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Goal

§ Analysis of the pooling step in the image 
classification pipeline

§ Evidence that spatial pyramids may be 
suboptimal

§ A new method that learns receptive fields 
tailored to the classification tasks

“Bear”coding pooling



§ dense feature extraction 
§ coding: encoding the image to K codebook 

activation maps

Dense-coded Classification Pipeline

...
codebook



Codebook training / coding methods

§ Not necessarily simple convolutions! 
§ Different types of dense features

– SIFT (e.g. Caltech 101)
– Raw / whitened pixel values (e.g. CIFAR)

§ Sophistication in codebook learning and encoding
– Vector quantization
– Sparse coding (Olshausen et al. 1996)
– LCC/LLC (Yu & Zhang, 2009; Wang et al. 2010)



§ Pooling: Compute statistics of the activations in 
specific spatial areas (receptive fields)

Dense-coded Classification Pipeline

...



§ Classification: Adopting linear classifiers to 
predict the label

Dense-coded Classification Pipeline 

... f(x) = “Bear”



Existing Work on Pooling

§ Bag of Words
§ Spatial Pyramids

– Lazebnik et al. 2006 (SPM), Yang et al. 2009 (ScSPM)

§ Better Pooling Operators
– Boureau et al. 2010

§ Grouping activation maps
– Boureau et al. 2011, Coates et al. 2011

§ Relatively few work on the spatial receptive field 
designs!



Pooling is Task-Dependent



Pooling is Task-Dependent



Pooling is Task-Dependent

Solution: use overcomplete receptive fields!



Related Ideas

§ Boosted receptive fields
– Viola & Jones 2001 (Haar wavelets)
– Shakhnarovich et al. 2003 (Region histograms)

§ Learning local descriptors
– Tola et al. 2008, Brown et al. 2010

§ Recent subcategory recognition works
– Zhang et al. 2012 (Pose pooling kernels)
– Yao et al. 2012 (Fine-grained categorization)



Define a Pooled Feature

§ Given P receptive fields and K coded activations

§ P x K possible pooled features

xK⇥p+k = op(Ak
Rp

)

...AK

A2
A1

R = {R1,R2, · · · ,RP }
D = {A1,A2, · · · ,AK}



Challenges
§ A huge number of possible receptive fields

– 2#pixels possible RFs
§ Need to maintain reasonable prediction speed

Solutions
§ Use reasonably over-complete RF candidates
§ Select useful features via sparsity constraints

Challenges & Solutions



Overcomplete Receptive Fields

§ We propose to use rectangular bins built on 
small regular grids

Regular grids
(k x k)

Spatial pyramid
(O(k2) bins)

Overcomplete RFs
(O(k4) bins)



§ Find classifiers that use a subset of the features

( Feature computation:                                             )
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Structured Sparsity

Classification Loss
L2 regularization

Structured Sparsity



Greedy Approximation to Structured Sparsity

§ Incrementally select the feature 
with the largest gradient
(Perkins et al. 2003)

§ Re-train classifier (fast!)
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Experiment: CIFAR

§ The CIFAR-10 dataset
– 10 object classes
– 50k training, 10k testing

§ Coding strategy follows
(Coates & Ng, 2011)

(Image courtesy of Alex Krizhevsky, http://www.cs.toronto.edu/~kriz/cifar.html)



Does Spatial Pyramid suffice?

[kmeans (k=200) + triangular coding on 6x6 patches, CIFAR-10]

76.57
75.41

74.83

72.24
70.24

2x2 ave
4x4 max
Spatial Pyramid
Random
Our method



More codes vs. Smarter Pooling
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More codes vs. Smarter Pooling
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Best Practice on CIFAR



§ Cross-image bars
– natural scene layout

§ Whole-image pooling
– hollistic statistics

§ Small fields
– local distinctiveness

§ Corners
– context matters

Most useful Receptive Fields

least useful

most useful



§ Better pooling increases performance over SPM
(up to the implementation limit of the algorithm)

Experiment: Caltech-101

Method Codebook Performance
ScSPM (Yang et al. 2009) 1024 (SC) 73.2±0.54

LCC+SPM (Wang et al. 2010) 1024 (LCC) 73.44
Our Method 1024 (SC) 75.3±0.70



Conclusion

§ We proposed a new method that learns receptive 
fields tailored to the classification tasks

§ Showed consistent improvement over SPM on 
medium-sized codebooks

§ Future work
– larger-scale feature learning with both overcomplete 

coding and overcomplete pooling
– joint task-driven coding and pooling 



Conclusion (cont’d)

... f(x) = “Bear”



Conclusion (cont’d)

... f(x) = “Bear”

§ Multiple objectives
§ Better local 

descriptors?
§ Object-level HOG?
§ ...

§ Agnostic to 
coding



Thank you!
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Method err%
Our Method 0.64

Coates ICML’11 1.02
Lauer PR’07 0.83

Labusch TNN’08 0.59
Ranzato CVPR’09 0.62
Jarrett ICCV’09 0.53

Experiment: MNIST



Thus spoke neuroscience

LGN
(Whitening) Simple Cells in V1

(sparse coding ?)

Complex Cells 
in V1

(spatial 
pooling)


