LEARNING WITH RECURSIVE PERCEPTUAL REPRESENTATIONS

Oriol Vinyals Yangqing Jia UC Berkeley EECS & ICSI & Microsoft Research

1. CONTRIBUTION

The key contributions of our work are:

- We propose a new method based on linear SVMs, random projections, and deep architectures.
- The method enriches linear SVMs without forming explicit kernels.
- The learning only involves training linear SVMs, which is very efficient. No fine-tuning is needed in training the deep structure.
- The training could be easily parallelized.
- Based on the success of sparse coding + linear SVMs, we stacked linear SVMs introducing a non-linear discriminative bias to achieve nonlinear separation of the data.

3. ANALYSIS

- We would like to "pull apart" data from different classes.
- Quasi-orthogonality: two random vectors in a highdimensional space are much likely to be approximately orthogonal.
- In the perfect label case, we can prove that

Lemma 3.1. – \mathcal{T} , set of N tuples $(\mathbf{d}^{(i)}, y^{(i)})$

- $\boldsymbol{\theta} \in \mathbb{R}^{D \times C}$ the corresponding linear SVM solution with objective function value $f_{\mathcal{T},\boldsymbol{\theta}}$
- There exist \mathbf{w}_i s.t. $\mathcal{T}' = (\mathbf{d}^{(i)} + \mathbf{w}_{y^{(i)}}, y^{(i)})$ has a linear SVM solution θ' with $f_{\mathcal{T}',\theta'} < f_{\mathcal{T},\theta}$.
- With imperfect prediction, each layer incrementally "improves" the separability of the original data.
- Randomness helps avoid over-fitting (as will be shown in the experiments).

Li Deng

Trevor Darrell

5. CIFAR-10

• Going deeper with randomness helps, while naive combination does not.

- Performance under different feature size
 - Small codebook size: R²SVM improves performance without much additional complexity.
 - Large codebook size: R²SVM avoids the overfitting issue of nonlinear SVMs.

2.	
•	O ₁ =
•	v X1⊥
•	$\theta_1 a$
	wit
•	\mathbf{W}_l
	ℓ [W
•	Eac
	froi
6.	R
	Ever
	CX
an	d th
an	d the
an	d the M L R R
an	d the M L R R T
an	d the M L R R L L L
an	d the M L R R C L R
an	d the M L R R C L R R
an	d the M L R R C L R R C L
an	d the M L R R C L R R C L
an	d the M L R R C L R R C L M
an	d the

HE PIPELINE

$$= oldsymbol{ heta}_l^T \mathbf{x}_l$$

$$-1 = \sigma(\mathbf{d} + \beta \mathbf{W}_{l+1}[\mathbf{o}_1^T, \mathbf{o}_2^T, \cdots, \mathbf{o}_l^T]^T)$$

are the linear SVM parameters trained th \mathbf{x}_l

concatenation of matrices projection random $[V_{l+1,1}, \mathbf{W}_{l+1,2}, \cdots, \mathbf{W}_{l+1,l}]$

ch \mathbf{W}_l is a random matrix sampled M(0,1)

ESULTS

perimental results on both the vision (CIFAR-10) e speech (TIMIT) data.

CIFAR10

Method	Tr. Size	Code. Size	Acc.
Linear SVM	25/class	50	41.3%
RBF SVM	25/class	50	42.2%
R^2SVM	25/class	50	42.8%
DCN	25/class	50	40.7%
Linear SVM	25/class	1600	44.1%
RBF SVM	25/class	1600	41.6%
R^2SVM	25/class	1600	45.1%
DCN	25/class	1600	42.7%

TIMIT

Method	Phone state accuracy
Linear SVM	50.1% (2000 codes)
	53.5% (8000 codes)
R ² SVM	53.5% (2000 codes)
	55.1% (8000 codes)
DCN, learned per-layer	48.5%
DCN, jointly fine-tuned	54.3%

MNIST

Method	Err.
Linear SVM	1.02%
RBF SVM	0.86%
R^2SVM	0.71%
DCN	0.83%
NCA w/ DAE	1.0%
Conv NN	0.53%

7	. S	UI	M]
			(
]
			ŀ
	•	Tr:	ea
	•	Te:	te
	•	Sca	: S
		Rep): 1
	1.	No	n-9
		me	the
		ilar	'p
	2.	Nu	m
		20 dat	(C)
	-	uat	.a.
8	. F	REF	FE
•	ΙY	ang	·F
	ma	itchi	ing
	In	CVI	PR
•	A	Coa	tes
	tio	n. Ir	
•	LΙ	Deng	g a
		1 • -	

The whole R^2 SVM pipeline

Each RSVM component

MARY AND DISCUSSIONS

Comparison over Different Models

Method	Tr	Te	Sca	Rep
Deep NN	×	\checkmark	?	\checkmark
Linear SVM	\checkmark	\checkmark	\checkmark	×
Kernel SVM	?	?	\times	\checkmark
DCN	×	\checkmark	?	\checkmark
R^2SVM	\checkmark	\checkmark	\checkmark	\checkmark

ase of training the model.

esting time complexity.

scalability (does it handle large-scale well?).

the representation power of the model.

Final Remarks

-sparse coded features: we applied the od on several UCI datasets and observed simperformance to kernel SVMs.

ber of layers: ~ 5 (TIMIT / MNIST), ~ 10 -CIFAR), depending on the nonlinear nature of

ERENCES

K Yu, and Y Gong. Linear spatial pyramid g using sparse coding for image classification. 2009.

and A Ng. The importance of encoding verning with sparse coding and vector quantiza-ICML, 2011.

and D Yu. Deep convex network: A scalable architecture for deep learning. In Interspeech, 2011.