain (PD-ID 0) is associated
with memory supervisor 502, which can be same as or
similar to the memory supervisor 42 of FIG. 1. As described
above, the memory supervisor 42 manages the permissions
table 40 (FIG. 1) and provides an application programming
interface (API) to control memory permissions. Functions of
the memory supervisor 42 and memory supervisor API are
described by example below, by showing how it would be
used during the boot of a modularized kernel.

At system reset, the CPU (e.g., CPU 12, FIG. 1) starts
running at an instruction reset vector in PD-ID 0 and a BIOS
loads the memory supervisor 42 into physical memory (e.g.,
memory 40 of FIG. 1) and transfers control to it, letting it
know how much physical memory is present. The memory
supervisor 42 establishes a handler for hardware permission
faults.

In operation, the system 10 (FIG. 1) checks all processor
memory accesses against permission values stored in the
permissions table 40 associated with the current protection
domain (except those associated with protection domain 0).
The memory supervisor 42 can enforce additional memory
usage policies because all calls for permission changes are
made via the memory supervisor 42. The memory supervisor
42 can reject requests that violate its policy. Just because the
memory supervisor exports an API does not mean that all
protection domains have permissions to call into it. It is
possible to construct a protection domain, which does not
have permission to call into the memory supervisor, forcing
memory management to happen via another protection
domain.

To this end, the memory supervisor 42 can track protec-
tion domain ownership of memory regions in the memory 30
(FIG. 1). A protection domain can obtain ownership of a
memory region from the memory supervisor 42 after the
memory supervisor 42 allocates a new memory region, or
when another protection domain grants ownership of a
region. Only software running in a protection domain, which
is the owner of a memory region, can grant ownership or
revoke permissions associated with the memory region to
another protection domain.

Once initialized, the memory supervisor 42 can create a
new protection domain (PD-ID 1) to hold code and data for
the core of the kernel 502. The memory supervisor 42 does
not allow a user protection domain to create a kernel
protection domain.

US 7,287,140 B1

25

To start the kernel, the memory supervisor 42 first loads
a boot loader, which runs in protection domain PD-ID 1.
Initially, the boot loader has no permissions to access the
memory 30 (FIG. 1). In order for the boot loader to run, it
needs to execute permission on its code, read and write
permissions on its data, a read-write stack, and possibly a
read-write heap. The memory supervisor 42 can provide a
software function to establish proper permissions for boot
loader execution. The memory supervisor 42 can then per-
form a cross-domain call (described above) to transfer
control to the boot loader, which now runs in a protected
kernel protection domain (PD-ID 1).

The boot loader wants to load the core kernel, and
therefore, can make a call to a software function of the
memory supervisor 42 for allocation of additional memory
space. The memory supervisor 42 allocates a region of
memory and returns a pointer. The memory supervisor 42
records PD-ID 1 as the owner of this memory region. The
owner of a region can call yet another software function of
the memory supervisor 42 to release a memory region back
to the memory supervisor 42.

Once the core kernel starts running, it can create child
protection domains N+1 to M+1 in which kernel modules
can run. The core kernel can export permissions for portions
of its address space to its child modules using other called
software functions, and it can also pass ownership of
memory regions to kernel modules to allow them to manage
the permissions of their children. A kernel module can
directly request the memory supervisor 42 to allocate
memory regions. Also, the core kernel can manage memory
usage of its modules. The core kernel can block kernel
modules from calling the memory supervisor 42 by not
exporting call permission on the memory supervisor entry
points to the kernel modules.

Destination software running in a destination protection
domain can transitively export permissions. This allows
software running in a calling protection domain to either
enforce a policy of only allowing a particular destination
software running in a particular destination protection
domain (perhaps one containing cryptographically verified
code) to implement a function, or allowing the particular
destination software running in a particular destination pro-
tection domain to subcontract work to other destination
software running in other destination protection domains.
Transitive permissions are still distinct from ownership
because only the owner can return memory to protection
domain 0, and a protection domain that receives transitive
permissions cannot revoke permissions from a protection
domain higher on the receiving chain.

Protection domains can be created hierarchically, and they
can be destroyed hierarchically. The memory supervisor 42
tracks the entire protection domain hierarchy.

A special case for sharing data is global read-only access,
allowing export of data to all protection domains as read-
only. When a piece of the memory 30 (FIG. 1) is exported
globally, the memory supervisor 42 adds the corresponding
permissions to all existing protection domains. The memory
supervisor 42 also tracks the global export in the protection
domains so it can add permissions for this globally exported
memory to new protection domains as they are created.

Code and heap data regions can be associated with a
protection domain, and are typically owned by one protec-
tion domain and exported to others. The stack 34 (FIG. 1)
can be managed differently, however, because stacks are
used by threads that move between protection domains. In
one particular embodiment, the stack 34 is owned by the
memory supervisor 42 (FIG. 1). To acquire allocation of

20

25

30

35

40

45

50

55

60

65

26

space in the stack 34, a thread manager in a protection
domain calls a memory supervisor function.

The memory supervisor 42 only owns and manages the
stack space for each thread. Other details about the thread,
like its control block and the scheduling policy that govern
it, are determined by the kernel or an arbitrary thread-
managing protection domain.

Stack permissions are managed and allocated by the
memory supervisor 42, which can make a permissions
change on memory that it owns. Of course, the memory
supervisor range checks a requested address and refuses
action if the request is inappropriate.

When a stack segment is allocated, the memory supervi-
sor 42 records the creating protection domain and a stack-
ID, which is just the base address of the stack segment.
When a thread is scheduled, a thread manager must call to
the memory supervisor to tell it that a certain stack is now
active. The memory supervisor checks that the thread man-
ager has permission to make the stack segment active. When
the memory supervisor receives a call to set stack permis-
sions, it checks that the request is for the active stack.

While the memory supervisor 42 is shown to be associ-
ated with one protection domain, PD-ID 0, in another
embodiment, to provide greater robustness and to reduce the
size of the trusted code associated with PD-ID 0, the
memory supervisor 42 can be associated with two or more
protection domains. In this embodiment, protection domain
0, PD-ID 0, which provides unfettered access to all of the
memory 30 (FIG. 1), only provides permission portions of
the memory supervisor 42 that manage hardware and write
to the permissions tables 38, 40 (FIG. 1). Memory supervi-
sor entry points and complex permissions policy manage-
ment code can be in protection domain 1, PD-ID 1.

It should be appreciated that FIGS. 14-18A show flow-
charts corresponding to the below contemplated technique
which would be implemented in computer system 10 (FIG.
1). The rectangular elements (typified by element 602 in
FIG. 14), herein denoted “processing blocks,” represent
computer software instructions or groups of instructions.
The diamond shaped elements (typified by element 710 in
FIG. 16) herein denoted “decision blocks,” represent com-
puter software instructions, or groups of instructions, which
affect the execution of the computer software instructions,
represented by the processing blocks.

Alternatively, the processing and decision blocks repre-
sent steps performed by functionally equivalent circuits such
as a digital signal processor circuit or an application specific
integrated circuit (ASIC). The flow diagrams do not depict
the syntax of any particular programming language. Rather,
the flow diagrams illustrate the functional information one
of ordinary skill in the art requires to fabricate circuits or to
generate computer software to perform the processing
required of the particular apparatus. It should be noted that
many routine program elements, such as initialization of
loops and variables and the use of temporary variables are
not shown. It will be appreciated by those of ordinary skill
in the art that unless otherwise indicated herein, the particu-
lar sequence of blocks described is illustrative only and can
be varied without departing from the spirit of the invention.
Thus, unless otherwise stated the blocks described below are
unordered meaning that, when possible, the steps can be
performed in any convenient or desirable order.

Referring now to FIG. 14, a method 602 for providing a
permission table, a protection lookaside buffer, and sidecar
registers, begins at block 602, where a range of memory
addresses is selected. The PLB can be the same as or similar
to the PLB 18 of FIG. 1 and the sidecar registers can be the

US 7,287,140 B1

27

same as or similar to the sidecar registers of 16 of FIG. 1. In
one particular embodiment, the selected address range is the
full address range of physical memory. In another particular
embodiment, the selected address range is the full address
range of virtual memory. In other embodiments, the selected
address range is a portion of the address range of virtual or
physical memory.

At block 604, words in the selected range of addresses
identified at block 602 are associated with metadata values.
Metadata values and associated permission values are
described above in conjunction with FIG. 1. The association
provided in block 604 includes providing a permission table
in block 606 and storing protection domains in the permis-
sion table at block 608, each protection domain having one
or more segments. The permissions table can be the same as
or similar to the permissions table 40 of FIG. 1.

At block 610, a protection lookaside buffer (PLB) is
provided, which is filled at block 612 with entries from the
permission table. At block 614 one or more sidecar registers
are provided, which are filled at block 616 with segment
information, including, but not limited to, a segment address
base, a segment address range, and a permission value. The
PLB can be the same as or similar to the PLB 18 of FIG. 1
and the sidecar registers can be the same as or similar to the
sidecar registers of 16 of FIG. 1.

Referring now to FIG. 15, a process 650 for associating
protection domains with software portions begins at block
652, where a first protection domain is associated with a
source software portion. At block 654, a second protection
domain is associated with a destination software portion. It
will be understood from discussion in conjunction with
FIGS. 10-10C, that the source software portion and the
destination software portion can correspond, for example, to
a source of a software call and a destination of a software
call, respectively.

At block 656, switch gate values are associated with the
source software portion, and in particular, to one or more
instructions addresses within the source software portion. At
block 658, return gate values are associated with the desti-
nation software portion, and in particular, to one or more
instructions addresses within the destination software por-
tion.

Referring now to FIG. 16, a method 700 for providing a
gate table and a gate lookaside buffer begins at block 702
where a gate table is provided. The gate table, gate lookaside
buffer can be the same as or similar to the gate table 36 and
the gate lookaside buffer 22 of FIG. 1.

At block 704, switch gate values and return gate values
are stored to the gate table. At block 706, the gate lookaside
buffer is provided. At block 708, a portion of the gate table
is stored to the gate lookaside buffer.

At decision block 710, during program execution, an
instruction is examined to identify if the program address
associated with the instruction has a gate. This examination
is described above in conjunction with FIG. 1, and can
involve discovery of the gate-present bit in the instruction
cache 27 (FIG. 1).

If, at block 710, the gate-present bit is not discovered,
then upon a GLB miss, at block 712, the GLLB 22 is not
re-loaded from the gate table 36. If, however, at block 710,
the gate-present bit is discovered, then upon a GL.B miss, at
block 714, the GLB 22 is re-loaded from the gate table 36.

Referring now to FIG. 17, a method 750 for providing a

cross-domain call as described above in conjunction with
FIGS. 10-10C, begins at block 752, where a cross-domain

20

25

30

35

40

45

50

55

60

65

28

call stack is provided. The cross-domain call stack can be the
same as or similar to the cross-domain call stack 32 of FIG.
1.

At block 754, a program proceed to a next instruction, and
at decision block 756, the instruction is examined to identify
whether a switch gate having switch gate values is detected
in association with the instruction. If at block 756, switch
gate values are detected, then the process proceeds to block
758, where a variety of data are stored, for example to the
cross-domain call stack provided at block 752. For example,
one or more of a source software portion memory address,
a PD ID associated with the source software portion, and a
stack frame base address (e.g., 285, FIG. 1) can be stored.
The software then operates at block 760 in accordance with
a destination protection domain associated with the desti-
nation software portion, wherein the destination protection
domain is identified form the switch gate values detected at
block 756.

If at block 756, switch gate values are not detected, the
process proceeds to decision block 764, where the instruc-
tion reached at block 754 is examined to identify whether a
return gate having return gate values is detected in associa-
tion with the instruction. If at block 764, return gate values
are detected, then the process proceeds to block 766, where
a variety of data are recalled, for example from the cross-
domain call stack provided at block 752. For example, one
or more of a source software portion memory address, the
PD ID associated with the source software portion, and the
stack frame base address (e.g., 26a, FIG. 1) can be recalled.
The software then operates at block 768 in accordance with
a source protection domain associated with the source
software portion.

Referring now to FIG. 18, a process 800 for providing
stack permissions begins at block 802, where a stack base,
sb, register is provided. A frame base, fb, register is provided
at block 804 and a stack limit, sl, register is provided at block
806. The sb, 1b, and sl registers can be the same as or similar
to the stack frame registers 28 of FIG. 1.

At block 808, a first stack permission value is associated
with the stack range provided by addresses in the sb and fb
registers. In one particular embodiment, the first stack
permission value is read-only.

At block 810, a second stack permission value is associ-
ated with the stack range provided by addresses in the fb and
sl registers. In one particular embodiment, the second stack
permission value is read-write.

Referring now to FIG. 18A, another process 850 for
providing stack permissions begins at block 852, where a
stack permission table is provided. The stack permission
table can be the same as or similar to the stack permissions
table 38 of FIG. 1. At block 854, a third address range of the
memory stack is identified and at block 856, a third stack
permission value is assigned to the third address range of the
stack.

At block 858, a fourth address range of the memory stack
is identified and at block 860, a fourth stack permission
value is assigned to the fourth address range of the stack. At
blocks 862 and 864, the third and fourth address ranges and
the third and fourth stack permission values are stored, for
example to the stack permissions table 36.

Any address within the stack 34 (FIG. 1) can be associ-
ated with the first or second stack permission value as
provided in FIG. 18 and also with the third or fourth
permission value as provided in FIG. 18A. In one particular
embodiment, if either of the stack permission values asso-

US 7,287,140 B1

29

ciated with an address within the stack 34 allows access,
then the address can be accessed by the currently running
thread.

All references cited herein are hereby incorporated herein
by reference in their entirety.

Having described preferred embodiments of the inven-
tion, it will now become apparent to one of ordinary skill in
the art that other embodiments incorporating their concepts
may be used. It is felt therefore that these embodiments
should not be limited to disclosed embodiments, but rather
should be limited only by the spirit and scope of the
appended claims.

The invention claimed is:

1. A method of protecting contents of a computer memory
used in a computer having a central processing unit (CPU)
in communication with one or more address registers, the
method comprising:

selecting a range of memory addresses within the com-

puter memory; and

generating one or more protection domains, the one or

more protection domains comprising an association of
each word in the range of memory addresses with a
respective metadata value, wherein a selected word in
the range of memory addresses is associated with a first
metadata value and words adjacent to the selected word
are associated with second and third metadata values
respectively, wherein each one of the metadata values
comprises a respective permission value, wherein gen-
erating the one or more protection domains comprises:
providing a permissions table; and
storing to the permissions table the one or more pro-
tection domains, wherein each one of the one or
more protection domains is associated with the range
of memory addresses, wherein each one of the one or
more protection domains has a respective one or
more segments, each one of the one or more seg-
ments forming a portion of the range of memory
addresses, wherein each one of the one or more
segments is associated with a respective one of the
metadata values.

2. The method of claim 1, wherein selected ones of the
permission values are selected from among a read-only
value, a write-only value, a read-write value, an execute-
read value, an execute-write value, an execute-read-write
value, an execute-only value, or a no-permission value.

3. The method of claim 1, wherein selected ones of the
metadata values further comprise at least one of a respective
cache coherence state value, a not-cached state value, a
cached-exclusive state value, a cached-modified state value,
or a cached-shared state value.

4. The method of claim 1, wherein selected ones of the
metadata values further comprise at least one of a cache
coherence state value, a not-cached state value, a cached-
exclusive state value, a cached-modified state value, or a
cached-shared state value.

5. The method of claim 1, further comprising assigning
one of the one or more protection domains to a software
module.

6. The method of claim 1, further comprising assigning
one of the one or more protection domains to a software
kernel.

7. The method of claim 1, wherein at least one of the one
or more protection domains is generated upon a request by
a software module.

8. The method of claim 1, wherein at least one of the one
or more protection domains is generated upon a request by
a software kernel.

20

25

30

35

40

45

50

55

60

65

30

9. The method of claim 1, wherein each of the one or more
protection domains is associated with a respective protection
domain identifier (PD-ID).

10. The method of claim 1, wherein the permissions table
comprises a sorted segment table having the one or more
segments, each one of the one or more segments identified
by a respective one or more starting address, each of the one
or more starting addresses corresponding to a base address
of a respective one of the one or more segments.

11. The method of claim 1, wherein the permissions table
comprises a multi-level permissions table including an
address having a trie structure having one or more address
portions arranged in a hierarchical structure, each of the one
or more address portions pointing to a respective one or
more entries in the permissions table selected from among a
pointer to another permissions table entry and an entry
having at least one permission value.

12. The method of claim 1, wherein the entry having at
least one permission value is a mini-sorted-segment table
(mini-SST) entry having a plurality of address offsets and a
respective plurality of permission values.

13. The method of claim 1, further including:

providing a protection lookaside buffer (PLB); and

loading at least a portion of the permissions table in the

protection lookaside buffer (PLB).

14. The method of claim 13, further including re-loading
the PLB with another permissions table portion when an
address request to the PLB does not find a desired address.

15. The method of claim 1, further including:

providing at least one sidecar register associated with a

respective at least one of the one or more address
registers; and

loading the at least one sidecar register with an address

base and an address bounds corresponding to one of the
one or more segments within the permissions table and
with a permission value associated with the one of the
one or more segments.

16. The method of claim 15, further including re-loading
the at least one sidecar register with another address range
corresponding to another one of the one or more segments
within the permissions table and with an associated permis-
sion value when an address request to the sidecar register
does not find a desired address.

17. The method of claim 15, further including

providing a protection lookaside buffer (PLB); and

loading at least a portion of the permissions table in the
protection lookaside buffer (PLB); and

re-loading the at least one sidecar register with another

address range corresponding to another one of the one
or more segments within the permissions table and with
an associated permission value when an address request
to the sidecar register does not find a desired address.

18. The method of claim 1, further including:

associating a first one of the one or more protection

domains with a source software portion and a second
one of the one or more protection domains with a
destination software portion;

associating a switch gate having switch gate values with

the source software portion, the switch gate associated
with a software call from the source software portion to
the destination software portion, the switch gate values
including a source address associated with the source
software portion, a switch gate identifier value, and a
protection domain identifier associated with the second
one of the one or more protection domains; and
associating a return gate having return gate values with
the destination software portion, the return gate asso-

US 7,287,140 B1

31

ciated with the software call from the source software
portion, wherein the return gate values include a des-
tination address associated with the destination soft-
ware portion, or a return gate identifier value.

19. The method of claim 18, further including:

providing a gate table; and

storing the switch gate values and the return gate values

in the gate table.

20. The method of claim 19, further including:

providing a gate lookaside buffer; and

loading at least a portion of the gate table in the gate

lookaside buffer (GLB).

21. The method of claim 20, further including re-loading
the GLB with another at least a portion of the gate table
when an address request to the GLB does not find a desired
address.

22. The method of claim 20, further including:

identifying a gate-present program address associated

with the switch gate values and the return gate values;
and

not re-loading the GLB when an address request to the

GLB does not find a desired address and the address
request does not correspond to the gate-present pro-
gram address.

23. The method of claim 18, further including:

providing a cross-domain-call stack;

storing an identity of the first one of the one or more

protection domains associated with the source software
portion onto the cross-domain-call stack upon detecting
the switch gate values, wherein the software operates
during the software call in accordance with the second
one of the one or more protection domains associated
with the destination software portion; and

recalling the identity of the first one of the one or more

protection domains associated with the source software
portion upon detecting the return gate values, wherein
the software operates after the software return in accor-
dance with the first one of the one or more protection
domain associated with the source software portion.

24. The method of claim 23, further including:

storing a source software portion address onto the cross-

domain call stack upon detecting the switch gate val-
ues;

recalling the source software portion address from the

cross domain call stack upon detecting the return gate
values; and

checking validity of the recalled source software portion

address.

25. The method of claim 24, further including:

storing a stack frame of base address onto the cross-

domain call stack associated with an address of a frame
a stack memory; and

recalling the stack frame base address from the cross-

domain call stack.

26. The method of claim 1, further including:

providing a stack base (sb) register for storing a stack base

address corresponding to a base address of a stack
memory;
providing a frame base (fb) register for storing a frame
base address corresponding to an intermediate address
within an address range of the stack memory;

providing a stack limit (sl) register for storing a stack
lower address corresponding to a terminating address
of the stack memory;

associating a first stack permission value with a stack

address range from the stack base address to the frame
base address; and

20

25

30

35

40

45

50

55

60

65

32

associating a second stack permission value with a stack
address range from the frame base address to the stack
limit address; wherein the stack base address, the frame
base address and the stack lower address are dynami-
cally updated during a software call.

27. The method of claim 26, further including:

providing a stack permissions table,

identifying a third stack address range;

assigning a third stack permission value to the third stack

address range;

identifying a fourth stack address range;

assigning a fourth stack permission value to the fourth

stack address range; and

storing in the stack permissions table:

the third and fourth stack address ranges, and
the third and fourth stack permission values.
28. The method of claim 27, further including:
selecting an address within the stack memory;
operating upon the selected address within the stack
memory in accordance with a selected one of the first,
second, third, or fourth stack permission values when
the selected address range falls within the first, second,
third, and fourth stack address ranges, respectively.
29. The computer apparatus of claim 1, wherein selected
ones of the permission values are selected from among a
write-only value, read-write value, execute-read value, an
execute-write value, an execute-read-write value, or an
execute-only value.
30. A computer apparatus having a central processing unit
(CPU), the computer apparatus comprising:
a computer memory coupled to the CPU having a range
of memory addresses addressable by the CPU; and

one or more protection domains, the one or more protec-
tion domains comprising an association of each word in
the range of memory addresses with a respective meta-
data value, wherein a selected word in the range of
memory addresses is associated with a first metadata
value and words adjacent to the selected word are
associated with second and third metadata values
respectively, wherein each one of the metadata values
comprises a respective permission value, wherein the
one or more protection domains are arranged in a
permissions table stored in the computer memory,
wherein each of the one or more protection domains is
associated with the range of memory addresses,
wherein each one of the one or more protection
domains has a respective one or more segments, each
one of the one or more segments forming a portion of
the range of memory addresses, wherein each one of
the one or more segments is associated with a respec-
tive one of the metadata values.

31. The computer apparatus of claim 30, wherein selected
ones of the permission values are selected from among a
read-only value, write-only value, read-write value, execute-
read value, an execute-write value, an execute-read-write
value, an execute-only value, or a no-permission value.

32. The computer apparatus of claim 30, wherein selected
ones of the metadata values further comprises at least one of
a cache coherence state value, a not-cached state value, a
cached-exclusive state value, a cached-modified state value,
or a cached-shared state value.

33. The method of claim 30, wherein selected ones of the
metadata values further comprise at least one of a respective
cache coherence state value, a not-cached state value, a
cached-exclusive state value, a cached-modified state value,
or a cached-shared state value.

US 7,287,140 B1

33

34. The computer apparatus of claim 30, wherein each one
of the one or more protection domains are assigned to one
of'a software kernel, a software module, or a computer stack,
and the one of the software kernel, the software module, or
the computer stack operates in accordance with the assigned
protection domain.

35. The computer apparatus of claim 30, further including
a protection domain identifier (PD-ID) register for storing a
protection domain identifier value associated with at least
one of the one or more protection domains.

36. The computer apparatus of claim 30, further including
a memory supervisor, for receiving a request to invoke and
impose a requested protection domain and for accepting or
denying the request.

37. The computer apparatus of claim 30, further including
a permissions table base register in communication with the
CPU for storing a base address of the permissions table.

38. The computer apparatus of claim 30, further including
a protection lookaside buffer (PLB) in communication with
the permissions table for storing at least a portion of the
permissions table.

39. The computer apparatus of claim 30, further including
at least one sidecar register associated with a respective at
least one of the one or more address registers, wherein the
at least one sidecar register includes a respective segment
address range and a respective permission value associated
with the segment address range.

40. The computer apparatus of claim 30, further including
a gate table for storing switch gate values and return gate
values associated with a software call from a source soft-
ware portion to a destination software portion, the switch
gate values including a source address associated with the
source software portion, a switch gate identifier value, and
a protection domain identifier associated with the destination
software portion, and the return gate values including a
destination address associated with the destination software
portion, and a return gate identifier value.

20

25

30

35

34

41. The computer apparatus of claim 40, further including
a gate lookaside buffer for storing at least a portion of the
gate table.

42. The computer apparatus of claim 40, further including
a cross-domain-call stack for storing an identity of a pro-
tection domain associated with the source software portion
onto the cross-domain-call stack upon detecting the switch
gate values, wherein the software operates during the soft-
ware call in accordance with a protection domain associated
with the destination software portion, and for recalling the
identity of the protection domain associated with the source
software portion upon detecting the return gate values,
wherein the software operates after the software return in
accordance with the protection domain associated with the
source software portion.

43. The computer apparatus of claim 30, further including
a stack permissions table for storing at least one stack
permission value associated with a selected address range of
a computer stack, wherein the CPU operates in accordance
with the at least one stack permission value when accessing
a portion of the memory stack within the selected address
range.

44. The computer apparatus of claim 30, further including
an instruction cache coupled to the central processing unit,
the instruction cache having computer instructions stored
therein and also having gate-present bits associated with one
or more of the computer instructions, the gate-present bits
indicative of selected ones of a switch gate and a return gate
associated with respective ones of the one or more computer
instructions.

45. The method of claim 1, wherein selected ones of the
permission values are selected from among a write-only
value, a read-write value, an execute-read value, an execute-
write value, an execute-read-write value, or an execute-only
value.

